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A B S T R A C T

The development of new numerical methods for fluid flow simulations is challenging but such tools may
help to understand flow problems better. Here, the Boundary-Domain Integral Method is applied to simulate
laminar fluid flow governed by a dimensionless velocity–vorticity formulation of the Navier–Stokes equation.
The Reynolds number is chosen in all examples small enough to ensure laminar flow conditions. The false
transient approach is utilized to improve stability.

As all boundary element methods, the Boundary-Domain Integral Method has a quadratic complexity. Here,
the 2-methodology is applied to obtain an almost linear complexity. This acceleration technique is not only
applied to the boundary only part but more important to the domain related part of the formulation. The
application of the 2-methodology does not allow to use the rigid body method to determine the singular
integrals and the integral free term as done until now. It is shown how to apply the technique of Guigiani
and Gigante to handle the strongly singular integrals in this application. Further, a parametric study shows
the influence of the introduced approximation parameters. For this purpose the example of a lid driven cavity
is utilized. The second example demonstrates the performance of the proposed method by simulating the
Hagen–Poiseuille flow in a pipe. The third example considers the flow around a rigid cylinder to show the
behavior of the method for an unstructured grid. All examples show that the proposed method results in an
almost linear complexity as the mathematical analysis promisses.

1. Introduction

The Boundary-Domain Integral Method [1] is based on Green’s second identity. When the fundamental solution of the partial differential
equation is known, the volume integral in Green’s second identity vanishes and a boundary only formulation is obtained. After discretization
it is called Boundary Element Method. However, not for all operators the fundamental solution is known, e.g., for the Poisson equation. This
equation can be handled with the fundamental solution of the Laplace operator resulting in an integral equation with a volume integral for the
right hand side of Poisson’s equation. The volume integral can be transformed into a boundary integral, e.g., with the dual reciprocity method.
Al-Bayati and Wrobel employed this method to solve convection–diffusion problems with first-order chemical reactions [2]. Guo et al. [3] used the
triple reciprocity method to solve the heat equation with heat sources. The transformation of the domain integral into a boundary integral does
not improve the quadratic computational complexity but reduces the number of unknowns from (𝑚2) to (𝑛2), where 𝑛 and 𝑚 denote the number
of the unknowns on the boundary and the domain, respectively.

The Boundary-Domain Integral Method is a numerical method that is used to solve boundary-volume problems. There are several authors who
have employed the method for various differential equations, e.g., for inhomogeneous media governed by the diffusion equation [4,5] or Stokes
flow with variable viscosity coefficients [6,7].

To accelerate the Boundary-Domain Integral Method the methods developed for the Boundary Element Method can be used, e.g., -matrices,
Fast Multipole Method (FMM) or 2-matrices. An hierarchical partition of the initial matrix results in an -matrix where those matrix blocks
fulfilling an admissibility condition are approximated [8]. Approximation techniques are, e.g., Adaptive cross approximation (ACA) [9] or Singular
Value Decomposition (SVD) [10]. The most efficient is the Singular Value Decomposition. However, it is also the most computationally costly one.
Another possibility is the Fast Multipole Method (FMM), where the integral kernel, i.e., the fundamental solution is approximated [11]. Darve [12]
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used the FMM to solve the Maxwell equation or Messener and Schanz [13] applied it on the transient heat transfer within a time domain Boundary
lement formulation. The Burton Miller formulation for acoustic analysis with FMM has been published by Jelich et al. [14] and Li et al. [15].

Further, fluid flow was solved with the velocity–vorticity form of the Navier–Stokes equations and an FMM accelerated Boundary-Domain Integral
ethod [16,17]. To accelerate the computation time within the FMM Wang et al. [18] used GPU’s. More applications can be found in the review

article of Nishimura [19].
The 2-method is as well based on the approximation of the integral kernel and -matrices. Börm and Hackbush presented this fast method

n [20,21]. For this method the integral kernel is interpolated with the Lagrange polynomials and nested cluster bases are used. The 2-matrix
has been proposed for different problems, e.g., Chai et al. [22] compared the -matrix and 2-approach for large scale electromagnetic analysis,
Börm [23] solved high-frequency problems and Tibaut et al. [24] presented the fast Boundary-Domain Integral Method accelerated with the 2-

ethod to solve the Poisson equation. It is important to note that the FMM and 2-matrices are similar. However, the 2-matrix is a more generic
ormulation.

In the paper at hand, a dimensionless velocity–vorticity formulation of the Navier–Stokes equations is solved with the Boundary-Domain Integral
ethod. To increase the stability of the formulation a false transient term is added. This time derivative is an under relaxation that increases the

tability of the numerical simulation where the Boussinesq-Approximation for buoyancy is present in the partial differential equation. Further,
this under-relaxation parameter change the characteristic form of the fundamental solution in the integral equation. In [24], it is shown how the
accuracy of the integral kernel approximation is changed with the false transient approach. Other applications of the false transient approach
can be found by Guj and Stella [25] or Behnia et al. [26]. After stating the set of governing equations, the Boundary-Domain Integral Method is
formulated. To reduce the computational cost, essentially the storage, the 2-method is applied. The basics for the 2-method, i.e., the clustering
and the interpolation procedure is recalled. The proposed formulation is then applied to the example of a lid-driven cavity, the Hagen–Poiseuille
flow in a pipe and the channel flow with a cylindrical barrier.

2. Problem setting

To simulate stationary fluid flow the velocity–vorticity form of the Navier–Stokes equations is solved with the Boundary-Domain Integral Method.
he mass and momentum conservation equations are considered.

2.1. Governing equations

Let 𝛺 ⊂ R3 be a bounded domain and 𝛤 ∶= 𝜕 𝛺 its boundary with the outward normal 𝑛. To solve the fluid flow, we consider the
imensionless velocity–vorticity formulation of the Navier–Stokes equations. The mass and momentum conservation equations are formulated with

the dimensionless variables 𝑣 → 𝑣∗

𝑣0
, ⃗𝑥 → 𝑥⃗∗

𝐿 , 𝜔⃗ → 𝜔⃗∗𝐿
𝑣0

and 𝑡 → 𝑣0𝑡∗

𝐿 , while the vorticity 𝜔⃗ = ∇⃗ × 𝑣 is inserted into the equations. A full description
f the formulation is given in [27]. The velocity–vorticity form of the equations results in the dimensionless form

∇⃗𝑥 × 𝜔⃗ + ∇2
𝑥𝑣 = 0 ,

(𝑣 ⋅ ∇⃗𝑥)𝜔⃗ = (𝜔⃗ ⋅ ∇⃗𝑥)𝑣 +
1
𝑅𝑒

∇2
𝑥𝜔⃗ ,

(1)

where 𝑅𝑒 = 𝑣0𝐿
𝜗0

is the Reynolds number. Here, only smal Reynolds numbers are considered such that the fluid flow is laminar. The first equation
n (1) is the kinematic equation obtained from the mass conservation equation and the second is the transport vorticity equation derived from the

momentum conservation equation. To increase the stability of the fluid flow simulation, we add a so-called false transient term 𝜕 ⃗𝑣
𝜕 𝑡 to the kinematic

quation [28]
𝜕 ⃗𝑣
𝜕 𝑡 = ∇2

𝑥𝑣 + ∇⃗𝑥 × 𝜔⃗ ∀ (𝑥⃗, 𝑡) ∈ 𝛺 × (0, 𝑇 ). (2)

Note, the false transient term 𝜕 ⃗𝑣
𝜕 𝑡 has no physical meaning nor any connection to a real time. The initial and boundary conditions are

𝑣(𝑥⃗, 𝑡 = 0) = 0, 𝑥⃗ ∈ 𝛺 𝑡 = 0,
𝜔⃗(𝑥⃗, 𝑡 = 0) = ⃗̄𝜔, 𝑥⃗ ∈ 𝛺 𝑡 = 0,

𝑣(𝑥⃗, 𝑡) = ⃗̄𝑣, 𝑥⃗ ∈ 𝛤 × (0, 𝑇 ) ,
(3)

where 𝑇 presents the final time and ⃗̄𝑣, ⃗̄𝜔 are the prescribed velocity and vorticity data. Note, the equation for ⃗̄𝜔 is not a boundary condition but a
tarting value for the solution of the problem. Let us discretize the time in steps 𝑡0 = 0, 𝑡1, . . . , 𝑡𝑁 = 𝑇 with constant time steps 𝛥𝑡. A time-discrete
orm of (2) is obtained by approximating the time derivative by a first-order finite difference scheme. This results for 𝑛 = 1, . . . , 𝑁 in

𝑣(𝑥⃗, 𝑡𝑛) − 𝑣(𝑥⃗, 𝑡𝑛−1)
𝛥𝑡

= ∇2
𝑥𝑣(𝑥⃗, 𝑡𝑛) + ∇⃗𝑥 × 𝜔⃗(𝑥⃗, 𝑡𝑛) , (4)

where 𝑣(𝑥⃗, 𝑡𝑛−1) denotes the value of the velocity field at the previous time step. Rearrangement and using the abbreviations 𝜇2 = 1
𝛥𝑡 , 𝑏(𝑥⃗, 𝑡𝑛) =

1
𝛥𝑡𝑣(𝑥⃗, 𝑡𝑛−1) + ∇⃗𝑥 × 𝜔⃗(𝑥⃗, 𝑡𝑛) results in the Yukawa kinematic equation

(

∇2
𝑥 − 𝜇2) 𝑣(𝑥⃗, 𝑡𝑛) + 𝑏(𝑥⃗, 𝑡𝑛) = 0. (5)

This equation is also called modified Helmholtz kinematic equation. In case of large time steps 𝛥𝑡 → ∞, the parameter 𝜇2 tends to zero, i.e., 𝜇2 → 0.
hus in the limit, the kinematic equation in (1) is obtained.
2 
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2.2. The integral form of the governing equations

Green’s second identity is applied to obtain the related integral equations to the transport vorticity equation in (1) and the modified Helmholtz
inematic equation (5). First, the integral equation to (5) is

𝑐(𝑦)𝑣(𝑦) + ∫𝛤
𝑣(𝑥⃗)𝑞∗(𝑦, ⃗𝑥)𝑑 𝛤 = ∫𝛤

𝑣(𝑥⃗) × [𝑛 × ∇⃗𝑥]𝑢∗(𝑦, ⃗𝑥)𝑑 𝛤 + ∫𝛺
𝜔⃗(𝑥⃗) × ∇⃗𝑥𝑢

∗(𝑦, ⃗𝑥)𝑑 𝛺+

+𝜇2
∫𝛺

𝑢∗(𝑦, ⃗𝑥)𝑣(𝑥⃗, 𝑡𝑛−1)𝑑 𝛺 ,
(6)

where 𝑐(𝑦) denotes the integral free term. The terms denoted with ()∗ are the fundamental solutions, which are, as usual, defined as the solution
of the governing equation with the Dirac distribution as source term, i.e., 𝑏(𝑥⃗, 𝑡𝑛) = 𝛿(𝑥⃗ − 𝑦). The fundamental solution of the modified Helmholtz
kinematic Eq. (5) and its normal derivative are

𝑢∗(𝑦, ⃗𝑥) = 𝑒−𝜇 𝑟
4𝜋 𝑟 , 𝑞∗(𝑦, ⃗𝑥) = 𝑛(𝑥⃗) ⋅ ∇⃗𝑢∗(𝑦, ⃗𝑥) , (7)

with 𝑟 = |𝑥⃗ − 𝑦|. The fundamental solution 𝑞∗(𝑦, ⃗𝑥) is the flux. In the case of large time steps, the parameter 𝜇2 → 0 and the fundamental solution
n (7) tends to be the fundamental solution of the Laplace equation. It is important to mention that the parameter 𝜇 changes the shape of the
undamental solution [24]. However, while the parameter 𝜇 can enhance convergence it could also lead to stability issues. It is important to
hoose the optimal value of 𝜇, whereas in the following 𝜇 < 20 is used.

Additional to the integral Eq. (6) the tangential form of it is used in the subsequent solution procedure. It is obtained by applying the cross
roduct of the normal vector at the source point 𝑦 on (6). This results in

𝑐(𝑦)𝑛(𝑦) × 𝑣(𝑦, 𝑡𝑛) + 𝑛(𝑦) × ∫𝛤
𝑣(𝑥⃗, 𝑡𝑛)𝑞∗(𝑦, ⃗𝑥)𝑑 𝛤 = 𝑛(𝑦) × ∫𝛤

𝑣(𝑥⃗, 𝑡𝑛) × [𝑛 × ∇⃗𝑥]𝑢∗(𝑦, ⃗𝑥)𝑑 𝛤

+𝑛(𝑦) × ∫𝛺
𝜔⃗(𝑥⃗, 𝑡𝑛) × ∇⃗𝑥𝑢

∗(𝑦, ⃗𝑥)𝑑 𝛺 + 𝑛(𝑦) × ∫𝛺
𝑢∗(𝑦, ⃗𝑥)𝜇2𝑣(𝑥⃗, 𝑡𝑛−1)𝑑 𝛺 ∀𝑦 ∈ 𝛤 .

(8)

The above equations are solved with a starting guess of the vorticity 𝜔⃗. To update this value an integral equation corresponding to the transport
orticity Eq. (1) is solved. Such an equation is obtained by applying Green’s second identity on this equation and sorting the non-linear terms to

the right hand side. This results in the boundary domain integral equation

𝑐(𝑦)𝜔𝑗 (𝑦) + ∫𝛤
𝜔𝑗 (𝑥⃗)𝑞∗𝐿(𝑦, ⃗𝑥)𝑑 𝛤 = ∫𝛤

𝑞𝜔𝑗 (𝑥⃗)𝑢
∗
𝐿(𝑦, ⃗𝑥)𝑑 𝛤+

+𝑅𝑒∫𝛤
𝑛 ⋅

[

𝑢∗𝐿(𝑦, ⃗𝑥)(𝑣𝜔𝑗 − 𝜔⃗𝑣𝑗 )
]

𝑑 𝛤 − 𝑅𝑒∫𝛺
(𝑣𝜔𝑗 − 𝜔⃗𝑣𝑗 ) ⋅ 𝑞∗𝐿(𝑦, ⃗𝑥)𝑑 𝛺 .

(9)

The fundamental solution 𝑢∗𝐿(𝑦, ⃗𝑥) used in (9) is that of the Laplace operator. It can be obtained from (7) by setting the parameter 𝜇 = 0.
The integral Eq. (9) is given in indical notation for better readability, where 𝑗 = 1, 2, 3 and 𝑞𝜔𝑗 (𝑥⃗) is the flux component. After this step, the

etermined vorticity and velocity are used for the next iteration step, i.e., the three integral equations are solved again as described but with an
pdated vorticity and velocity field. This process is repeated until a prescribed precision is reached.

2.3. Spatial discretization of the integral formulation

For the spatial discretization of the above integral equations, first, the boundary is divided into 𝑁 boundary elements and the domain 𝛺 is
ivided into 𝑀 domain cells

𝛤 =
𝑁
⋃

𝑖=1
𝛤𝑖, 𝛺 =

𝑀
⋃

𝑗=1
𝛺𝑗 . (10)

Second, the boundary data are approximated with continuous quadratic shape functions (9 nodes). The domain cells are approximated with a
uadratic (27 nodes) interpolation. However, in this case a volume cell must be used, i.e., hexahedrons are assumed. The respective shape functions
or the boundary element and domain cell are 𝜑(𝑥⃗), 𝛷(𝑥⃗). This results in

𝑣(𝑥⃗) ≈
9
∑

𝑎=1
𝑣𝑎𝜑𝑎(𝑥⃗), 𝜔⃗(𝑥⃗) ≈

27
∑

𝑐=1
𝜔⃗𝑐𝛷𝑐 (𝑥⃗). (11)

Inserting these shape functions and the panelisation of the geometry in (6) results in the discrete integral equation
𝑛
∑

𝑎=1

[

𝑐(𝑦)𝑣𝑖𝑎(𝑥⃗, 𝑡)𝜑(𝑥⃗) + 𝑣𝑖𝑎(𝑥⃗, 𝑡)∫𝛤𝑎
𝜑(𝑥⃗)𝑞∗(𝑦, ⃗𝑥)𝑑 𝛤𝑎

]

=

𝑛
∑

𝑎=1
𝑣𝑗 𝑎(𝑥⃗, 𝑡)∫𝛤𝑎

𝜑(𝑥⃗)
[

𝑛𝑗
𝜕 𝑢∗(𝑦, ⃗𝑥)

𝜕 𝑥𝑖
− 𝑛𝑖

𝜕 𝑢∗(𝑦, ⃗𝑥)
𝜕 𝑥𝑗

]

𝑑 𝛤𝑎

−
𝑛
∑

𝑎=1
𝑣𝑘𝑎(𝑥⃗, 𝑡)∫𝛤𝑎

𝜑(𝑥⃗)
[

𝑛𝑘
𝜕 𝑢∗(𝑦, ⃗𝑥)

𝜕 𝑥𝑖
− 𝑛𝑖

𝜕 𝑢∗(𝑦, ⃗𝑥)
𝜕 𝑥𝑘

]

𝑑 𝛤𝑎 +
𝑚
∑

𝑐=1
𝜔𝑘(𝑥⃗, 𝑡)∫𝛺𝑐

𝛷(𝑥⃗)
𝜕 𝑢∗(𝑦, ⃗𝑥)

𝜕 𝑥𝑗
𝑑 𝛺𝑐

−
𝑚
∑

𝑐=1
𝜔𝑗 (𝑥⃗, 𝑡)∫𝛺𝑐

𝛷(𝑥⃗)
𝜕 𝑢∗(𝑦, ⃗𝑥)

𝜕 𝑥𝑘
𝑑 𝛺𝑐 + 𝜇2

𝑚
∑

𝑐=1
𝑣𝑖𝑐 (𝑥⃗, 𝑡𝑛−1)∫𝛺𝑐

𝛷(𝑥⃗)𝑢∗(𝑦, ⃗𝑥)𝑑 𝛺𝑐 ∀𝑦 ∈ 𝛤 .

(12)

The index 𝑎 restricts the shape functions 𝜑(𝑥⃗) to the boundary element 𝛤𝑎, 𝑐 restricts the shape function 𝛷(𝑥⃗) to the domain cell 𝛺𝑐 . The upper
imit of the first sum 𝑛 indicates that this is the number of nodes on the boundary. In the last sum, 𝑚 is the number of domain nodes. Hence, the

sums over shape functions and nodes are collected into one sum. A collocation method is applied with the collocation points chosen at the nodes
of the shape functions denoted as 𝑓 . Based on these steps, from Eq. (12) evolves the discrete system of equations

{ } { } 𝑡 { } 2 { }
[𝐻] 𝑣 = 𝑣 × [𝐻⃗ ] + 𝜔⃗ × [𝐷⃗] + 𝜇 [𝐵] 𝑣𝑛−1 , (13)

3 
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with the elements of the matrices [𝐻⃗], [𝐻⃗ 𝑡], [𝐷⃗] and [𝐵]

ℎ𝑓 𝑎 = 𝑐(𝑦𝑓 )𝜑𝑎(𝑦𝑓 ) + ∫𝛤𝑎
𝜑(𝑥⃗)𝑞∗(𝑦𝑓 , ⃗𝑥)𝑑 𝛤𝑎 ,

ℎ⃗𝑡𝑓 𝑎 = ∫𝛤𝑎
𝜑(𝑥⃗)[𝑛 × ∇⃗𝑥]𝑢∗(𝑦𝑓 , ⃗𝑥)𝑑 𝛤𝑎 ,

𝑑𝑡𝑓 𝑐 = ∫𝛺𝑐

𝛷(𝑥⃗)∇⃗𝑥𝑢
∗(𝑦𝑓 , ⃗𝑥)𝑑 𝛺𝑐 ,

𝑏𝑓 𝑐 = ∫𝛺𝑐

𝛷(𝑥⃗)𝑢∗(𝑦𝑓 , ⃗𝑥)𝑑 𝛺𝑐 .

(14)

The discretized form of (8)

[𝐻]
(

[𝑛] × {

𝑣
})

= [𝑛] × {

𝑣
}

× [𝐻⃗ 𝑡] + [𝑛] × {

𝜔⃗
}

× [𝐷⃗] + 𝜇2[𝑛] × [𝐵]{𝑣𝑛−1
}

. (15)

is obtained in the same fashion. The elements in the respective matrices have the same form as presented in (14), while matrix [𝑛] is a diagonal
matrix with the elements of the normal vector 𝑛(𝑦) on the main diagonal. To obtain the boundary vorticity the vector 𝜔⃗ is split into the boundary
and inner domain part

{

𝜔⃗
}

=
{

𝜔⃗
}

𝛤 ∪
{

𝜔⃗
}

𝛺∕𝛤 . Reforming the term [𝑛] × [𝐷⃗] ×{

𝜔⃗
}

=
(

[𝑛] ⋅ [𝐷⃗]
)

{

𝜔⃗
}

− [𝐷⃗]
{

𝜔⃗
}

𝑛 and rearranging equation (15) gives
the final formulation

(

[𝑛] ⋅ [𝐷⃗]
)

{

𝜔⃗
}

𝛤 = [𝐷⃗]
{

𝜔⃗
}

𝑛 −
(

[𝑛] ⋅ [𝐷⃗]
)

{

𝜔⃗
}

𝛺∕𝛤 −
(

[𝑛] ⋅ [𝐻⃗ 𝑡]
)

{

𝑣
}

+

+[𝐻⃗ 𝑡]
{

𝑣
}

𝑛 + [𝐻]
(

[𝑛] × {

𝑣
})

− 𝜇2[𝑛] × [𝐵]{𝑣𝑛−1
}

,
(16)

where
{

𝜔⃗
}

𝑛 = 𝑛⋅𝜔⃗ and
{

𝑣
}

𝑛 = 𝑛⋅𝑣 are the normal vorticitiy and velocity. The transport equation (9) is handled similarly. The integral equation (16)
is solved to obtain the boundary vorticity

{

𝜔⃗
}

𝛤 . In the first iteration a guessed value for the domain values
{

𝜔⃗
}

𝛺∕𝛤 is used. Then the integral
equation (15) is employed to find the velocity field

{

𝑣
}

. Lastly, the integral equation related to the transport vorticity equation (9) is used to solve
the remaining unknown vorticity in the domain. With these domain vorticity values the procedure is repeated until a given precision is obtained.
 detailed description of this formulation is presented in [29].

The integral equation (15) and the one corresponding to the transport vorticity equation (9) is solved using a subdomain technique, which
s already an efficient technique presented in [30]. However, this method cannot be employed to solve the boundary vorticity with the integral

equation (16). Hence, for this integral equation the 2-matrix technique is proposed.

2.4. Singular integrals

In the above integral equations singularities appear for 𝑟 = |𝑥⃗ − 𝑦| → 0. Inspecting their behavior it is observed that the integrals in [𝐻],
𝐷⃗], [𝐵] are weakly singular but the integrals in [𝐻⃗ 𝑡] are strongly singular. The weakly singular integrals are solved using a transformation in
olar coordinates for the surface integrals or spherical coordinates for the volume integrals (e.g., [31]). The integral free term 𝑐(𝑦) that is present

in all integral formulations (6), (8) and (9) is solved with the formula from Mantič [32]. In principle the strongly singular integrals could be
olved indirectly based on the rigid body technique [33]. However, this technique cannot be applied here as the integral kernels in the latter

used 2-matrices are only exact in the near field (non-admissible blocks) but not in the rest of the matrix. Hence, the rigid body technique would
suffer from the approximated matrix entries. Thus the strongly singular integrals have to be regularized. Guiggiani and Gigante [34] presented a
echnique for the elasticity problem. The same method is employed here due to the same structure of the strongly singular part of the integral
ernel.

2.4.1. Strongly singular surface integrals
The strong singular surface integrals are the elements ℎ⃗𝑡𝑓 𝑎 from (14) for the matrices [𝐻⃗ 𝑡]. Evaluating the cross product or considering the third

part in (12) expressions of the form

ℎ𝑡𝑖𝑗 = ∫𝛤𝑎
𝜑(𝑥⃗)

[

𝑛𝑗
𝜕 𝑢∗(𝑦, ⃗𝑥)

𝜕 𝑥𝑖
− 𝑛𝑖

𝜕 𝑢∗(𝑦, ⃗𝑥)
𝜕 𝑥𝑗

]

𝑑 𝛤𝑎 (17)

can be identified. Comparing the structure of these terms with those handled in [34], it is clear that the proposed technique in this paper can be
pplied with some modifications. The principle steps are the same and will be shown next.

First, a transformation from cartesian to polar coordinates is introduced. Let us consider a surface element with the directions 𝜉1 and 𝜉2. A
ketch of the polar transformation is illustrated in Fig. 1 (left). The polar coordinates

𝜉1 = 𝜂1 + 𝜌 cos 𝜗, 𝜉2 = 𝜂2 + 𝜌 sin 𝜗 , (18)

are used, where 𝜂 are the coordinates of the collocation point 𝑦 in the local coordinate system. Inserting the fundamental solution (7) and the
coordinate transformation (18) into the kernel of the integral (17) results in the expression

𝐹𝑖𝑗 (𝜌, 𝜃) = 𝜑(𝑥⃗)
[

𝑛𝑗 (𝑥⃗)
𝜕 𝑢∗(𝑦, ⃗𝑥)

𝜕 𝑥𝑖
− 𝑛𝑖(𝑥⃗)

𝜕 𝑢∗(𝑦, ⃗𝑥)
𝜕 𝑥𝑗

]

𝜌 =

= − 𝑒−𝜇 𝑟
4𝜋

( 1
𝑟2

+
𝜇
𝑟

)

(

𝑛𝑗
𝑥𝑖 − 𝑦𝑖

𝑟
− 𝑛𝑖

𝑥𝑗 − 𝑦𝑗
𝑟

)

𝜑(𝑥⃗)𝜌 .
(19)

By employing a Taylor expansion in the neighborhood of the singular point 𝜂, the approximations and abbreviations

𝑥𝑖 − 𝑦𝑖 = 𝜌
[

𝜕 𝑥𝑖
𝜕 𝜉1

cos 𝜗 +
𝜕 𝑥𝑖
𝜕 𝜉2

sin 𝜗
]

+ (𝜌2) , 𝐴𝑖(𝜗) =
[

𝜕 𝑥𝑖
𝜕 𝜉1

cos 𝜗 +
𝜕 𝑥𝑖
𝜕 𝜉2

sin 𝜗
]

, 𝑖 = 1, 2, 3,

𝐴(𝜗) =
{ 3

∑

[𝐴𝑖(𝜗)]2
}1∕2

, 𝑟2(𝜌, 𝜗) = 𝜌2𝐴2(𝜗) + (𝜌3) ,
𝑥𝑖 − 𝑦𝑖 =

𝐴𝑖(𝜗) + (𝜌) ,
(20)
𝑖=1 𝑟 𝐴(𝜃)
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Fig. 1. The integration of the singular point in polar coordinates for surface integral (left) and spherical coordinates for volume integral (right). On the boundary element (right
panel), the radius for the vanishing part 𝛼(𝜀, 𝜗) is illustrated [34].

can be found. Next, the radius 𝛼(𝜀, 𝜗) in the local panel (the gray area in Fig. 1) has to be determined. Following the above expression for 𝑟2(𝜌, 𝜗)
gives

𝜀2 = (𝑥𝑘 − 𝑦𝑘)(𝑥𝑘 − 𝑦𝑘) → 𝜀2 = 𝜌2𝐴2(𝜗) + (𝜌3)

𝜌 = 𝛼(𝜀, 𝜗) = 𝜀
𝐴(𝜃)

+ (𝜀2) = 𝜀𝛽(𝜗) + (𝜀2) , (21)

where 𝜀 is used later to shrink the gray area to zero. The first order terms in 𝐹𝑖𝑗 (𝜌, 𝜃) in the neighborhood of the singular point 𝜂 can be given with
the expressions from (20)

𝑓𝑖𝑗 (𝜌, 𝜗) = 𝜑(𝜂)
[

𝑛𝑗 (𝜂)
𝜕 𝑢∗(𝑦, ⃗𝑥)

𝜕 𝑥𝑖
− 𝑛𝑖(𝜂)

𝜕 𝑢∗(𝑦, ⃗𝑥)
𝜕 𝑥𝑗

]

=

= − 𝑒−𝜇 𝜌𝐴(𝜗)
4𝜋

[

𝑛𝑗 (𝜂)𝐴𝑖(𝜗) − 𝑛𝑖(𝜂)𝐴𝑗 (𝜗)

𝐴3(𝜗)
+ 𝜌𝜇

(

𝑛𝑗 (𝜂)𝐴𝑖(𝜗) − 𝑛𝑖(𝜂)𝐴𝑗 (𝜗)

𝐴2(𝜗)

)]

𝜑(𝜂).
(22)

Taking 𝜇 → 0 the same expression as in the original work [34] is obtained. Subtracting this first order representation of the kernel from 𝐹𝑖𝑗 gives
an integrable function

𝐹𝑖𝑗 (𝜌, 𝜗) = 1
𝜌
[

𝑓𝑖𝑗 (𝜗) + (𝜌)
]

→ 𝐹𝑖𝑗 (𝜌, 𝜗) − 1
𝜌
𝑓𝑖𝑗 (𝜗) = (1), 𝜌 → 0 . (23)

For the integral (17) this results in two expressions

ℎ𝑡𝑖𝑓 𝑎 = ∫

𝜗2

𝜗1
∫

𝜌(𝜗)

0

[

𝐹𝑖𝑗 (𝜌, 𝜗) − 1
𝜌
𝑓𝑖𝑗 (𝜗)

]

𝑑 𝜌𝑑 𝜗 + lim
𝜀→0∫

𝜗2

𝜗1
∫

𝜌(𝜗)

𝛼(𝜀,𝜗)

1
𝜌
𝑓𝑖𝑗 (𝜗)𝑑 𝜌𝑑 𝜗 , (24)

where the first can be integrated with standard Gaussian integration and the second has to be integrated analytically. This integral is split into two
parts

lim
𝜀→0∫

𝜗2

𝜗1
∫

𝜌(𝜗)

𝛼(𝜀,𝜗)

1
𝜌
𝑓𝑖𝑗 (𝜗)𝑑 𝜌𝑑 𝜗 = 𝐼1 − 𝐼2 , (25)

with the explicit expressions

𝐼1 = lim
𝜀→0

𝜑(𝜂)∫

𝜗2

𝜗1
∫

𝜌(𝜗)

𝛼(𝜀,𝜗)
− 𝑒−𝜇 𝜌𝐴(𝜗)

4𝜋
1
𝜌

[

𝑛𝑗 (𝜂)𝐴𝑖(𝜗) − 𝑛𝑖(𝜂)𝐴𝑗 (𝜗)

𝐴3(𝜗)

]

𝑑 𝜌𝑑 𝜗 ,

𝐼2 = lim
𝜀→0

𝜑(𝜂)∫

𝜗2

𝜗1
∫

𝜌(𝜗)

𝛼(𝜀,𝜗)

𝜇 𝑒−𝜇 𝜌𝐴(𝜗)
4𝜋

[

𝑛𝑗 (𝜂)𝐴𝑖(𝜗) − 𝑛𝑖(𝜂)𝐴𝑗 (𝜗)

𝐴2(𝜗)

]

𝑑 𝜌𝑑 𝜗 .
(26)

Using partial integration results in

𝐼1 = lim
𝜀→0

𝜑(𝜂)∫

𝜗2

𝜗1

[

𝑛𝑗 (𝜂)𝐴𝑖(𝜗) − 𝑛𝑖(𝜂)𝐴𝑗 (𝜗)

4𝜋 𝐴3(𝜗)

] [
𝑒−𝜇 𝜌𝐴(𝜗) ln 𝜌(𝜗) − 𝑒−𝜇 𝛼(𝜀,𝜗)𝐴(𝜗) ln 𝛼(𝜀, 𝜗)

+ 𝜇 𝐴(𝜗)∫
𝜌(𝜗)

𝛼(𝜀,𝜗)
𝑒−𝜇 𝜌𝐴(𝜗) ln 𝜌𝑑 𝜌

]

𝑑 𝜗.
(27)

The limit in (27) will be discussed for each of the three terms in the last bracket separately. The first term is independent from 𝜀, hence it holds
lim𝜀→0 𝑒−𝜇 𝜌𝐴(𝜗) ln 𝜌(𝜗) = 𝑒−𝜇 𝜌𝐴(𝜗) ln 𝜌(𝜗). The second expression has to be rearranged

lim
𝜀→0

𝜑(𝜂)∫

𝜗2

𝜗1

[

𝑛𝑗 (𝜂)𝐴𝑖(𝜗) − 𝑛𝑖(𝜂)𝐴𝑗 (𝜗)

4𝜋 𝐴3(𝜗)

]

𝑒−𝜇 𝛼(𝜀,𝜗)𝐴(𝜗) ln 𝛼(𝜀, 𝜗)𝑑 𝜗 =

𝜑(𝜂) lim
𝜀→0

𝑒−𝜇 𝜀 ∫
𝜗2

𝜗1

[

𝑛𝑗 (𝜂)𝐴𝑖(𝜗) − 𝑛𝑖(𝜂)𝐴𝑗 (𝜗)

4𝜋 𝐴3(𝜗)

]

ln(𝜀𝛽(𝜗))𝑑 𝜗 =

𝜑(𝜂) lim 𝑒−𝜇 𝜀 ln 𝜀
𝜗2

[

𝑛𝑗 (𝜂)𝐴𝑖(𝜗) − 𝑛𝑖(𝜂)𝐴𝑗 (𝜗)
]

𝑑 𝜗 + 𝜑(𝜂)
𝜗2

[

𝑛𝑗 (𝜂)𝐴𝑖(𝜗) − 𝑛𝑖(𝜂)𝐴𝑗 (𝜗)
]

ln 𝛽(𝜗)𝑑 𝜗 ,

(28)
𝜀→0 ∫𝜗1 4𝜋 𝐴3(𝜗) ∫𝜗1 4𝜋 𝐴3(𝜗)
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where 𝛼(𝜀, 𝜗) = 𝜀
𝐴(𝜃) = 𝜀𝛽(𝜗) is used, which is the linear part of the second line in (21). Higher order terms are neglected. The remaining term with

a limit is zero due to symmetry conditions if all elements are considered, which are attached to the singular node. Let us assume that 𝑛 elements
𝑘 are connected to the singular node it holds

𝑛
∑

𝑘=1
∫

𝜗𝑘+1

𝜗𝑘

[

𝑛𝑗 (𝜂)𝐴𝑖(𝜗) − 𝑛𝑖(𝜂)𝐴𝑗 (𝜗)

4𝜋 𝐴3(𝜗)

]

𝑑 𝜗 = 0. (29)

This condition holds as long as the singular point is no free corner, i.e. the last element at this node closes up to the first element. This means that
𝜗 = [0, 2𝜋]. This condition and a discussion about it can be found in [34,35].

The remaining expression is the third term in (27) with the integration over 𝜚. To do this integration a substitution 𝜏 = 𝜇 𝜌𝐴(𝜗) is used
(𝜏∗ = 𝜏∕(𝜇 𝐴(𝜗)), 𝛼∗ = 𝛼∕(𝜇 𝐴(𝜗)))

lim
𝜀→0∫

𝜌(𝜗)

𝛼(𝜀,𝜗)
𝑒−𝜇 𝜌𝐴(𝜗) ln 𝜌𝑑 𝜌 = 1

𝜇 𝐴(𝜗) lim𝜀→0

[

∫

𝜏∗

𝛼∗(𝜀,𝜗)
𝑒−𝜏

′
ln 𝜏′𝑑 𝜏′ − ln (𝜇 𝐴(𝜗))∫

𝜏∗

𝛼∗(𝜀,𝜗)
𝑒−𝜏

′
𝑑 𝜏′

]

. (30)

Now, the limit can be performed in the last integral, which causes the lower limit to be zero. An analytical solution of this term is straight forward.
Further, the first integral is extended to infinity and the additional part is subtracted. These manipulations result in

lim
𝜀→0∫

𝜌(𝜗)

𝛼(𝜀,𝜗)
𝑒−𝜇 𝜌𝐴(𝜗) ln 𝜌𝑑 𝜌 = 1

𝜇 𝐴(𝜗)
[

∫

∞

0
𝑒−𝜏

′
ln 𝜏′𝑑 𝜏′ − ∫

∞

𝜏∗
𝑒−𝜏

′
ln 𝜏′𝑑 𝜏′ + ln (𝜇 𝐴(𝜗)) [𝑒−𝜌(𝜗) − 1]

]

. (31)

The first integral can be identified as the negative Euler–Mascheroni constant 𝛾 = 0.5772156649 and the second integral is solved using Mathematica
to

∫

∞

𝜏∗
𝑒−𝜏

′
ln 𝜏′𝑑 𝜏′ = 𝑒−𝜏

∗
ln 𝜏∗ + 𝛤 (0, 𝜏∗) ,

with the upper incomplete Gamma function 𝛤 (0, 𝜏∗). Taking this result and transforming the variables back the result is

lim
𝜀→0∫

𝜌(𝜗)

𝛼(𝜀,𝜗)
𝑒−𝜇 𝜌𝐴(𝜗) ln 𝜌𝑑 𝜌 = 1

𝜇 𝐴(𝜗)
[

−𝛾 − 𝑒−𝜌(𝜗) ln 𝜌(𝜗) − 𝛤 (0, 𝜌(𝜗)) + ln (𝜇 𝐴(𝜗)) [𝑒−𝜌(𝜗) − 1]] . (32)

Collecting all intermediate steps the sought integral is

𝐼1 =
𝜑(𝜂)
4𝜋 ∫

𝜗2

𝜗1

[

𝑛𝑗 (𝜂)𝐴𝑖(𝜗) − 𝑛𝑖(𝜂)𝐴𝑗 (𝜗)

𝐴3(𝜗)

]

[

𝑒−𝜇 𝜌(𝜗)𝐴(𝜗) ln 𝜌(𝜗) − ln 𝛽(𝜗) − 𝛾 − 𝑒−𝜌(𝜗) ln
(

𝜌(𝜗)
𝜇 𝐴(𝜗)

)

− 𝛤 (0, 𝜌(𝜗)) − ln (𝜇 𝐴(𝜗))
]

𝑑 𝜗.
(33)

The integration over 𝜗 can now be performed numerically with a standard Gauss–Legendre quadrature.
The second integral 𝐼2 form (25) is regular thus a conventional Gauss–Legendre quadrature can be employed to solve the integral. However,

also an analytical solution can be obtained resulting in

𝐼2 =
𝜑(𝜂)
4𝜋 ∫

𝜗2

𝜗1

[

𝑛𝑗 (𝜂)𝐴𝑖(𝜗) − 𝑛𝑖(𝜂)𝐴𝑗 (𝜗)

𝐴2(𝜗)

]

[𝑒−𝜇 𝐴(𝜗)𝜌(𝜗) − 1]𝑑 𝜗. (34)

It should be remarked that 𝜇 → 0 results in the formula proposed by Guiggiani and Gigante in [34]. This can easily be checked by setting 𝜇 = 0 in
34) and in (27). Unfortunately, this is not possible in (33) as this representation of 𝐼1 has been derived under the condition that 𝜇 ≠ 0. Else the
sed coordinate transformation will not work.

2.4.2. Volume integrals
The volume integrals in (14) are weakly singular, hence, a coordinate transformation is sufficient to obtain numerically computable integrals.

e transform the cartesian coordinates into spherical coordinates to solve the integrals. The spherical coordinates are

𝜉1 = 𝜂1 + 𝜌 sin 𝜗 cos𝜑, 𝜉2 = 𝜂2 + 𝜌 cos 𝜗 sin𝜑, 𝜉3 = 𝜂3 + 𝜌 cos 𝜗 , (35)

where the radius 𝜌 and angles 𝜗, 𝜑 are shown in Fig. 1 on the sketch of the cell. The transformation of the coordinates takes place from the singular
oint with the coordinates 𝜂.

Numerical tests have shown that the integration can be improved by using the generalized Telles’ method for evaluating integrals [36]. This
ethod narrows the Gaussian integral points to the singular point. The formulation

𝑠𝑇 = 𝑠0 + 21−𝑞(𝑠 − 𝑠0)𝑞 , (36)

was implemented, where 𝑞 is an odd integer which was set to 5, 𝑠 is the Gaussian point, 𝑠0 is the coordinate of the singular point in local coordinates
nd 𝑠𝑇 is the new Gaussian point. In order to implement this in the integrals the radius 𝜌 is evaluated for the new Gaussian point, while 𝜗 and 𝜑
re unchanged.

3. -Structure

To obtain a fast Boundary-Domain formulation, a sparse matrix formulation is proposed based on 2-matrices, where the integral kernel in the
atrix is interpolated (see [37]). The matrices [𝐻], [𝐻⃗ 𝑡], [𝐷⃗] and [𝐵] in the modified Helmholtz kinematic equation (16) are approximated. First,

an hierarchical partition of the geometry is introduced, i.e. an -matrix is formed, which is the basis to determine admissible and non-admissible
locks for approximations.
6 
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Fig. 2. Building the cluster tree (left) and the block cluster (right).

3.1. The cluster tree and block cluster tree

Cluster trees have to be formed as basis of the -matrix. The root cluster contains all boundary elements, which is then subdivided in 8 equally
sized subblocks. These subblocks are then again subdivided. This procedure is repeated until a predefined level or a predefined size of the cluster,
i.e. a predefined number of elements, is achieved. In each level the latter criterion is applied to stop subdivision of this specific cluster. For the
proposed boundary domain integral formulation two kind of cluster trees are established. One for the boundary nodes and one for the domain
nodes of the cells. A part of the cluster trees is illustrated in Fig. 2 on the left side, where 𝐽 𝑝

𝑗 is the boundary cluster, 𝐼𝑝𝑗 is the domain cluster and
𝑝 is the level, while 𝑗 is the cluster number. After the cluster trees are obtained, block clusters are formed. It depends on the matrix, which cluster
trees are combined to form block cluster trees, e.g., for the boundary matrices [𝐻], [𝐻⃗ 𝑡] the clusters of two boundary cluster trees are combined
and for the matrices [𝐷⃗], [𝐵] clusters from boundary and domain cluster trees are combined. Block clusters resemble smaller blocks of the matrix
and are tested for admissibility. Exemplarily, let us consider the domain matrix [𝐵] with size 𝑚 × 𝑛 having block clusters of the size 𝑚̂ × 𝑛̂. The
admissibility conditions

‖[𝐵̂]𝑚̂×𝑛̂‖ ≤ 10−15,

𝑚𝑖𝑛{𝑑 𝑖𝑚(𝐼), 𝑑 𝑖𝑚(𝐽 )} ≤ 𝜂 𝑑 𝑖𝑠𝑡(𝐼 , 𝐽 ) or 𝑚𝑎𝑥{𝑑 𝑖𝑚(𝐼), 𝑑 𝑖𝑚(𝐽 )} ≤ 𝜂 𝑑 𝑖𝑠𝑡(𝐼 , 𝐽 ),
𝑑 𝑖𝑠𝑡(𝐼𝑖, 𝐽𝑗 ) ≤ 𝑑 𝑖𝑠𝑡𝑚

(37)

are applied. The first condition in (37) tests whether the entries in this block are such small that they can be neglected. If the Frobenius norm of the
block cluster is smaller than the prescribed value, the block cluster is considered empty and is no longer used. The block clusters that are not empty
are tested for admissibility. Two admissibility conditions were employed to observe which is optimal, where 𝑑 𝑖𝑚(𝐼), 𝑑 𝑖𝑚(𝐽 ) are the diameters of the
clusters, 𝑚𝑖𝑛 and 𝑚𝑎𝑥 are the minimal and maximal diameters, 𝑑 𝑖𝑠𝑡(𝐼 , 𝐽 ) is the smallest distance between the two clusters and 𝜂 is a user-defined
parameter that determines the size of admissible block clusters. The last condition in (37) is somehow unusual. Based on the user-defined distance
𝑑 𝑖𝑠𝑡𝑚 it is decided whether admissible blocks are approximated by a standard ACA [9] or by interpolation with nested basis vectors, i.e. following
the 2 approach. This criterion ensures that clusters of the domain near the boundary are approximated sufficiently good. More details and tests
of this -structure can be found in [24].

3.2. Approximation of the integral kernel

Let us consider an admissible block cluster that fulfills the second condition form (37). The blocks in [𝐻] and [𝐻⃗ 𝑡] are from the boundary block
cluster 𝐽𝑘×𝐽𝑘 and those in [𝐷⃗] and [𝐵] are from boundary-domain block cluster 𝐽𝑘×𝐼𝑘. If not the third criterion in (37) holds, the kernel functions
𝑢∗

(

𝑦, ⃗𝑥) in those blocks are interpolated

𝑢∗
(

𝑦, ⃗𝑥) ≈
𝛼3
∑

𝜄=1

𝛽3
∑

𝜅=1
𝜄

(

𝑦
)

𝑢∗
(

𝑦𝜄, ⃗𝑥𝜅
)

𝜅
(

𝑥⃗
)

, (38)

with Lagrange interpolation functions (𝑦), (𝑥⃗) of order 𝛼, 𝛽 evaluated at the zeros of the Tschebyschev nodes. In [𝐻], [𝐻 𝑡
𝑖 ] and [𝐷𝑖] the derivatives

of the fundamental solution are present. In this case the derivative of the Lagrange polynomial has to be used, which gives the interpolations

𝑞∗
(

𝑦, ⃗𝑥) ≈
𝛼3
∑

𝜄=1

𝛽3
∑

𝜅=1
𝜄

(

𝑦
)

𝑢∗
(

𝑦𝜄, ⃗𝑥𝜅
)

𝑛𝑖
𝜕𝜅

(

𝑥⃗
)

𝜕 𝑥𝑖
, 𝑞𝑖

(

𝑦, ⃗𝑥) ≈
𝛼3
∑

𝜄=1

𝛽3
∑

𝜅=1
𝜄

(

𝑦
)

𝑢∗
(

𝑦𝜄, ⃗𝑥𝜅
) 𝜕𝜅

(

𝑥⃗
)

𝜕 𝑥𝑖
. (39)

Replacing the fundamental solution 𝑢∗
(

𝑦, ⃗𝑥) and its derivatives in (14) with the Lagrange interpolations from (38) and (39) gives the matrices

[𝐻̂] = [𝑈̂ ][𝑆̂][𝑉𝐻 ] , [𝐻̂ 𝑡
𝑖 ] = [𝑈̂ ][𝑆̂][𝑉 𝑡

𝐻 𝑖] , [𝐷̂𝑖] = [𝑈̂ ][𝑆̂][𝑉𝐷 𝑖] , [𝐵̂] = [𝑈̂ ][𝑆̂][𝑉𝐵]. (40)

The matrix [𝑈̂ ] is the Lagrange interpolation matrix on the boundary, [𝑆̂] is the fundamental solution matrix and the [𝑉 ] matrices consist of the
Lagrange interpolation under the integral. A detailed explanation on the formulation is presented in [24]. The matrix [𝑆̂] is stored in memory once
for all the matrices. To further reduce the computational cost, nested cluster basis are employed

𝜄
(

𝑥⃗
)

=
𝛾3
∑

𝜄
(

𝑥⃗𝜆
)

′
𝜆(𝑥⃗), 𝑛(𝑥⃗) ⋅ ∇⃗𝑥𝜅

(

𝑥⃗
)

=
𝛾3
∑

𝜅
(

𝑥𝜆
)

(𝑛(𝑥⃗) ⋅ ∇⃗𝑥′
𝜆(𝑥⃗)) , (41)
𝜆=1 𝜆=1
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Fig. 3. The velocity, vorticity and vorticity flux boundary conditions for the ‘lid-driven cavity’.

where ′(𝑥⃗) is again a Lagrange interpolation [21]. By employing the nested cluster basis, the matrices [𝑈̂ ], [𝑉𝐻 ], [𝑉 𝑡
𝐻 𝑖], [𝑉𝐷 𝑖], [𝑉𝐵] are transformed

into the matrices [𝑇 ], [𝑇𝐻 ], [𝑇𝐻 𝑖], [𝑇𝐷 𝑖]. Details and studies on the parameters to be selected can as well be found in [24].

4. Lid-driven cavity, Hagen–Poiseuille and channel flow with cylindrical barrier test case

The proposed method is applied to three-dimensional fluid flow problems. Three exemplary test cases are selected, a lid-driven cavity, a pipe
nd a channel with a cylindrical barrier. For the lid-driven cavity the first, experimental studies have been performed by Kosseff and Street in [38]
nd numerical simulations can be found in [39], while for the pipe flow, analytical solutions can be used for comparison. The last example is the

channel flow over a cylindrical barrier. This example is often employed by different authors, e.g., Kanaris et al. [40] and Ooi. [41] numerically
simulated the turbulent flow and heat transfer around the cylinder in a channel, while [42] employed the test example to simulate blood flow
around a thrombus. A benchmark test of it was performed by Shäfer and Turek in [43]. They have shown that the example can be solved by
ifferent numerical methods. For all cases observed in this research the fluid flow is solved in the laminar flow regime. To solve the boundary
orticity Eq. (16) the proposed 2-matrix is used for all boundary and domain matrices. To solve the linear system of equations GMRES with a
imple Jacobi-preconditioner has been applied. For the subsequent presented tests, the error introduced by the 2-method is measured using a
elative root mean square error defined by

𝑅𝑀 𝑆𝑣 =

(

∑𝑛
𝑖=1(𝑣𝑖 − 𝑣̃𝑖)2
∑𝑛

𝑖=1 (𝑣𝑖)
2

)
1
2

, 𝑅𝑀 𝑆𝜔 =

(

∑𝑛
𝑖=1(𝜔𝑖 − 𝜔̃𝑖)2
∑𝑛

𝑖=1 (𝜔𝑖)
2

)
1
2

. (42)

In (42), 𝜔𝑖, 𝑣𝑖 are the absolute values of the vorticity and velocity at all nodes 𝑥𝑖 that were solved with the original matrices formulation and
𝜔̃𝑖, 𝑣̃𝑖 denote the solution obtained with the 2-formulation. Hence, these values measures the error introduced due to the approximations in the

2-matrices in comparison to the dense matrix solution. But this error does not measure the overall quality of the solution.

4.1. Example: Lid driven cavity

The first test case considers a three-dimensional cubic geometry, where the top lid of the cube is driven at a velocity 𝑣𝑥 = 𝑣0 and all other
alls have no-slip conditions. The coordinate system is located in the lower left corner such that {𝑥, 𝑦, 𝑧} ∈ [0, 1] holds. The selected boundary

onditions for the velocity 𝑣, vorticity 𝜔⃗ and vorticity flux 𝑞𝜔𝑗 are sketched in Fig. 3. The normal components of the boundary vorticity are set
to zero whereas the tangential components are unknown. The boundary values of the vorticity flux, i.e., 𝑞𝜔𝑗 in (9), are selected opposite, i.e., the
ormal components are unknown and the tangential components are set to zero.

4.1.1. Validation with results from literature
We present the results obtained with the 2-technique in Fig. 4. The fluid flow was solved for Reynolds numbers 100, 400 and 1000 while the

nterpolation order for the 2-matrix was 𝛼 = 𝛽 = 𝛾 = 4 and the ACA stopping condition was 𝜀 = 10−8. The norm of the velocity 𝑣 is presented for a
lice of the domain at 𝑦 = 0.5. The velocity norms 𝑣 are very close to results obtained with a dense calculation, i.e., without the 2-technique. The
op lid of the cavity has the maximum velocity, while the vortex of the fluid has the smallest velocity recognizable by the dark blue color. With
ncreasing Reynolds number the vortex moves towards the center of the domain as also observed in the experiments in [38] and in the simulations

by Yang et al. [39].
The 𝑥- and 𝑧-components of the velocity are plotted versus the 𝑥- and 𝑧-coordinate, respectively, in Fig. 5. Different to the colored plots in Fig. 4

the interpolation order for the 2-matrix formulation was changed. The different colored lines in Fig. 5 correspond to different interpolation orders
f the kernel expansion. Increasing the interpolation order brings the results closer to the numerical results of Yang et al. [39]. This behavior is

expected and confirms that the proposed formulation is able to produce the same results as other numerical techniques. In case of Yang et al. [39]
t is an finite volume calculation.

The above shown results have been obtained with 𝜇 = 0, i.e., the false transient approach is not used. Applying this technique improves the
numerical behavior as presented in Fig. 6, where the same profiles as in Fig. 5 are presented for different values of 𝜇. It can be observed that with

uch less interpolation order of the 2-matrices the sought solution is obtained. This effect can be attributed to the changed kernel function as
n increase of 𝜇 adds a kind of damping which decreases the values of the kernel. Hence, more blocks are either not considered at all or can be

easier approximated by lower order polynomials. Overall, it can be concluded that the 2-formulation gives sufficiently accurate results, which
are comparable to the numerical results from literature.
8 
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Fig. 4. The norm of the velocity 𝑣 in the 𝑥-𝑧-plane at 𝑦 = 0.5 solved for Reynold’s numbers 100 (left), 400 (middle) and 1000 (right). The domain mesh had 533 nodes and
parameter 𝜇 = 0 was selected.

Fig. 5. The velocity profiles 𝑣𝑥 and 𝑣𝑧 along the respective 𝑥- and 𝑧-axes at 𝑦 = 0.5 solved with different interpolation orders of the kernel expansion. Parameter 𝜇 = 0 and domain
mesh was 573.

Fig. 6. The velocity profiles 𝑣𝑥 and 𝑣𝑧 along the respective 𝑥- and 𝑧-axes at 𝑦 = 0.5 solved with different interpolation orders of the kernel expansion and different values of 𝜇.
The top line results are obtained with a domain mesh of 253 nodes, where the bottom line is for 533 domain nodes. The Reynolds number is 1000.

4.1.2. Behavior of GMRES
In this subsection, we investigate the convergence of the GMRES-solver with the Jacobian preconditioner. In Fig. 7, we present the number of

GMRES iterations necessary to obtain the boundary vorticity 𝜔𝑥 from (16) in each iteration for two different meshes (upper and lower rows). The
difference between the left and right column is the stopping condition 𝜀𝐺 𝑀 𝑅𝐸 𝑆 . The number of GMRES iterations decreases with the number of
iterations to obtain convergence of the 𝜔 solution. The maximal number of iterations was 3000. Clearly, for 𝜀𝐺 𝑀 𝑅𝐸 𝑆 = 10−4 the GMRES solver
𝑥
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Fig. 7. Number of iterations depending on the interpolation order and GMRES stopping condition 𝜀𝐺 𝑀 𝑅𝐸 𝑆 with Reynolds number 1000.

Fig. 8. Number of iterations depending on the interpolation order and Reynolds number for mesh densities 413 (left) and 463 (right) with 𝜀𝐺 𝑀 𝑅𝐸 𝑆 = 10−6.

needs less iterations than for 𝜀𝐺 𝑀 𝑅𝐸 𝑆 = 10−6. Further, in Fig. 8 the Reynolds number is varied. The number of iterations increases for a larger
Reynolds number. However, the number of GMRES iterations did not change.

4.1.3. Parameters of the 2-matrix
Next, the different parameters introduced by the 2-matrix are studied using the RMS values defined in (42). Note again, this value measures

the error introduced by the 2-matrix and not that of the solution. In Figs. 9(a) and 9(b) the 𝑅𝑀 𝑆𝑣 and 𝑅𝑀 𝑆𝜔 are presented for different
esh densities and Reynolds numbers. The difference between the two subfigures is that in the first (i.e., Fig. 9(a)), the 𝑚𝑎𝑥 and in the second

(i.e., Fig. 9(b)), the 𝑚𝑖𝑛 criteria from (37) are applied. It can be observed that increasing the interpolation order for the kernel interpolation improves
the results independently. As well, this test show the expected result that the used mesh does not influence this tendency. Larger meshes increases
the amount of admissible block clusters but this does not influence the error introduced by the kernel expansion. Comparing the error level for
ifferent Reynolds numbers shows that a higher Reynolds number requires an increase in the interpolation order. This is most probably related
o the solution behavior visible in Fig. 4. For higher Reynolds numbers higher gradients are visible, which should require a better approximation.

For this example and the used meshes there is no difference in the accuracy between the 𝑚𝑖𝑛 and 𝑚𝑎𝑥 admissibility condition in (37). However,
in [24], it is observed that the 𝑚𝑖𝑛 condition decreases the memory requirement.

In Fig. 10, the 𝑅𝑀 𝑆𝜔 presented are obtained from two meshes with the same amount of nodes but different sized elements. The mesh on the
eft side in Fig. 10 denoted A has evenly sized elements, while the mesh on the right side denoted B has elements decreasing in size towards the
dge of the domain. The latter is done for an improved computation of the boundary layer. The 𝑅𝑀 𝑆𝜔-values for mesh B are smaller which does

not mean that the solution quality is better but the approximation of the 2-matrix introduces a smaller error. This effect is a consequence of the
10 
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Fig. 9. The 𝑅𝑀 𝑆𝑣 (top) and 𝑅𝑀 𝑆𝜔 (bottom) for different mesh densities and Reynolds numbers. The parameters 𝜇 = 0 and 𝜂 = 1 are used. No ACA approximation was employed.

Fig. 10. The 𝑥-𝑦 cross section of two meshes (above), where both meshes have 413 nodes. The 𝑅𝑀 𝑆𝜔 obtained for both meshes with the parameter 𝜇 = 0.
11 
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Fig. 11. The 𝑅𝑀 𝑆𝜔 for the values of the parameter 𝜇 = 10 (top) and 20 (below) at different Reynolds numbers and 𝜂 = 1. The min criterium was employed.

Fig. 12. 𝑅𝑀 𝑆𝜔 for parameter 𝜇 = 0 and Re=1000: Influence of the ACA stopping condition.

Fig. 13. 𝑅𝑀 𝑆𝜔 for different 𝜇 and Re=1000. The ACA stopping condition was 𝜀 = 10−6.

admissibility conditions used. There are more elements near the wall and, consequently, the amount of inadmissible block clusters increases. Thus
less elements are approximated.

When the interpolation order of the approximation is increased the storage demand increases as well. Another method to improve the quality of
he results is to change the parameter 𝜇 in the modified Helmholtz fundamental solution (7). This parameter changes the shape of the fundamental
olution and its influence was already observed in Fig. 6. In Fig. 11, the 𝑅𝑀 𝑆𝜔 obtained at different Reynolds numbers and three different values

of 𝜇 are presented.
It is visible that for a larger 𝜇 the approximation accuracy increases, while the interpolation order does not change. Thus the memory demand

does not increase for a fixed mesh density. In Fig. 11, the 𝑚𝑖𝑛 admissibility criterium was used. It is remarked that similar results can be obtained for
he 𝑚𝑎𝑥 criterium not displayed here. More of these studies can be found in [24], where the approximation of the domain integral by 2-matrices
s studied.

4.1.4. The ACA approximation
In the above proposed 2-matrix based methodology at two places the ACA is used to reduce the storage requirement. It is used in the -matrix

blocks (third condition in (37)) and in the 2-method for the compression of matrix [𝑆̂] in (40). In the above tests the latter compression is not
ncluded. Here, the influence of the precision/stopping criterion of ACA 𝜀 is studied. In Fig. 12, we present the RMS when the ACA is employed

using different stopping conditions. Different to Fig. 12 in Fig. 13 the parameter of the false transient 𝜇 is changed and the ACA stopping condition
has been fixed at 𝜀 = 10−6.
12 
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Fig. 14. The velocity, vorticity and vorticity flux boundary conditions for ‘pipe flow’ and the domain partitioning.

Fig. 15. The meshed outlet surface of the pipe (left) and solved absolute velocity on the outlet at 𝑥 = 𝐿, 𝛼 = 𝛽 = 𝛾 = 4 and 𝜀 = 10−8 (right).

The stopping condition of the ACA determines the rank of the low-rank matrix blocks. In both figures, it can be observed that the approximation
quality stops at a distinct value independent of increasing the interpolation order. This effect shows simply that from this point on the error
introduced by the ACA dominates. This holds true as well for the second test in Fig. 13 where the ACA precision was kept constant but the false
transient parameter 𝜇 is increased. In the test above where no ACA has been used the increase of 𝜇 was beneficial. Here, it is only beneficial up to
the point where the ACA error dominates.

4.2. Example: Hagen–Poiseuille flow in a pipe

The second test case is the Hagen–Poiseuille flow in a three-dimensional pipe. The solution can be obtained analytically from the in-compressible
Navier–Stokes equations. For the geometry a cylinder is meshed that resembles the inner part of the pipe. The cylinder and the prescribed boundary
conditions are sketched in Fig. 14(a). The coordinate system is placed in the middle of the inlet surface at 𝑥 = 0. On the inlet surface the fluid
enters the pipe with prescribed average velocity 𝑣0 in 𝑥-direction. On the curved cylinder wall the normal vorticity is set to zero, 𝜔𝑛 = 𝑛 ⋅ 𝜔⃗ = 0. In
the test presented below, the diameter of the pipe was kept constant 𝐷 = 0.01 m, while its length 𝐿 has been varied such that the ratio 𝐿∕𝐷 was
changed from 1.0 to 4.0, i.e., the length of the pipe is 0.01 m ≤ 𝐿 ≤ 0.04 m.

The cylinder is a lengthy geometry in the 𝑥-direction. This makes it difficult to form a suitable cluster tree. To have a balanced -structure
the domain is splited into substructures by bisection in all three directions. The subdomains evolving from this bisection have similar sizes in all
three dimensions, see Fig. 14(b) for an example where the different colored boxes sketch the subdomains. For each subdomain a cluster tree is
made and all cluster trees together give the final cluster tree. These substructures are not only used to obtain equal sized block cluster but also to
simplify parallelization. Each substructure can be sent to each processor and forms its cluster tree that is used to obtain the block clusters for the
-structure. The advantage is that the matrix–vector product is gathered from each processor to a root processor that can solve the linear system
of equations. This technique is not only applied to the lengthy pipe structure but as well to the cube example to allow for parallel computing.

In Fig. 15, we show the meshed outlet surface of the pipe (left) and the absolute value of the velocity computed with the 2-formulation (right).
To have a simple mesh generation process we used a square in the middle of the pipe. This enabled to have hexaeders as mesh elements for the
domain cells. The red color stands for the maximal velocity and the blue for the minimal velocity 𝑣 = 0 m∕s. It should be reminded that the maximal
velocity is two times larger than the prescribed average velocity 𝑣0 in the inlet.

Similar studies concerning the approximation quality of the 2-matrix as above for the cube are performed next for this elongated structure.
In Fig. 16, we show the 𝑅𝑀 𝑆𝑣 and 𝑅𝑀 𝑆𝜔 for different Reynolds numbers. It shows that, as expected, the approximation accuracy increases
for a higher interpolation order. As already presented for the Lid-driven cavity also in this example the Reynolds number has an impact on the
approximation accuracy. When the Reynolds number is increased the interpolation order has to be increased.

Further, we observe the 𝑅𝑀 𝑆𝜔 when the pipe length is changed. For that the length-diameter ratio 𝐿∕𝐷 was changed from 1.0 to 4.0 while
the mesh density was kept constant. In Figs. 17, the 𝑅𝑀 𝑆𝜔 is shown for Reynolds numbers Re = 1 and Re = 100 and different length-diameter
ratios 𝐿∕𝐷. The length of the pipe does not affect the approximation quality substantially. Only for the ratio 𝐿∕𝐷 = 1 the RMS values are by a
factor of 10 higher. This is, essentially, caused by the construction of the test, where the same meshes are used for all length-diameter ratios. This
results for the longer pipe in larger elements, which is convenient for the approximation. It must be recalled that these results are only possible
with the above introduced substructuring.
13 
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Fig. 16. The 𝑅𝑀 𝑆𝑣 (top) and 𝑅𝑀 𝑆𝜔 (bottom) for parameter 𝜇 = 0 at different Reynolds numbers. For the -structure the 𝑚𝑖𝑛 criteria was employed with 𝜂 = 5. The ACA stopping
condition was set to 𝜀 = 10−8. The length of the pipe was equal to its diameter 𝐿∕𝐷 = 1.0.

Fig. 17. The 𝑅𝑀 𝑆𝜔 using the parameter 𝜇 = 0. For the -structure the 𝑚𝑖𝑛 criteria was employed. The ACA stopping condition was set to 𝜀 = 10−8. The length of the pipe was
changed while its diameter was kept constant.

Fig. 18. The 𝑅𝑀 𝑆𝜔 for different parameters 𝜇 at Re=1.0. For the -structure the 𝑚𝑖𝑛 criteria was employed with 𝜂 = 5. The ACA stopping condition was set to 𝜀 = 10−8. The
atio was 𝐿∕𝐷 = 2.0.

In Fig. 18, we show the approximation accuracy depending on 𝜇. The tendency is the same as in the lid-driven case shown in Fig. 11. For larger
values of 𝜇 the approximation error is reduced. The reasoning is again the smoother behavior of the fundamental solution. The observed results

how that the proposed method can be employed on curved and lengthy geometries.
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Fig. 19. Dimensions of the domain (left) and boundary conditions (right), where the hight of the domain is 𝐻 = 1.0.

Fig. 20. Meshed channel for dimensions 𝑋 = 1.0, 𝐿 = 10 with 653 nodes.

4.3. Example: Channel flow with cylindrical barrier

For the last example, we present the channel flow over a cylindrical barrier. The intention of this example is to show that the proposed
methodology can also be applied on more challenging geometries as those from above. The above reported experiences to adjust the parameters
of the 2-approach are applied here.

The geometry with its dimensions is shown in Fig. 19 (left). Note, all dimensions are given in a dimensionless form. The cylindrical obstacle is
placed at 𝑋 = 1.0. The applied boundary conditions are given in Fig. 19 (right). The inlet boundary condition is on the plane 𝑦−𝑧 at 𝑥 = 0, with the
rescribed inlet velocity 𝑣0 = 1.0. The side and cylinder walls are no-slip walls. For the cylinder surface and the side walls a zero normal vorticity
oundary condition 𝑛 ⋅ 𝜔⃗ = 0 is prescribed. To ensure that the vortices formed behind the cylinder can leave the computational domain without
eflections, a convective outflow boundary condition is used. As presented in [44], such a condition can be obtained with a monochromatic wave

equation.
This example simulated with other numerical methods can be found in [43] beside some other benchmark problems. Different to the

benchmark [43], here, we consider a smaller domain to show the influence of the 2-approach. In Fig. 20, the meshed domain is presented.
he mesh is formed with hexahedrons. Two red marked areas, one at the cylinder and the other further away from the cylinder, are magnified to
how the mesh details in these locations. The elements around the cylinder are deformed, while further away from the cylinder the elements are
erfectly shaped cubes.

To determine the convergence of the solution we compute the drag coefficient (see, e.g. [45])

𝐶𝐷 =
(𝑝1 − 𝑝2)𝑊 ⋅𝐻

, (43)

1
2𝜌𝐴𝓁 ⋅ 𝑣0
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Fig. 21. The 𝐶𝐷 coefficient: (left) for the domain 𝑋 = 1.0, 𝐿 = 10 at 𝑅𝑒 = 10 and different approximation parameter, (middle) for the domain 𝑋 = 1.0, 𝐿 = 10 at 𝑅𝑒 = 40 and 𝜂 = 1,
𝛼 = 𝛽 = 𝛾 = 5, (right) for the domain 𝑋 = 2.0, 𝐿 = 12 and 𝜂 = 1, 𝛼 = 𝛽 = 𝛾 = 5.

Fig. 22. The velocity contour for 𝑅𝑒 = 10 (top) and 𝑅𝑒 = 40 (bottom) for the domain length 𝑋 = 1 and 𝐿 = 10 using the approximation parameters 𝜂 = 1, 𝛼 = 𝛽 = 𝛾 = 5 and the
mesh with 653 nodes.

which is the pressure difference between the inlet 𝑝1 and outlet 𝑝2. To obtain these the dynamic pressure formula 𝑝 = 𝜌𝑣2

2 is used, where
= 1

𝐴 ∫ (𝑛 ⋅ 𝑣)𝑑 𝐴 is the average velocity on each surface. Further 𝑣0 is the velocity on the inlet and 𝐴𝓁 = 𝐷 ⋅𝐻 is the surface area of the cylinder
cross section in the 𝑦-direction.

In Fig. 21 we show the drag coefficients 𝐶𝐷 for different approximation parameters, Reynolds numbers and channel dimensions. On the left
panel we investigate the influence of the presented 2-methodology and mesh density on the solution of 𝐶𝐷 at 𝑅𝑒 = 10. Clearly, the approximation
parameters influence the solution. For 𝜂 = 5 and the interpolation order 𝛼 = 𝛽 = 𝛾 = 3 (red or blue line) the 𝐶𝐷 coefficient differs for different
meshes, while for 𝜂 = 1, 𝛼 = 𝛽 = 𝛾 = 5 the drag coefficients of both meshes are similar. These results reveal that the choice 𝜂 = 1 and 𝛼 = 𝛽 = 𝛾 = 5
re good approximation parameters. Using this set of parameters the channel flow is solved for 𝑅𝑒 = 40 (middle panel in Fig. 21). The number of
terations for this Reynolds number is very high. However, the 𝐶𝐷 converges to a constant value. On the right panel in Fig. 21 results are presented

for changed channel dimensions 𝑋 = 2.0, 𝐿 = 12 and an increased mesh density of 673. The Reynolds number is varied from 𝑅𝑒 = 10 to 𝑅𝑒 = 20
resulting in similar drag coefficients. As already observed for the shorter channel the values of the drag coefficient are very small. It is important
o note that the values of the drag coefficient depend on the channel dimensions as shown in [43,44].

Next, the velocity contours are presented. In Fig. 22, the absolute value of the velocity in the 𝑥-𝑦-plane at 𝑧 = 0.5 are given for two different
eynolds numbers. Differences are clearly visible, where the solution preserves the expected symmetry. Changing the dimensions of the channel

n Fig. 23 as well the absolute value of the velocity of the fluid flow is shown for two Reynolds numbers. Comparing the velocity contours for
𝑒 = 10 between Figs. 22 and 23 shows a difference in the flow field around the cylinder. This is due to the different 𝑋-values, the distance

between the inlet and the cylinder (see Fig. 19).

4.4. Computational costs

The aim of the presented method is to get a data-sparse representation of the underlying domain-boundary element formulation. I.e., the main
argument was to save memory to store the matrices, which in a standard formulation increases quadratically with the unknowns. In Fig. 24, the
memory usage is compared between three different cases.

In the first picture the storage for the formulation with and without ACA is compared. It shows that this compression pays for larger mesh
sizes. The reason is the increased amount of admissible block clusters in larger meshes. Hence, there are more 2-blocks but as well more blocks
with an ACA only compression. As well for the latter, the size is larger and, hence, the ACA is more effective. Further, the min and max criteria in
he admissibility condition gives obviously different results, where the max criterion is more conservative from a storage point of view as well as

from a mathematical point of view. The storage is presented in the middle picture. The third picture shows the influence of the parameter 𝜇 of the
16 
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Fig. 23. The velocity contour for 𝑅𝑒 = 10 (top) and 𝑅𝑒 = 20 (bottom) for the domain length 𝑋 = 2 and 𝐿 = 12 using the approximation parameters 𝜂 = 1, 𝛼 = 𝛽 = 𝛾 = 5 and the
mesh with 673 nodes.

Fig. 24. Used memory of the boundary vorticity equation compared with and without ACA for 𝜇 = 0 (left), the min and max criteria for the -structure (middle) and for the
values of 𝜇 = 10 and 20 (right). The ACA stopping condition was at 10−8 and the interpolation order 𝛼 = 𝛽 = 𝛾 = 3.

Fig. 25. Used memory for the pipe compared with the cube (left) and the memory for different pipe lengths. The ACA stopping condition was at 10−8 and the interpolation order
= 𝛽 = 𝛾 = 3.

false transient approach. There is a slight difference in the tendency showing that in the higher damped case (larger 𝜇) more entries can be better
approximated.

The above results are for the cube from the Lid-driven cavity test. In Fig. 25, we compare the memory used by the cube example with that of
he pipe. This is shown on the left. The differences are small showing that the substructure technique works. This is further confirmed in the right
icture in Fig. 25 where the memory usage is plotted for different pipe length but using the same mesh. It is confirmed that the approximation
orks in the same way also for the elongated structure.

There are no complexity estimates available for this specific application of 2-matrices but it can be expected that an almost linear behavior can
e obtained. In Fig. 26, the used memory is plotted versus the number of unknowns. The black lines give indication of the orders 𝑂(𝑛𝑚),(𝑚 log𝑚),
nd (𝑚). For the dense calculation, the green line, with 𝑛 collocation points and 𝑚 domain nodes the memory requirement scales with 𝑂(𝑛𝑚). The
ther lines in blue, orange, and red are results for the 2-matrices. The notation 𝐴𝐶 𝐴 − [𝑈 ][𝑆][𝑉 ] indicates a computation where the [𝑈 ][𝑆][𝑉 ]-
atrices from (40) are stored and the nested basis is established during the matrix–vector product. The alternative implementation is denoted
ith 𝐴𝐶 𝐴 − 𝑇 , where the [𝑇 ]-matrices, i.e. the nested basis, are precomputed and stored instead of the [𝑈 ], [𝑉 ]-matrices. Obviously, the memory
17 
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Fig. 26. The memory used to solve the boundary vorticity with and without approximation for a cube geometry. The ACA stopping condition is set to 10−8 and the interpolation
order is 𝛼 = 𝛽 = 𝛾 = 4.

demand drops when an approximation is employed. The complexity of the 𝐴𝐶 𝐴− [𝑈 ][𝑆][𝑉 ] line indicates a linear logarithmic complexity (𝑚 log𝑚),
whereas the complexity of the 𝐴𝐶 𝐴 − 𝑇 version is almost linear (𝑚). Hence, the 𝐴𝐶 𝐴 − 𝑇 version is preferable from the storage view point but
needs more computation time up to a factor of 2. Certainly, the latter is implementation dependent. Further, it can be observed that a larger factor
𝜇 reduces storage but does not change the complexity. To give some numbers: the quadratic complexity of the dense computation would results
in 1.8 TB of memory to store all matrices for a mesh with around 106 nodes. With the nested cluster bases and ACA the memory is reduced to 50
GB. This is a reduction to ≈2%.

5. Conclusions

Laminar fluid flow was solved numerically with a fast Boundary-Domain Integral method. To reduce the computational cost the 2-methodology
as employed. This method does not allow to use the rigid body method to compute the strong singular integrals. Hence, a method based on the

echnique of Guigiani and Gigante has been developed to handle the strong singular integrals. The main focus was on the application of 2-matrices
o obtain a data sparse formulation. Different examples were solved to observe the influence of the approximation on the results. Especially, the
nteraction of the false transient approach and of the Reynolds number with the data sparse method has been studied. It can be concluded that

the proposed technique is able to efficiently solve laminar fluid flow problems. Certainly, it must be remarked that the parameter of the proposed
method must be carefully adjusted. For higher Reynolds numbers the interpolation order has to be increased, which decreases the efficiency of
the method. It is not clear if the method could be employed to solve turbulent fluid flow. For that additional investigations of this approximation
method are necessary. Further, parallel computation is not straight forward despite that the block clusters can be easily distributed on different
processors. But the block cluster size is strongly varying and, consequently, a load balancing is difficult.
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