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 A B S T R A C T

We present a novel approach to numerical modelling of thermal nanofluids based on the Euler–Lagrange 
method. This approach overcomes the challenge of extremely fine temporal discretization, which previous 
Euler–Lagrange nanofluid numerical models struggled to address, while also avoiding the need for too many 
Lagrangian nanoparticles. A numerical uncertainty assessment method is adapted for the proposed approach. 
The model is validated with a simple verification case and applied to simulate a closed natural circulation 
loop heat exchanger operating with heating power ranging from 10 W to 50 W and nanoparticle volume 
fractions of 0.5% to 2%, using an Al2O3–water nanofluid. Results are compared with experimental temperature 
measurements and an Euler–Euler implementation of the same nanofluid. The model is also applied to simulate 
the natural convection inside a vertical enclosure, studied experimentally by other authors. The proposed 
novel approach demonstrates agreement with both experimental data and the Euler–Euler implementation, 
effectively capturing the overall behaviour of nanofluids. We establish, that the interplay of multiple transport 
phenomena, that occur in nanofluid operated devices, can be difficult to completely reproduce numerically 
within the framework of current modelling assumptions.
1. Introduction

Passive heat exchangers are highly desirable solutions for systems 
where reliability is key. The disaster at the Fukushima–Daiichi nu-
clear power plant in 2011 was caused by the power failure of the 
auxiliary diesel generators. Their task was to cool the reactor core 
in an emergency. In the years following the disaster, many concepts 
for passive heat dissipation were developed for nuclear power plants. 
Among those, some of them are based on natural convection loops 
(NCLs) [1–3], which eliminate the need for pumps with an external 
power supply. In such applications, the choice of working fluid directly 
determines the performance of the device. To increase the efficiency of 
heat exchangers, thermal properties of the working fluid must therefore 
be adapted. Traditionally, the primary working fluids have been water 
and water-based solutions such as water–ethylene glycol. The idea 
of nanofluids is that thermal properties of the working fluid should 
be improved by dispersing particles with a size of 100 nm or less 
in the base fluid. The material of the particles should be chosen so 
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that its thermal conductivity is far greater than that of the base fluid, 
thereby improving the overall effective thermal conductivity of the 
nanofluid [4].

Numerical modelling approaches for nanofluids can generally be 
divided into three categories. The first is the single-phase approach, 
which assumes that the volume fraction of nanoparticles varies very 
little throughout the computational domain. The resulting thermophys-
ical properties are therefore constant for the entire system or vary only 
spatially with temperature. Although it has been recognized that the 
single-phase approach adequately captures the integral quantities of the 
device to which it was applied [5,6], such models are still unable to 
provide crucial details about the volume fraction of the nanoparticles 
and the fields of thermophysical properties. As a result, this approach is 
unable to account for the physics governing the transport of nanopar-
ticles and therefore cannot be used to fully understand the operation 
of nanofluid-based devices [7–9]. Abouali et al. [10] showed that 
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integral quantities, such as the heat transfer coefficient, of nanofluid-
based systems with natural convection can be well estimated using 
available correlations, making the single-phase nanofluid simulations 
redundant. The second approach is the so-called two–fluid or Euler–
Euler approach, where we simulate the nanoparticles as a continuous 
field, which allows us to capture the transport phenomena within 
the nanofluid more accurately than the single-phase model [11]. An 
alternative approach to Euler–Euler is the so-called Euler–Lagrange 
approach, in which we simulate the fluid as a continuous (Eulerian) 
phase and the particles as points, whereby the shape of the particles is 
not resolved [12,13].

Traditionally, the translational dynamics of particles has been sim-
ulated by solving the Maxey–Riley equation, which acts by adding 
implicit or explicit contributions of individual particle forces and then 
used to calculate the particle velocity by solving the resulting ordi-
nary differential equation (ODE) [14]. For particles in the submicron 
range, two force contributions become particularly important: the ther-
mophoretic force, which is responsible for the migration of the particles 
in the direction of the negative temperature gradient in the base fluid, 
and the Brownian force, which can be interpreted as self-diffusion of 
the particle cloud [15].

He et al. [16] performed a numerical simulation of a nanofluid 
flowing through a heated straight pipe under laminar flow conditions 
applying the Euler–Lagrange approach and validated the obtained re-
sults with an experiment. They considered TiO2–water nanofluid and 
determined the conductivity and viscosity correlations by performing 
measurements. They found good agreement between the simulation 
and experimental results and concluded that the heat transfer coeffi-
cient is most influenced by the increased thermal conductivity of the 
nanofluid. Rashidi et al. [17] investigated external flows of nanoflu-
ids using the Euler–Lagrange approach and found that the effects of 
Brownian motion on the heat transfer coefficients were stronger than 
the effects of thermophoretic force. A similar problem was investigated 
by Maskaniyan et al. [18], where they studied particles of differ-
ent sizes (30 nm–0.5 μm) and the resulting force contributions. They 
found that for particles of 30 nm and smaller, the contribution of 
the Brownian force becomes larger compared to the inertial forces. A 
numerical study of the Euler–Lagrange nanofluid flow in a pipe by 
Sharaf et al. [19] showed that the volume fraction of nanoparticles 
at the walls is highly non–uniform, further disproving the relevance 
of the single-phase assumption. They also concluded that Brownian 
and thermophoretic forces play an important role in the deposition of 
nanoparticles under laminar conditions. Similar results have also been 
reported by other researchers [20–23]. It was analysed in a review by 
Habeeb et al. [24] that the Euler–Lagrange approach was superior to 
the Euler–Euler approach in many cases.

The numerical modelling of nanofluids with the Euler–Lagrange 
approach encounters the following difficulties:

• The point-particle approach assumes that each particle in the 
computational domain is simulated individually. When simulating 
systems of particles of nanometre size, the number of Lagrangian 
particles can become very large even at small volume fractions of 
the dispersed phase, which greatly increases the computational 
costs. This problem is particularly pronounced when simulating 
real industrial devices, such as heat exchangers.

• The second obstacle when simulating nanofluids with the Euler–
Lagrange approach is the computational time step size. We can 
calculate the response time of a Al2O3 nanoparticle of size 25 nm
suspended in water as follows 

𝑡0 =
𝜌𝑝𝑑2𝑝
18𝜇𝑓

(1)

and find that the response time is of the order of 10−10 s. If 
one considers that the computational time step must be taken 
as a fraction of the particle response time [15], the problem of 
computational costs becomes even more pronounced.
2 
The first problem is often addressed in the literature by considering 
a cluster of particles as a representative parcel, instead of simulating 
each nanoparticle individually. Rashidi et al. [17] simulated the parcels 
as a cluster of 5000 to 30 000 nanoparticles and computed the volume 
fraction in the finite volume cell as 

𝜑𝑐 =
𝑛parcel𝑝 𝑉𝑝

𝑉𝑐
, (2)

where 𝑉𝑐 is the volume of the cell and 𝑛parcel𝑝 , 𝑉𝑝 are the number of 
nanoparticles in the parcel and the nanoparticle volume respectively. 
A similar approach was also adopted by other authors [25,26].

A more sophisticated approach was chosen by Mahdavi et al. [9,
27,28]. They computed the volume fraction of the nanoparticles by 
interpolating the Lagrangian field onto the Eulerian finite volume mesh 
using the Gaussian function centred on the particle centroid as 

𝐺𝑤 =
( 𝑎
𝜋

)3∕2
exp

[

−𝑎
|𝑟parcel − 𝑟particle|

2

𝛥𝑥2

]

, (3)

where 𝐺𝑤 is the Gaussian weight function, 𝑟parcel and 𝑟particle are the 
positions of the parcel and particle, and 𝑎 is the Gaussian parameter 
that determines the influence of the volume fraction through the sur-
rounding Eulerian finite volume mesh. The authors reported that the 
parameter 𝑎 influences the volume fraction field and had little effect 
on the integral parameters, such as the heat transfer coefficient. The 
authors only chose 𝑎 = 6 as an appropriate value for their study, but 
acknowledged that further investigation was needed to determine the 
optimal value of 𝑎 [9]. To the best of our knowledge, no in-depth 
research has been conducted on this topic to date.

Although progress has been made in solving the problem of the 
number of particles in the simulations, the problem of the small time 
step remains unsolved. This is mainly due to the state-of-the-art ap-
proach of Lagrangian particle tracking, which, as mentioned above, 
works by integrating the ODE that dictates the particle motion. This 
means that the application of an appropriate time step greatly increases 
computational costs [9,19].

For the numerical simulation to be accurate, both the numerical and 
modelling errors must be minimal. The former can be estimated using 
the well-known methods such as Richardson extrapolation, where we 
evaluate the discretization errors via the numerical uncertainty [29] 
and which is similar for all numerical methods, regardless of the physics 
involved. However, the modelling error depends on the physical prop-
erties of the working fluid and can be minimized by accurate exper-
imental measurements. Unfortunately, there is still no standardized 
methodology for measuring the thermophysical properties of nanoflu-
ids [30]. Furthermore, the lack of consensus on reporting heat transfer 
coefficient makes it difficult for researchers to properly compare their 
results [30–32]. In this study, we use experimental measurements of the 
thermophysical properties of the nanofluid obtained through our own 
investigations, allowing us to obtain mathematical correlations of the 
thermophysical properties of the nanofluid as a function of temperature 
and volume fraction, to be used in simulations.

The main objective of this work is to implement a new method 
for modelling nanofluids using the modified Lagrangian approach, 
which addresses the above-mentioned difficulties of a high number 
of simulated nanoparticles and a small computational time step. The 
presented study offers several important contributions:

• Based on the physical assumption of a short response time of 
nanoparticles, the modified Lagrangian particle tracking method 
is implemented, which eliminates the need to solve the Maxey–
Riley ODE.

• An approach similar to that of Mahdavi et al. [9,27,28], was 
considered for the calculation of the nanoparticle volume fraction 
field from the discrete field of Lagrangian particles. We use the 
so-called concentration blob method presented by Marshall and 
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Sala [33] and investigate the parameter for the radius of the con-
centration blob, which corresponds to the parameter 𝑎 in Eq. (3), 
and determine its optimal value for simulations of nanofluid-
based heat exchangers. In this context, Lagrangian particles are 
the actual computational particles in simulations, and nanopar-
ticles are the physical particles, modelled using the proposed 
approach.

• The numerical model is verified using a simple verification case 
and compared with the solution obtained by solving the 1D 
volume fraction equation.

• We analyse the numerical uncertainty of the proposed numer-
ical nanofluid model and introduce a method to quantify this 
uncertainty using a modified Richardson extrapolation technique.

• The experimental measurements are performed for the thermo-
physical properties of the Al2O3–water nanofluid. The obtained 
correlations are then used to test the performance of the nu-
merical model on a NCL heat exchanger and validated against 
experimental temperature measurements as well as against the 
Euler–Euler implementation of the same nanofluid.

2. Experimental setup

2.1. The NCL heat exchanger

To validate the NCL heat exchanger simulation, measurements were 
carried out on a laboratory scale NCL heat exchanger, which is shown 
in Fig.  1. The NCL heat exchanger has a central heating element in 
the lower section with a length of 110 mm. At the top is a cooling 
section with a length of 140 mm, which ensures a constant temperature 
of 294 K. Copper pipes were selected for the experimental setup as 
they have excellent thermal conductivity and are easy to form. The 
outer diameter of the copper pipe is 6.63 mm with an inner diameter 
of 4.75 mm. The thermocouples are 96 mm away from the lower and 
upper pipe centreline.

Plastic pipes were installed on top of the NCL, which serve both 
as an expansion tank and as a simple fluid exchange point. A water 
jacket for the cooling area was 3D printed from ABS material and 
coated with epoxy to ensure it remains watertight. The thermocouples 
have a diameter of 1 mm, which could result in blockage of the 
flow area by 5% when inserted into the copper pipe. To minimize 
the effects of this blockage on the flow dynamics, the thermocouples 
were positioned in direct contact with the fluid, remaining close to the 
inner wall of the pipe. A nickel–chromium heating wire of appropriate 
length was wrapped around the intended heating area of the system 
to provide the necessary power. To prevent electrical contact between 
the heating wire and the electrically conductive copper pipe, a layer 
of insulating tape with high thermal conductivity was applied to the 
heating zone. An Aim-TTi CPX400DP programmable DC power supply 
was used to generate the heat input to the loop via the heater wire by 
controlling the supplied current and the voltage. The arrangement of 
the thermocouples for measuring the flow temperature is shown in Fig. 
2.

Once all the thermocouples had been installed, the system was 
tested for leaks. It was operated for two hours with pure water at differ-
ent heat outputs (10 W, 30 W and 50 W). The system was then allowed 
to cool down before being used again. This procedure confirmed the 
absence of leaks, even under the conditions of thermal expansion and 
contraction at different heater settings, thus confirming the integrity of 
the system.

The fabricated water jacket, shown in detail 𝐘 in Fig.  1, was coated 
with epoxy resin and subjected to a second round of leakage tests. 
After successful completion of these tests, the system was completely 
isolated. The experimental setup was then mounted on a frame made of 
aluminium profiles. The constructed NCL with all the piping prepared 
for the experiments is shown in Fig.  3.
3 
2.2. Temperature measurements with the NCL operated by nanofluid

For the experimental setup, a cooled CLS CLRC-17 circulation bath 
was used, which can maintain a constant cooling water temperature 
with a sensitivity of 0.1 ◦C. A voltage and current controlled power sup-
ply provided steady power to the system via the heating wire through-
out the experiments. Temperature measurements were recorded using 
K-type thermocouples, with data logging performed by an ORDEL UDL-
100 Universal Data Logger. The setup also included thermocouples to 
monitor the inlet and outlet temperatures of the water jacket. A tem-
perature validation study was conducted using deionized water at three 
different heating powers, with each experiment repeated twice over a 
three-day period to ensure consistency. The measurement uncertainty 
of the thermocouples is estimated to be ±0.5 K.

3. Methods

The numerical calculations and post-processing were carried out 
using the open source software OpenFOAM, version 11 [34] and Par-
aView, version 5.12 [35]. A novel approach was integrated into the 
baseline solver for the coupling of liquid and nanoparticles. The NCL 
heat exchanger geometry consists of the nanofluid region and the 
copper pipe region. The multi-region approach was chosen to simulate 
the experiment more accurately by capturing the heat conduction from 
the heating region through the copper pipe.

3.1. Thermophysical properties of the Al2O3–water nanofluid

In this study, we prepared the nanofluid samples using the two-step 
method. The nanoparticles used had an average diameter of 25 𝑛𝑚, as 
provided by the manufacturer. While we did not perform additional 
characterizations, we ensured proper dispersion through stirring (for 
sufficient amount of time and rotation), which provided the necessary 
stability during the thermophysical property measurements and heat 
transfer experiments. Absence of any stabilizing additives and ultrason-
ication was intentional, since these strongly affect the thermophysical 
properties and heat transfer performance, and our aim in this work was 
to keep the conditions of numerical analyses and experiments the same.

The dynamic viscosity and the thermal conductivity of the Al2O3–
water nanofluid were measured in a temperature range from 20 ◦C to 
60 ◦C and for three bulk nanoparticle volume fractions of 0.5%, 1% 
and 2%. The measurements were fitted using the least-squares method 
to obtain the mathematical correlations used in the simulations. Fig. 
4 depicts temperature–nanofluid viscosity relation of the data of this 
work, along with the experimental data provided by Chandrasekar 
et al. [36] for 1% and 2% Al2O3–water nanofluids with 43 nm particle 
size, Mehta & Subhedar [37] for 0.5% Al2O3–water nanofluids with 
20 nm particle size, Yiamsawas et al. [38] for 1% and 2% Al2O3–water 
nanofluids with 120 nm particle size, Elcioglu [39] for 1%, 2%, and 3% 
for Al2O3–water nanofluids with 10 nm and 30 nm particle size; together 
with the predictions of the Einstein model [40] (𝜇 = 𝜇𝑓 (1 + 2.5𝜑)). Re-
sults showed that the measurements of this work are in good agreement 
with the data by Yiamsawas et al. [38], Mehta & Subhedar [37], and 
Elcioglu [39], following similar temperature–viscosity trends. Particle 
size–viscosity relation is not straightforward and there has been no 
consensus on particle size effect on nanofluids’ viscosity. The reason 
for this is two-folded: (i) the sole effect of the particle size cannot be 
isolated from particle–particle interaction and cluster formation, and 
(ii) it is time- and process conditions-dependent and when and under 
what conditions viscosities of nanofluid specimen were measured are 
unknown for literature comparisons. Nevertheless, giving a broader 
range for particle size parameter as in Fig.  4, i.e., 10–120 nm, it is 
possible to assess discrepancies/agreements based on the particle size. 
It is seen that, data of Yiamsawas et al. [38] for 120 nm particle 
size of 2% nanofluid (largest particle, high concentration) as well as 
data of Elcioglu [39] for 30 nm particle size of 3% nanofluid (nearly 
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Fig. 1. Cross section of the nanofluid NCL heat exchanger geometry. The heating region is 110 mm long and the cooling region is 140 mm long. The subscripts ℎ and 𝑐 denote 
the heater and the cooler respectively.
Fig. 2. Thermocouple installation detail.

equal size, concentration higher than studied) were extremes of the 
comparison dataset, and these data are higher than our measurements. 
All other measurements from the literature differ by an acceptable 
range from our measurements. It should be noted that the predictions 
of the Einstein model [40] were lower than our predictions, which is a 
widely observed trend in the literature.

Fig.  5 depicts temperature–nanofluid thermal conductivity relation 
of the data of this work, along with the experimental data provided by 
Turgut [41] for 1.5% Al2O3–water nanofluids with 25 nm particle size, 
Masuda et al. [42] for 1.3% Al2O3–water nanofluids with 13 nm particle 
size, Das et al. [43] for 1% Al2O3–water nanofluids with 38 nm particle 
size, Zhang et al. [44] for 1.2% Al2O3–water nanofluids with 38 nm
particle size, and Murshed et al. [45] for 1% Al2O3–water nanofluids 
with 80 nm particle size; together with the predictions of the Maxwell 
model (𝑘 = 𝑘 (𝑘 + 2𝑘 − 2(𝑘 − 𝑘 )𝜑)∕(𝑘 + 2𝑘 + (𝑘 − 𝑘 )𝜑)). Results 
𝑓 𝑝 𝑓 𝑓 𝑝 𝑝 𝑓 𝑓 𝑝

4 
showed that the measurements of this work are in good agreement 
with the data by Turgut [41] at the studied temperatures and the 
data by Das et al. [43] at 20 ◦C. The data by Zhang et al. [44] have 
about 10% difference from our measurements. When a ±10% deviation 
range is considered, our data and the data by Zhang et al. [44], 
Turgut [41] and the predictions of the Maxwell model [46] appears 
in the same window. The data by Masuda et al. [42] and Murshed 
et al. [45] belong to extremes of the particle sizes in the comparison 
dataset, and that they have more than 10% difference from our data 
at studied temperatures. Here, the particle size–thermal conductivity 
relation being not monotonic can also be seen from Fig.  5.

The fitting was implemented by splitting the temperature and vol-
ume fraction dependencies into separate contributions. The following 
correlation was used for nanofluid viscosity: 

𝜇 (𝑇 , 𝜑) =
3
∑

𝑖=0
𝐶𝜇(𝑇 ),𝑖𝑇

𝑖 ⋅
2
∑

𝑗=0
𝐶𝜇(𝜑),𝑗𝜑

𝑗 , (4)

and for nanofluid thermal conductivity: 

𝑘 (𝑇 , 𝜑) =
3
∑

𝑖=0
𝐶𝑘(𝑇 ),𝑖𝑇

𝑖 ⋅
2
∑

𝑗=0
𝐶𝑘(𝜑),𝑗𝜑

𝑗 . (5)

The corresponding polynomial coefficients used are given in Table  1. 
The nanofluid density is estimated via the mixing rule: 

𝜌 (𝑇 , 𝜑) = (1 − 𝜑)
2
∑

𝑖=0
𝐶𝜌(𝑇 ),𝑖𝑇

𝑖 + 𝜑𝜌𝑝. (6)

The specific heat capacity of the Al2O3–water nanofluid at differ-
ent bulk nanoparticle volume fractions are collected in Table  2. The 
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Fig. 3. The experimental NCL heat exchanger in realization.

Table 1
Polynomial coefficients for the Al2O3–water nanofluid thermophysical properties cor-
relations in Eqs. (6)–(5). The presented polynomial coefficients correspond to the 
experimental measurements, presented in Figs.  4 and 5.
 𝑖 𝐶𝜌(𝑇 ),𝑖 𝐶𝜇(𝜑),𝑖 𝐶𝜇(𝑇 ),𝑖 𝐶𝑘(𝑇 ),𝑖 𝐶𝑘(𝜑),𝑖  
 0 8.213 ⋅ 103 −7.523 ⋅ 10−6 9.644 ⋅ 10−1 9.128 ⋅ 10−1 4.882 ⋅ 10−6  
 1 1.482 ⋅ 100 −1.852 ⋅ 10−6 −7.094 ⋅ 100 2.062 ⋅ 100 −6.017 ⋅ 10−7 
 2 −2.992 ⋅ 10−3 −7.092 ⋅ 10−3 3.760 ⋅ 10−2 3.015 ⋅ 100 1.862 ⋅ 10−4  
 3 0 0 −5.054 ⋅ 10−5 −5.444 ⋅ 10−3 0  

Table 2
Specific heat capacity of the Al2O3–water nanofluid at different nanoparticle volume 
fractions, where 𝜑0 denotes the bulk nanoparticle volume fraction.
 Quantity Symbol Value  
 specific heat capacity at 𝜑0 = 0.5% 𝑐0.5%𝑝 4119.15 𝐽∕(𝑘𝑔𝐾) 
 specific heat capacity at 𝜑0 = 1% 𝑐1%𝑝 4054.15 𝐽∕(𝑘𝑔𝐾) 
 specific heat capacity at 𝜑0 = 2% 𝑐2%𝑝 3926.53 𝐽∕(𝑘𝑔𝐾) 

specific heat capacity was treated as a bulk property of the nanofluid 
and assumed constant over the entire temperature range for a given 
nanoparticle volume fraction. This assumption is supported by exper-
imental measurements, which indicate minimal variation in specific 
heat capacity with temperature for the Al2O3–water nanofluid [5].

3.2. Eulerian method for the continuous phase

For fluid phase calculation, a system of Navier–Stokes equations for 
compressible laminar flow was used. The continuity and momentum 
equation are defined respectively as 
𝜕𝜌

+ ∇⃗ ⋅
(

𝜌𝑢
)

= 0, (7)

𝜕𝑡 𝑟

5 
𝜕
(

𝜌𝑢
)

𝜕𝑡
+ ∇⃗ ⋅

(

𝜌𝑢𝑢
)

= −∇⃗𝑝∗ − ∇⃗ ⋅ 𝜏 + 𝜌𝑔, (8)

where 𝜌 is the density of the nanofluid, depending on the temperature 
and the volume fraction of the nanoparticles, 𝜌 = 𝜌(𝑇 , 𝜑). The vectors 
𝑢 and 𝑔 are the velocity and gravity. In the momentum equation 
(Eq. (8)), the corrected pressure 𝑝∗ represents the absolute pressure 
with the hydrostatic component subtracted, 𝑝∗ = 𝑝 − 𝜌 |

|

𝑔|
|

ℎ. The term 
∇⃗ ⋅ 𝜏 represents the divergence of the stress tensor, where the latter is 
defined for compressible flows as 

𝜏 = 2𝜇�̄� − 2
3
𝜇
(

∇⃗ ⋅ 𝑢
)

𝐼, (9)

where �̄� is the strain rate tensor. In Eq. (9), 𝜇 is the temperature and 
nanoparticle volume fraction dependent dynamic viscosity, 𝜇 = 𝜇 (𝑇 , 𝜑)
and 𝐼 represents the identity matrix. The energy equation is solved in 
the following form,
𝜕 (𝜌ℎ)
𝜕𝑡

+ ∇⃗ ⋅
(

𝜌𝑢ℎ
)

+
𝜕 (𝜌𝐾)
𝜕𝑡

+ ∇⃗ ⋅
(

𝜌𝑢𝐾
)

=
𝜕𝑝∗

𝜕𝑡
− ∇⃗ ⋅

(

𝑘∇⃗𝑇
)

+ 𝜌𝑝𝑐𝑝
(

𝐷𝐵∇⃗𝜑 + 𝑢𝑇
)

⋅ ∇⃗𝑇 + 𝜌
(

𝑢 ⋅ 𝑔
)

, (10)

where ℎ is the enthalpy, 𝐾 the kinetic energy, calculated as 

𝐾 = 1
2
|

|

𝑢|
|

2 , (11)

and 𝑘 = 𝑘 (𝑇 , 𝜑) nanofluid thermal conductivity, dependent on temper-
ature and nanoparticle volume fraction. The term 𝜌𝑝𝑐𝑝

(

𝐷𝐵∇⃗𝜑 + 𝑢𝑇
)

⋅

∇⃗𝑇  accounts for heat flux due to nanoparticle diffusion, as described 
by Buongiorno et al. [47]. The Brownian diffusivity, 𝐷𝐵 , and the 
thermophoretic velocity, ⃗𝑢𝑇 , are described in a later section. It must be 
emphasized that Eq. (10) solves for the enthalpy, where the Buongiorno 
heat flux, as well as the thermal diffusion term, are handled explicitly 
for the known temperature field from previous simulation time-step.

The heat conduction through the copper pipe is governed by the 
unsteady diffusion equation, as 
𝜕𝑇
𝜕𝑡

− ∇⃗ ⋅
(

𝑘𝐶𝑢∇⃗𝑇
)

= 0, (12)

where 𝑘𝐶𝑢 is the copper heat conduction coefficient.

3.2.1. Boundary conditions for the finite volume method
The boundary conditions for the NCL heat exchanger are shown in 

Fig.  6. The temperature boundary conditions are Dirichlet type for the 
cooling surface of the copper pipe and Neumann type for the rest of the 
pipe outer surface. At the heating surface we prescribe the heat flux. To 
do this we set a fixed normal temperature gradient corresponding to the 
heating power used in the experiments with the thermal conductivity 
of copper set to 𝑘𝐶𝑢 = 372 W/(mK). The boundary conditions for the 
wall between the fluid and the copper region were defined in such a 
way that the conservation of heat flow between the regions is fulfilled.

3.3. Lagrangian particle tracking

To track nanoparticles and estimate the location- and time-
dependent volume fraction of nanoparticles in nanofluid, we propose 
the following approach. We assume that the nanoparticles in the flow 
field have a very low Stokes number. This means that the inertial 
forces are insignificant and the particles will follow the streamlines 
of the fluid. Li and Ahmadi [15] showed that very small particles 
(𝑑𝑝 < 0.05 μm) are significantly dispersed by the Brownian force. It 
was also shown by Maskaniyan et al. [18] that this effect, together 
with the thermophoretic forces, cause the particles to diffuse across the 
streamlines. To express the above assumptions and build a numerical 
model for the motion of nanoparticles, we propose to track the particles 
by letting them follow the streamlines while their motion is perturbed 
by Brownian diffusion and thermophoresis at each time step: 
⃗ 𝑡 = 𝑟 𝑡−𝛥𝑡 + 𝛥𝑟 + 𝛥𝑟 + 𝑢 𝛥𝑡, (13)
𝑝 𝑝 𝑝,𝐵 𝑝,𝑇 𝑐
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Fig. 4. Nanofluid viscosity relation of the data of this work, along with the experimental data provided by Chandrasekar et al. [36] for 1% and 2% Al2O3–water nanofluids 
with 43 nm particle size, Mehta & Subhedar [37] for 0.5% Al2O3–water nanofluids with 20 nm particle size, Yiamsawas et al. [38] for 1% and 2% Al2O3–water nanofluids with 
120 nm particle size, Elcioglu [39] for 1%, 2%, and 3% for Al2O3–water nanofluids with 10 nm and 30 nm particle size; together with the predictions of the Einstein model [40] 
(𝜇 = 𝜇𝑓 (1 + 2.5𝜑)).
Fig. 5. Nanofluid thermal conductivity relation of the data of this work, along with the experimental data provided by Turgut [41] for 1.5% Al2O3–water nanofluids with 25 nm
particle size, Masuda et al. [42] for 1.3% Al2O3–water nanofluids with 13 nm particle size, Das et al. [43] for 1% Al2O3–water nanofluids with 38 nm particle size, Zhang et al. [44] 
for 1.2% Al2O3–water nanofluids with 38 nm particle size, and Murshed et al. [45] for 1% Al2O3–water nanofluids with 80 nm particle size; together with the predictions of the 
Maxwell model (𝑘 = 𝑘𝑓 (𝑘𝑝 + 2𝑘𝑓 − 2(𝑘𝑓 − 𝑘𝑝)𝜑)∕(𝑘𝑝 + 2𝑘𝑓 + (𝑘𝑓 − 𝑘𝑝)𝜑)).
where 𝑟 𝑡
𝑝  and 𝑟 𝑡−𝛥𝑡

𝑝  denote the particle position vector at current and 
previous time step respectively, 𝑢𝑐 the fluid velocity at the Lagrangian 
particle position and 𝛥𝑡 the simulation time step. Brownian motion is 
modelled as a random particle position perturbation, 𝛥𝑟𝑝,𝐵 , calculated 
as [15] 
𝑟𝑝,𝐵 = �⃗�

√

6𝐷𝐵𝛥𝑡, (14)

where 𝐷𝐵 is the Brownian diffusivity, calculated as 

𝐷𝐵 = 𝐶𝑐
𝑘𝐵𝑇

2𝜋𝜇𝑓𝑑𝑝
. (15)

In Brownian diffusivity definition, 𝐶𝑐 is the Cunningham factor, 𝑘𝐵
Boltzmann constant, 𝑇  and 𝜇𝑓  the temperature and the kinematic 
viscosity of the fluid and 𝑑𝑝 the nanoparticle diameter. In modelling 
the stochastic nature of Brownian motion, we define a random vector 
�⃗� as [15]: 
�⃗� = 𝑠𝑋, (16)
6 
where 𝑋 is a normally distributed, zero mean, unit variance scalar, that 
dictates the magnitude of vector �⃗�. The direction of �⃗� is determined 
by the unit vector 𝑠, which is defined as 

𝑠 =
[

cos((𝑢 + 1)𝜋)
√

1 − 𝑏2, sin((𝑏 + 1)𝜋)
√

1 − 𝑏2, 𝑏
]

, (17)

where 𝑏 is a uniformly distributed random variable over the interval 
[−1, 1]. This formulation ensures that 𝑠 is a random unit vector, uni-
formly distributed over the surface of a sphere. The combination of 𝑠
and 𝑋 means that �⃗� is a random vector whose magnitude is normally 
distributed and whose direction is uniformly distributed on the unit 
sphere. To model the displacement due to Brownian motion, vector �⃗�
is scaled by √6𝐷𝐵𝛥𝑡, meaning that the position perturbation magnitude 
will be normally distributed around √6𝐷𝐵𝛥𝑡 and its direction will 
be uniformly distributed on a unit sphere, adequately capturing the 
random and isotropic nature of diffusion [15].

In Eq. (13), 𝛥𝑟𝑝,𝑇  is the movement of the Lagrangian particle 
along the temperature gradient, because of thermophoresis, calculated 
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Fig. 6. Boundary conditions for the NCL heat exchanger multi-region simulation. Shown here, are the bottom left corner and the top right corner of the NCL. The subscript 𝑤
denotes the inner surface of the copper pipe, 𝑜 its outer surface, 𝑛𝑓 refers to the nanofluid region and 𝐶𝑢 the copper pipe material.
𝑟

as [47]:
𝛥𝑟𝑝,𝑇 = −𝛽𝜈𝑓

∇𝑇
𝑇

𝛥𝑡, (18)

where 𝛽 is defined by the McNab–Meisen relation as [48] 

𝛽 = 0.26
𝑘𝑓

2𝑘𝑓 + 𝑘𝑝
. (19)

In a more recent study of the Al2O3 nanoparticles by Aminfar & 
Haghgoo [49], the 𝛽 coefficient was determined to be 𝛽(𝜑0 = 0.01) =
0.018 and 𝛽(𝜑0 = 0.03) = 0.01. By linear interpolation of those values, 
we obtain the 𝛽 coefficient for the bulk volume fractions, studied in 
this paper: 
𝛽0.5% = 0.02, 𝛽1% = 0.018, 𝛽2% = 0.014. (20)

3.4. Nanoparticle volume fraction field calculation

In order to calculate new thermophysical properties of the nanofluid 
based on the local volume fraction of nanoparticles, the continuous 
volume fraction field, 𝜑(𝑟), must be obtained from a discrete field of 
particles. In this context, the term Lagrangian particle refers to the 
computational particles used in the simulations, while nanoparticles 
represent the volume fraction distributions associated with these La-
grangian particles. The primary objective is to efficiently represent the 
volume fraction field of the nanoparticles with a minimum number of 
Lagrangian particles. We compute the volume fraction field as 
𝜑(𝑟) = 𝑓�̃�(𝑟), (21)

where parameter 𝑓 ensures that the average nanoparticle volume frac-
tion amounts to the bulk nanoparticle volume fraction, therefore satis-
fying the mass conservation. It is calculated as 

𝑓 =
𝑉0𝜑0

∫𝑉0 �̃�(𝑟)𝑑𝑉
, (22)

where 𝑉0 is the volume of the computational domain and 𝜑0 the av-
erage nanoparticle volume fraction. The nanoparticle volume fraction 
at position, �̃�(𝑟), was computed from the Lagrangian particle positions 
using the concentration blob method [33], 

�̃�(𝑟) =
𝑛𝑝
∑

𝑝=1

2
3𝜋𝑅3

𝑏

exp

⎡

⎢

⎢

⎢

− |

|

|

𝑟 − 𝑟𝑝
|

|

|

2

𝑅2
𝑏

⎤

⎥

⎥

⎥

. (23)
⎣ ⎦

7 
Fig. 7. Illustration of the concentration blob method. The black dots represent the La-
grangian particles, while the dashed circles represent the distance to the concentration 
blob radius, showing the influence of the nanoparticle volume fraction field around the 
Lagrangian particles.

The idea behind it is that one Lagrangian particle represents multiple 
physical nanoparticles in the system. The parameter 𝑅𝑏 is the so-called 
concentration blob radius and tells how far away from the Lagrangian 
particle at position 𝑟𝑝 does the volume fraction influence reach. The 
concentration blob method essentially describes a Gaussian distribution 
of volume fraction around the given Lagrangian particle. To calculate 
the nanoparticle volume fraction field on the finite volume mesh, we set 
⃗ in Eq. (21) to the centre of each finite volume cell. The concentration 
blob method is illustrated in Fig.  7. The black dots represent the 
Lagrangian particles, while the dashed circles represent the distance to 
the concentration blob radius.

A better visualization of the influence of the radius of the concen-
tration blob on the nanoparticle volume fraction field is shown in Fig. 
8, where a simple finite volume block mesh is shown. Inside the finite 
volume mesh, a smaller bounding box is defined, where the Lagrangian 
particles are randomly distributed. The values of the concentration blob 
radius are reported in form of the relative concentration blob radius, 
𝑅𝑏∕𝛿, where 𝛿 is the average size of the finite volume cell in the 
domain. It can be seen that the volume fraction field is more spatially 
averaged with increasing size of the concentration blob radius. If we 
increase the radius of the concentration blob extremely, the proposed 
Euler–Lagrange method converges to the behaviour of the single-phase 
approach described in Section 1. By using the single-phase approach, 
we lose crucial insights into the volume fraction field and its influence 
on the fields of thermophysical properties.

3.5. Solution algorithm

The following algorithm is used to perform the simulation:
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Fig. 8. Comparison of different 𝑅𝑏∕𝛿 values and their influence on the instantaneous nanoparticle volume fraction field and the thermophysical properties for three cases. The 
bulk nanoparticle volume fraction is 𝜑0 = 0.02.
• Initially distribute Lagrangian particle randomly,
• initialize the nanoparticle volume fraction field, Eqs. (21)–(23),
• initialize the velocity, temperature and pressure fields with a 
constant value.

• Proceed with time loop:
1. Compute dynamic viscosity and density fields, Eqs. (4), (6),
2. solve Eq. (8) to obtain the velocity field,
3. compute thermal conductivity field, Eq. (5),
4. solve Eq. (12) to obtain the temperature field inside the 
copper pipe region,

5. solve Eq. (10) to obtain the enthalpy field and perform 
the enthalpy — temperature conversion, to obtain the 
temperature field,

6. preform PIMPLE pressure corrections to obtain the pres-
sure field,

7. evolve the Lagrangian particle cloud using Eqs. (13)–(19),
8. compute the new nanoparticle volume fraction field,
Eqs. (21)–(23),

• stop the simulation when quasi steady-state has been achieved.

4. Results

4.1. Verification of the nanofluid numerical model

To test the proposed Euler–Lagrange approach, we have developed 
a simple numerical 1D benchmark experiment to observe the temporal 
evolution of the nanoparticle volume fraction. We assume that the fluid 
does not move and is subjected to a constant temperature gradient. 
In such a case, when using the Euler–Euler approach, the transport 
equation for nanoparticle volume fraction can be written as follows:
𝑑𝜑
𝑑𝑡

= 𝑑
𝑑𝑥

(

𝐷𝐵
𝑑𝜑
𝑑𝑥

+𝐷𝑇
𝑑𝑇
𝑑𝑥

1
𝑇

)

, 𝑥 ∈ [0, 𝐿], 𝑡 ∈ [0, 𝜏] (24)

with zero flux boundary condition at both sides: 

𝐷𝐵
𝑑𝜑 |

|

|

+𝐷𝑇
𝑑𝑇 1 |

|

|

= 0. (25)

𝑑𝑥

|𝑥=0,𝑥=𝐿 𝑑𝑥 𝑇
|𝑥=0,𝑥=𝐿

8 
An in-house finite volume solver based on this Euler–Euler approach 
was prepared to compare the results with the newly proposed Euler–
Lagrange approach. The volume fraction profiles were compared at 
𝜏 = 1000 s. The computational domain has a length of 𝐿 = 2.5 mm. 
The fluid inside is stationary and is subject to a constant temperature 
gradient of 𝑑𝑇 ∕𝑑𝑥 = 16 000 K/m in 𝑥 ∈ [0, 𝐿]. The temperature at 𝑥 = 0
m was set to 𝑇0 = 303 K, so the temperature at 𝑥 = 𝐿 must be 𝑇𝐿 = 343 K 
to satisfy the temperature gradient. At 𝜏 = 0, the nanoparticle volume 
fraction field was initialized to 𝜑0 = 0.03 in the whole domain. The 
kinematic viscosity of the base fluid was set to 𝜈𝑓 = 10−6 m2∕s, the 
thermal conductivity of the fluid to 𝑘𝑓 = 0.6 W/(mK), the thermal 
conductivity of the nanoparticles to 𝑘𝑝 = 25.0W/(mK) and the diameter 
of the nanoparticles to 𝑑𝑝 = 20 nm. For thermophoresis modelling, the 
McNab–Meisen [48] relation was used (Eq. (19)).

The concentration blob method (21)–(23) estimates the volume 
fraction field using two parameters: the radius of the concentration 
blob, 𝑅𝑏 and the number of Lagrangian particles, 𝑛𝑝. To investigate 
their influence on the accuracy of the results, we analyse them in a non-
dimensional way. We describe the influence of the concentration blob 
in terms of the relative radius of the concentration blob, 𝑅𝑏∕𝛿, where 𝛿
is the cell length of the finite volume in our 1D validation case. In 2D 
and 3D, this becomes 𝛿 =

√

𝛥𝑥𝛥𝑦 and 𝛿 = 3
√

𝛥𝑥𝛥𝑦𝛥𝑧 respectively. The 
proposed non-dimensionalization allows us to determine the number 
of finite volume cells that are influenced by the concentration blob. 
To generalize the number of Lagrangian particles, we divide it by the 
number of finite volumes used in the discretization of the Eulerian part, 
𝑛𝑝∕𝑛𝑐 , where 𝑛𝑐 is the number of finite volumes.

To test the performance of the novel approach, several 𝑅𝑏∕𝛿 – 
𝑛𝑝∕𝑛𝑐 configurations were tested. We monitored the discrepancy be-
tween the Euler–Euler FVM approach and the present results of the 
Euler–Lagrange model by introducing the relative error: 

𝑒 =

√

√

√

√

∑𝑛𝑐
𝑐=1(𝜑(𝑟𝑐 ) − 𝜑𝑐,𝐹𝑉𝑀 )2

∑𝑛𝑐
𝑐=1 𝜑

2
𝑐,𝐹𝑉𝑀

, (26)

where 𝜑𝑐,𝐹𝑉𝑀  is the nanoparticle volume fraction in cell 𝑐, computed 
by the FVM and 𝜑(𝑟𝑐 ) the volume fraction, computed by the proposed 
Euler–Lagrange approach in the same cell.
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Fig. 9. The relative error phase diagram for different 𝑅𝑏∕𝛿 and 𝑛𝑝∕𝑛𝑐 configurations. 
The labels correspond to: (𝑎) →

𝑅𝑏

𝛿
= 20, 𝑛𝑝

𝑛𝑐
= 10; (𝑏) →

𝑅𝑏

𝛿
= 20, 𝑛𝑝

𝑛𝑐
= 0.5; (𝑐) →

𝑅𝑏

𝛿
= 2, 𝑛𝑝

𝑛𝑐
= 1.

Fig. 10. Volume fraction profiles at 𝜏 = 1000 s compared between the FVM solution 
and our Lagrangian model. The (a), (b) and (c) lines correspond to blob radiuses and 
particle numbers shown in Fig.  9.

The relative error phase diagram is shown in Fig.  9 for 0.1 ≤ 𝑅𝑏∕𝛿 ≤
100 and 0.5 ≤ 𝑛𝑝∕𝑛𝑐 ≤ 100. The optimal configuration is seen in 
point (𝑎), where 𝑅𝑏∕𝛿 = 20, 𝑛𝑝∕𝑛𝑐 = 10. The best fit of the volume 
fraction profiles is achieved when our computational domain contains 
10 Lagrangian particles for every finite volume cell, and when the 
concentration blob spans over 20 cells.

Fig.  10 shows the comparison of three volume fraction profiles from 
the relative error phase diagram. The labels (𝑎), (𝑏) and (𝑐) correspond 
to the points shown in Fig.  9. A big discrepancy from FVM results 
is visible in profile (𝑐). This is due to the insufficient size of the 
concentration blob radius, thus, according to Eq. (23), the volume 
fraction values at the Lagrangian particle position are extreme.

In order to assess the numerical uncertainty of the considered 
approach, a Richardson extrapolation based method is proposed by 
modifying the algorithm shown by Celik et al. [29]. Richardson extrap-
olation is based on the representative discretization parameter, ℎ. We 
define it as the ratio between the number of cells and the number of 
Lagrangian particles: 

ℎ =
𝑛𝑐
𝑛𝑝

, (27)

so that as the number of Lagrangian particles tends to infinity, the ℎ and 
the numerical error tend to zero. To estimate the convergence of the ap-
proach, we considered three consecutive cases with ℎ = 10−4, 10−1, 0.25
and correspondingly 𝑅𝑏∕𝛿 = 1, 20, 20. We have chosen 𝑅𝑏∕𝛿 = 1 for 
ℎ = 10−4 because with a high number of Lagrangian particles, which 
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Table 3
Results of the modified GCI analysis for the verification case.
 Parameter Symbol Value 
 Mean order of convergence 𝑝 0.159 
 Mean numerical uncertainty GCI 5.5%  

is of a similar order of magnitude as the number of nanoparticles, the 
concentration blob should not exceed a single finite volume cell. For the 
cases ℎ = 10−1, 0.25 we chose 𝑅𝑏∕𝛿 = 20 based on Eq.  (26). The extrap-
olation was conducted for volume fraction values in each finite volume 
cell separately. The extrapolated profile with the error bars is shown in 
Fig.  11, together with the most accurate solution ℎ = 10−4. Oscillatory 
convergence is observed in 50% of cells. The order of convergence 
ranges between 𝑝 = 0.004–0.794 with the mean value of 𝑝 = 0.159, 
which indicates poor convergence properties of the considered method. 
The mesh convergence index (grid convergence index, GCI [29]) ranges 
from GCI = 0.03% to 25.8% with the mean value of GCI = 5.5% and 
can be interpreted as a measure of numerical uncertainty. The reported 
high values are observed in 𝑥 ∈ [0.85𝐿, 0.95𝐿], therefore the maximum 
volume fraction uncertainty in that region accounts to approximately 
±0.008. The numerical uncertainty assessment results are summarized 
in Table  3.

Fig.  12 shows the discrepancy between proposed Euler–Lagrange 
method results and the FVM results for two separate segments of the 
computational domain 𝑥∕𝐿 ∈ [0.5, 1] in 𝑥∕𝐿 ∈ [0.5, 1]. The purpose of 
plotting the relative error in separate segments is to see the error in 
regions with higher and lower nanoparticle volume fraction gradients. 
In the case of the point (𝑎), the relative error in the first segment is 
lower than in the second segment, which can also be seen by looking 
at the segments in Fig.  10. This also shows that the relative error 
depends on the local number of Lagrangian particles as a result of 
thermophoresis. The second segment therefore contains a locally lower 
value of 𝑛𝑝∕𝑛𝑐 , which explains the larger discrepancy, despite sufficient 
global 𝑛𝑝∕𝑛𝑐 . The opposite effect can be observed in the first segment. 
There, a higher 𝑛𝑝∕𝑛𝑐 is caused by thermophoresis and the agreement 
between the volume fraction profiles is therefore better.

The verification results obtained gave a good insight into the appro-
priate numerical parameters and the limitations of our model. When 
we use the model to simulate nanofluid heat exchangers, we need to 
consider the following:

• The number of Lagrangian particles in the heat exchanger compu-
tational domain must be 1–10 times the number of finite volume 
cells.

• The finite volume mesh must be constructed in such a way that 
we can define the radius of the concentration blob, 𝑅𝑏, so that it 
covers the volume in a radius of 20 cells around the Lagrangian 
particle.

4.2. The NCL heat exchanger operated with water

In order to obtain a suitable finite volume mesh for the Eulerian 
part of the simulation, we simulated the NCL operated with water. 
Since there are no particles in water, we can focus exclusively on 
the discretization error of the Eulerian part. We consider three finite 
volume mesh designs. The numerical uncertainty values given are 
obtained using the method proposed by Celik et al. [29] and reported 
as the GCI for the fine and coarse finite volume mesh. Fig.  13 shows the 
structured hexahedral finite volume mesh with different number of cells 
used for the mesh independence analysis. The time step was selected 
as 𝛥𝑡 = 0.01 s and kept the same for all three mesh cases. The selected 
time step corresponds to the Currant number 𝐶𝑜 ≈ 1 for the finest 
mesh. We use the PIMPLE algorithm used in OpenFOAM to simulate 
pseudotransient problems. For each physical time step, we perform 5
PIMPLE iterations to obtain a convergent solution at each time step. 
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Fig. 11. The extrapolated profile with corresponding error bars and the ℎ1 volume fraction profile. The mean order of convergence is 𝑝 = 0.159 and the mean numerical uncertainty 
is 𝐺𝐶𝐼 = 5.5%.
Fig. 12. Divided relative error phase diagram, for different 𝑅𝑏∕𝛿 and 𝑛𝑝∕𝑛𝑐 configurations. The phase diagrams are divided to show the relative error in two separate segments 
𝑥∕𝐿 of the verification computational domain. The labels (𝑎), (𝑏) and (𝑐) correspond to the points, described in Fig.  9.
The numerical schemes employed are first order accurate for both the 
temporal and spatial discretization of the governing equations. This 
choice was motivated by the observation that higher order schemes 
could not accurately simulate laminar buoyant flow, leading to unphys-
ical oscillations and poor results. In contrast, the first-order scheme 
provided physically meaningful and consistent results, as shown in the 
mesh convergence study. Although first-order schemes are known to 
introduce higher numerical diffusion, they were considered suitable for 
this study due to their robustness and ability to accurately capture the 
behaviour of laminar buoyant flow.

The reported solution variable was considered to be the temperature 
difference, 𝛥𝑇 = 𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛, marked on Fig.  1. The representative mesh 
spacing parameter ℎ was taken to be 

ℎ = 1
𝑛𝑐

𝑛𝑐
∑

𝑖=1

(

𝑉𝑐,𝑖
)1∕3 , (28)

where 𝑉𝑐,𝑖 is the volume of the 𝑖–th finite volume cell. GCI calculation 
input parameters for multi-region NCL simulation operating with pure 
water are shown in Table  4.

The results of the GCI analysis can be found in Table  5 and indicate 
that the solution is well converged. The calculated convergence order 
is 𝑝 = 1.406, which means a convergence rate between first and 
second order. The extrapolated results of the coarse and fine meshes are 
19.931 K and 20.024 K respectively, their relative deviation is 0.47%, 
which is smaller than the uncertainty of the coarse mesh, which is 
1.52%. Since the deviation between the extrapolated results of the 
coarse and fine mesh is within the uncertainty limits of the coarse mesh, 
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Table 4
GCI calculation input parameters for multi-region NCL simulation operating with pure 
water.
 Parameter Symbol Value  
 𝛥𝑇  at ℎ1 𝛥𝑇ℎ1

20.082 K  
 𝛥𝑇  at ℎ2 𝛥𝑇ℎ2

20.177 K  
 𝛥𝑇  at ℎ3 𝛥𝑇ℎ3

20.345 K  
 Mesh spacing for 3.942 ⋅ 106 cell mesh ℎ1 0.1988 mm 
 Mesh spacing for 0.493 ⋅ 106 cell mesh ℎ2 0.3976 mm 
 Mesh spacing for 0.162 ⋅ 106 cell mesh ℎ3 0.5758 mm 

we can safely use the coarse mesh for subsequent simulations without 
significant loss of accuracy.

4.3. The NCL heat exchanger operated with nanofluid

In this section, we present the results of using the proposed Euler–
Lagrange method to simulate the Al2O3– water nanofluid flow and heat 
transfer in the NCL heat exchanger. For the Eulerian part, we use the 
coarse mesh that we selected in Section 4.2. Based on the findings 
reported in Section 4.1 for the Lagrangian part, we use 𝑅𝑏∕𝛿 = 20 and 
𝑛𝑝∕𝑛𝑐 = 1, which gives approximately 161 000 simulated Lagrangian 
particles. For thermophoresis modelling, the Aminfar & Haghgoo [49] 
relation was used (Eq. (20)).

The result comparison for Al2O3–water nanofluid is presented in 
Fig.  14. The abbreviations Exp, EE, EL and SP denote the experiment, 



N. Vovk et al. International Journal of Heat and Mass Transfer 251 (2025) 127247 
Fig. 13. Finite volume mesh, used for mesh independence analysis with pure water. The figure shows one of the elbows on the NCL.
Table 5
Results of GCI analysis for multi-region NCL simulation operating with pure water.
 Parameter Symbol Value  
 Order of convergence 𝑝 1.406  
 Coarse mesh extrapolated result 𝛥𝑇ext,32 19.931 K 
 Fine mesh extrapolated result 𝛥𝑇ext,21 20.024 K 
 Coarse mesh numerical uncertainty GCIcoarse,32 1.52%  
 Fine mesh numerical uncertainty GCIf ine,21 0.36%  

Euler–Euler [50], single-phase [50] and the present Euler–Lagrange im-
plementations respectively. The reported uncertainty of experimental 
data for 𝛥𝑇  is 1 K, which is indicated by the error bars in the plot. We 
observe, that all presented results follow the same trend. The EE, EL 
and SP results slightly underpredict the experimentally measured 𝛥𝑇
result, while the EL approach, presented in this study, shows the best 
accuracy.

Fig.  15 plots the 𝑇𝑚𝑎𝑥 (see Fig.  1) value versus the bulk nanopar-
ticle volume fraction. A good agreement of the EL results is observed 
with the EE and the SP results, while an underprediction is observed, 
when comparing with the experimental results. The underprediction is 
constant and amounts to 4 ◦C–5 ◦C for the whole bulk nanoparticle 
volume fraction range as well as the heater power range. The EE, SP 
and the novel EL approach exhibit a consistent underprediction. This 
is reasonable, as all models rely on the same mathematical correlations 
presented in Section 3.1. The consistent underprediction is likely at-
tributed to the definition of the boundary conditions. Although the heat 
exchanger was modelled as a multi-region domain, including both the 
nanofluid and copper pipe regions, certain effects were not accounted 
for. For instance, an adiabatic boundary condition was applied to 
the outer vertical walls of the pipe, whereas, in reality, heat loss 
occurs through this surface. Additionally, maintaining a strictly fixed 
temperature boundary condition on the cooler surface is experimentally 
challenging. Interestingly, the SP approach exhibits the same level of 
accuracy as the EE approach. Nonetheless, the EE and the present EL 
approaches are superior as they inherently capture the spatial non-
homogeneity of the nanoparticle distribution, whereas this information 
is lost in the SP approach. It must also be emphasized, that the val-
ues of the specific heat capacities were taken constant for the whole 
temperature range, and only vary with the bulk nanoparticle volume 
fraction, which could affect the absolute temperature rise as an effect 
of the supplied heat in the computational domain.

Fig.  16 shows the temperature distribution in the NCL, which is 
operated with nanofluid, in a quasi-steady state. The fluid is heated 
11 
Fig. 14. The Al2O3–water nanofluid NCL heat exchanger results for 𝛥𝑇 = 𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛. 
The abbreviations Exp, EE, SP and EL denote the experiment, Euler–Euler [50], single-
phase [50] and the present Euler–Lagrange results respectively.

with a constant heat flux at the bottom and cooled with a constant 
temperature at the top, as specified in the definition of the boundary 
conditions in Section 3.2.1. Achieving the quasi-steady conditions is a 
computationally lengthy process, as the fluid in the NCL is initially 
stationary. The heat flow supplied at the bottom of the NCL heats 
the fluid symmetrically around the vertical axis, creating two fluid 
circulation areas that start at the bottom centre and expand symmet-
rically to the left and right. Only when the conditions become too 
unstable, i.e. when the density gradient that drives natural convection 
becomes too great, does the fluid rotate clockwise or counterclockwise. 
The choice of direction of fluid rotation is therefore determined by 
the minimum numerical inaccuracy of the solver’s calculation of the 
density gradient and was found to be completely random. If we use the 
McNab–Meisen [48] relation for modelling thermophoresis, the 𝑇𝑚𝑎𝑥
becomes slightly lower; ∼ 1.4% at the highest bulk volume fraction and 
heater power.

Fig.  17 shows the volume fraction of the nanoparticles in the NCL. 
The values are normalized to the bulk volume fraction, so that better 
comparison of the volume fraction fields could be made between all 
cases. The fields shown here are time-averaged over the period of 500 s
to 700 s, which amount to 15–30 passages of the particles around the 
NCL, depending on the average flow rate of the nanofluid in the NCL, 
which is mostly dictated by the supplied heat flux. The stopping times 
of the simulations were chosen at a point, where the temperature and 
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Fig. 15. The Al2O3–water nanofluid NCL heat exchanger results for 𝑇𝑚𝑎𝑥. The abbrevi-
ations Exp, EE, SP and EL denote the experiment, Euler–Euler [50], single-phase [50] 
and the present Euler–Lagrange results respectively.

the volume fraction fields reached quasi steady-state. Their values were 
monitored on the run via probes inside the computational domain, as 
well as the residual values, that reached orders of 10−6 for the enthalpy 
and 10−5 for the velocity components.

In the streamwise direction the transport of nanoparticles is con-
vection dominated. That means, that the Brownian diffusion as well as 
thermophoresis have very little effect in the streamwise direction. This 
observation is particularly evident for the latter case, as the tempera-
ture gradients in the wall-normal direction are significantly larger—
by orders of magnitude—than those in the streamwise direction, as 
observed from Fig.  16.

4.4. Natural convection inside a vertical square enclosure

To further demonstrate the versatility of the proposed approach, we 
present the results of the present nanofluid numerical model, compared 
with the natural convection inside a vertical square enclosure experi-
ment, conducted by Ho et al. [51]. The geometry of interest consists of 
a simple box enclosure with dimensions 25 mm × 25 mm × 60 mm. The 
enclosure is filled with the Al2O3–water nanofluid and is heated with 
constant heat flux on one side, and cooled with constant temperature 
on the other side, as schematically shown in Fig.  18. The heat flux 
on the hot wall is provided by an electric foil heater, while the cold 
wall includes internal channels, where the cooling fluid circulates and 
is regulated by the circulation water bath. The whole enclosure is 
insulated with 40 mm styrofoam. The authors report a mean diameter 
of the nanoparticles of 33 nm, although they later report that, during 
operation, the mean diameter increases with higher volume fraction to 
a mean of 148 nm. The details about the experimental apparatus can be 
found in the Ref. [51]. The numerical settings were the same as with the 
NCL, i.e. 𝑅𝑏∕𝛿 = 20 and 𝑛𝑝∕𝑛𝑐 = 1. A mesh study of 37 000, 150 000 and 
300 000 cells was made with pure water, from which we chose to use 
150 000 cell, structured hexahedral mesh for the nanofluid simulations. 
The time-step was chosen, so that it corresponds to 𝐶𝑜 = 0.1 ∼ 0.2 for 
all simulations.

The results of the present nanofluid numerical model were com-
pared to the experiment for the bulk nanoparticle volume fraction range 
of 1% to 3%. The hot wall heat flux range was |𝑞ℎ| = 273–2892 W/m2

and the cold wall temperature was set to 𝑇𝑐 = 295.15 K, while the 
remaining walls were assumed to be adiabatic. In order to compare the 
numerical and experimental results, the surface-averaged heat transfer 
coefficient was evaluated in the quasi-steady state as [51]: 

𝐻 =
|𝑞ℎ|

𝑇 ℎ − 𝑇𝑐
, (29)

where 𝑇  is the surface-averaged temperature on the hot wall.
ℎ
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The results are shown in Fig.  19. The authors of the experiment re-
port a mean experimental uncertainty of 15% for the surface averaged 
heat transfer coefficient, as indicated by the error bars on the figure. 
We observe the same trend in our model results as in the experiment, 
although a slight underprediction is observed. An inconsistency is 
observed in the experimental results, where, for example, the measured 
heat transfer coefficient ratio decreases from the 2 K to the 4 K tem-
perature difference. This behaviour deviates from the expected trend, 
which generally indicates an increase in the heat transfer coefficient 
ratio with increasing temperature difference. Such anomalies cannot be 
captured by the numerical model, which is based on idealized physical 
assumptions that typically predict monotonic relationships — i.e., if 
one parameter increases, the corresponding response is also expected 
to increase. These discrepancies highlight the influence of complex or 
unaccounted — for phenomena in the nanofluid behaviour, that are not 
reflected in the current numerical framework.

As previously discussed by the authors of the experiment [51], at 
lower temperature differences, diffusive transport mechanisms play a 
more dominant role. In contrast, at higher temperature differences, con-
vective effects become increasingly significant, not only for heat trans-
fer but also for the transport of nanoparticles. This shift in dominant 
transport mechanism tends to suppress the distinct nanoparticle-related 
phenomena observed at lower temperature gradients. The observed 
minimal difference in heat transfer enhancement between the 33 nm
and 148 nm nanoparticle simulations suggests that the relative in-
fluence of nanoparticle diameter is small. In our model, the particle 
diameter determines the magnitude of the Brownian force, which is 
of the same order of magnitude than the thermophoretic contribution. 
However, both contributions are much smaller than the drag, and thus 
the resulting nanoparticle distribution in the domain is most heavily 
influenced by the velocity field of the fluid. As a result thermophysical 
properties, which depend on nanoparticle concentration, are not greatly 
influenced by particle diameter.

5. Conclusions

In this study, a modified Euler–Lagrange approach for the sim-
ulation of nanofluids was developed, implemented and tested. The 
accuracy and capabilities of the method were thoroughly evaluated. 
The developed method was used to simulate performance of a real 
natural convection loop (NCL) heat exchanger operated by a nanofluid, 
as well as the natural convection inside a vertical enclosure. We used 
a Al2O3–water nanofluid and measured its thermophysical properties 
in a temperature range of 20 ◦C to 60 ◦C and the bulk nanoparticle 
volume fraction range of 0.5% to 2%. The measured values were used 
to obtain mathematical correlations for temperature and nanoparticle 
volume fraction dependent thermophysical properties, which were used 
in subsequent NCL and vertical enclosure simulations.

The following summarizes the main conclusions:

• The concentration blob method for estimating the nanoparticle 
volume fraction field on the Eulerian finite volume mesh using 
the particle positions uses two parameters: the ratio between the 
number of Lagrangian particles and finite volume cells 𝑛𝑝∕𝑛𝑐 and 
the radius of the concentration blob divided by the cell size: 
𝑅𝑏∕𝛿. We found that for extremely large 𝑅𝑏∕𝛿 values, our Euler–
Lagrange model behaves like a single-phase model and thus loses 
crucial insights into the spatially varying fields of the nanoparticle 
volume fractions and the thermophysical properties, but provides 
good bulk results. On the other hand, for 𝑛𝑝∕𝑛𝑐 → ∞ and 𝑅𝑏∕𝛿 →
0, our model behaves like the Euler–Euler model. This means 
that for a given choice of 𝑅𝑏 and 𝑛𝑝, the proposed model works 
uniquely, unlike the single-phase and Euler–Euler models. The 
two parameters can be considered as optimization targets for our 
Euler–Lagrange model to capture the simulated phenomena more 
accurately.
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Fig. 16. NCL temperature fields, operating with nanofluid. The fluid flow circulates in the clockwise direction.
• The optimal value for the concentration blob radius, was found 
to be 𝑅𝑏∕𝛿 = 20, for the Lagrangian particle to finite volume 
cell number ratio of 𝑛𝑝∕𝑛𝑐 = 1. It means, that the simulated 
Lagrangian particle should have a volume fraction influence of 
20 finite volume cells away from itself when the number of 
Lagrangian particles in our simulation is approximately the same 
as the number of cells, which is a reasonable assumption when 
simulating real heat exchangers.

• It was observed that, as expected, larger 𝑛𝑝∕𝑛𝑐 ratios yield im-
proved results. This observation led to the hypothesis that 𝑛𝑝∕𝑛𝑐
can be treated as a discretization parameter, enabling the evalua-
tion of the proposed method’s order of convergence. To this end, 
a numerical uncertainty assessment was conducted, resulting in 
13 
a mean order of convergence of 𝑝 = 0.16 and a mean numerical 
uncertainty of GCI = 5.5%.

• It was also found that the relative error of the nanoparticle 
volume fraction calculation is dependent on the local number of 
the Lagrangian particles, giving a larger error where the number 
of Lagrangian particles is lower. This can be a result of advec-
tion, thermophoresis, etc. The optimal value of 𝑅𝑏∕𝛿 is therefore 
different in those regions, than in the bulk flow, giving larger 
errors.

• The results of the presented EL approach indeed follow the same 
trend as the experimental results and are in excellent agreement 
with the Euler–Euler and the single-phase implementations. The 
results for 𝛥𝑇  show greater accuracy than the Euler–Euler and 
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Fig. 17. NCL nanoparticle volume fraction fields, normalized to the bulk volume fraction. The presented fields are time-averaged over 500 s to 700 s.

Fig. 18. The experimental geometry by Ho et al. [51]. The width and height of the enclosure measure 25 mm and the length measures 60 mm.
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Fig. 19. Comparison of the experimental [51] and the present numerical model heat transfer coefficient ratio. The subscript 𝑛𝑓 corresponds to the nanofluid, while the 𝐷𝐼𝑊
corresponds to the pure water simulation with the same setup.
the single-phase, while the 𝑇𝑚𝑎𝑥 values show a very slight under-
prediction. We attribute the discrepancy from the experimental 
results to the boundary conditions definition. We establish, that 
the interplay of multiple transport phenomena, that occur in 
nanofluid operated devices, are difficult to completely repro-
duce numerically within the framework of current modelling 
assumptions.
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