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Abstract: In this paper, forces and torques on solid, non-spherical, orthotropic particles in Stokes
flow are investigated by using a numerical approach on the basis of the Boundary Element Method.
Different flow patterns around a particle are considered, taking into account the contributions
of uniform, rotational and shear flows, to the force and the torque exerted on the particle. The
expressions for the force and the toque are proposed, by introducing translation, rotation and
deformation resistance tensors, which capture each of the flow patterns individually. A parametric
study is conducted, considering a wide range of non-spherical particles, determined by the parametric
superellipsoid surface equation. Using the results of the parametric study, an approximation scheme is
derived on the basis of a multivariate polynomial expression. A coefficient matrix for the polynomial
model is introduced, which is used as a tunable parameter for a minimization problem, whereby
the polynomials are fitted to the data. The developed model is then put to the test by considering
a few examples of particles with different shapes, while also being compared to other, currently
available solutions. On top of that, the full functionality of the model is demonstrated by considering
an example of a pollen grain, as a realistic non-spherical particle. First, a superellipsoid, which best
fits the actual particle shape, is found from the considered range. After that, the coefficients of the
translation, rotation and deformation resistance tensors are obtained from the present model and
compared to the results of other available models. In the conclusion, a superior accuracy of the present
model, for the considered range of particles, is established. To the best of the authors knowledge,
this is also one of the first models to extend the torque prediction capabilities beyond sphere and
prolate particles. At the same time, the model was demonstrated to be simple to implement and
very conservative with the computational resources. As such, it is suitable for large scale studies of
dispersed two-phase flows, with a large number of particles.

Keywords: drag; torque; resistance tensor; rotation tensor; Boundary Element Method; Stokes flow;
non-spherical; particle

1. Introduction

Multiphase flows with non-spherical particles are being extensively researched in
recent years, by authors from numerous fields of engineering and science. Nowadays,
with significant development of computational methods, one of the greatest challenges
still remains in tackling industrial level simulations. This follows from a fact that they are
frequently associated with complex carrier fluid flow fields and a large number of dilutely
distributed, non-spherical particles. Problems of this nature are usually treated by using
the Euler-Lagrangian approach, based on the point-particle assumption, which is valid for
particle sizes much lower than the Kolmogorov length scale of the flow. Such an approach
relies on using a model for the prediction of the particle-fluid interaction, instead of using
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the computationally expensive direct approach. Albeit the simplifications, this approach
was proven successful for a number of problems considering disperse flows [1], where
small particles are involved. A typical starting point for the formulation of particle-fluid
interaction is the Maxey-Riley equation [2] that was originally developed for spheres. It
has been repeatedly shown that for sufficiently high particle-to-fluid density ratios (i.e.,
in solid-gas suspensions), the most important terms are gravity and drag [3–5], which
dominate the particle translation. The simplest model for drag is that of a sphere in a
creeping flow, which was later extended to other flow regimes [6–8]. Due to its simplicity,
accuracy and the fact that the drag formulation for a sphere has been available for the
longest, researchers have extensively relied on the assumption of the spherical particle
shape. Significant research interest still exists for this approach, as there is a number of
applications [9–12], where the best representation of the particle shape is in fact spherical.
On the other hand, it is not uncommon that a reasonable shape specific model does not exist
for the actual particle shape and flow regime [13], in which case a spherical drag model can
still be used, at least to gain an approximate overview of the observed phenomena. Unlike
for the spheres, drag models for non-spherical particles are significantly more complex,
not only because of the increased shape formulation effort, but also due to the fact that
the particle orientation, with respect to the flow velocity field, needs to be accounted for.
One of the first attempts to consider the drag of a simplest non-spherical particle had
been carried out by Oberbeck [14], who derived the analytical solution for the drag of an
arbitrarily oriented ellipsoid in an uniform creeping flow. Despite the limitation of the
linear flow field around the particle, this is still one of the very few models available for
non-spherical particles, which is based on the exact expression for the drag prediction.
Among the many studies considering the ellipsoidal particles, prolate [15,16] and oblate [17]
ellipsoids still seem to be the most popular choices. Nevertheless, for the comprehensive
description of the particulate phase involving non-spherical particles, employing only the
drag model is not sufficient, as it has been repeatedly demonstrated [18–20]. It is now
well understood that the rotation can significantly affect the particle dynamics and other
associated phenomena, such as their deposition. With this in mind, one can no longer
neglect the importance of employing an accurate model for the torque, along with those
for the drag. Much like for the drag, ellipsoids [21] are one of the very few geometries
for which the exact torque expression is available, based on the analytical solutions of
the creeping flow field around the particle. Together with the ellipsoid drag model, both
have been proven very useful when applied to the problems with fibrous micro-particles,
for example in bio-engineering [22,23], medicine [24], paper-making industry [25] and in
nuclear reactors processes [26]. That said, it is important to remember that non-spherical
particles, encountered in a number of natural or industrial flows, are often distinctively
irregular, up to the extent where readily available exact models fail to deliver a reasonable
solution. To overcome that, drag models based on generalised shape descriptions were
proposed as a result of the extensive experimental work throughout the years. In those
models, the particle shape is characterised by shape descriptors, i.e., sphericity [27], which
is then used as a relation of the particle shape with the drag prediction. Some of the more
advanced models also employ additional shape descriptors [28] and even consider the
particle orientation [29]. Examples that can be found in the literature range from the studies
of volcanic ash transport in the atmosphere [30,31], as well as investigations of ice crystal
trajectories in an aircraft turbofan compressor [32], to simulating the formation of polymer
particles in a downer reactor [33].

Taking into account the facts from the presented literature, we identify the lack of
available drag and torque models, based on the exact formulation, for a wider range
of non-spherical particle shapes. With the exception of ellipsoids, almost all other non-
spherical particles can still only be captured by generalised shape description models,
which inevitably comes at a cost of the prediction accuracy [34]. For that reason, we
propose an extension to the existing models for ellipsoids by introducing a multi-parameter
surface description based on the superellipsoidal equation. Some authors estimate [35] that
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as much as 80% of solids can be represented by superquadratic functions. In comparison
with ellipsoids, this expands the parametrization capabilities to a significantly wider range
of shapes, such as cylinders, cuboids, rhomboids and even octahedrons. In order to
retain the benefits of the exact models, the drag and torque expressions are employed by
considering the actual particle shape and its orientation. This allows for the treatment of all
non-spherical particles that can be represented by superellipsoids, with essentially the same
accuracy as analytical models provide for ellipsoids. Moreover, with this approach, new
insights into the complex-shaped particle dynamics can be gained, by exposing the details
that most of the generalised shape models would not be able to reconstruct. Hereinafter
we present the superellipsoid drag and torque modelling framework, by means of which
we obtain the necessary data to derive the required correlations. Following from that,
we demonstrate the validity of the numerical approach by conducting a validation study,
including the evaluation of mesh resolution and computational domain sizing. In the
end, we present the final drag and torque models for superellipsoidal particles, for use in
Lagrangian particle tracking applications, together with its accuracy evaluation and the
functional demonstration.

2. Governing Equations

Let us consider the relative flow of a carrier fluid, around a small particle. As discussed
in the introduction, we are limiting ourselves to a particle size smaller than the Kolmogorov
length scale of the flow. Typically, this also results in a correspondingly small particle Stokes
number Stp = (1/18)(ρp/ρ f )(dp/η)2, where ρp and ρ f are the particle and fluid densities
respectively, dp is the particle diameter and η is the Kolmogorov length scale. It has been
repeatedly shown that for a sufficiently small Stokes numbers, the particle almost perfectly
traces the fluid streamlines, without any significant detachments from the flow [36]. This
in turn means that the relative flow velocity around a particle is low and typically falls
well into the viscous (Stokes) regime. As a result, we assume a steady state incompressible
flow of a Newtonian fluid around a particle, at a very small particle Reynolds number,
Rep = ||~u||2dp/ν � 1, where ||~u||2 is the relative flow velocity magnitude and ν is its
kinematic viscosity. In this case the advection term in the Navier-Stokes equations can be
neglected, which results in the creeping flow (Stokes) equations:

~∇ · ~u = 0, ~∇ · σ + ρ f~g = 0. (1)

Here ~g is the gravitational acceleration and σ is the Cauchy stress tensor defined as
σ = −PI + τ, where P is the pressure, I the identity tensor, and τ the viscous stress

tensor. Considering a Newtonian fluid, we model the viscous stresses as τij = µ
[

∂ui
∂xj

+
∂uj
∂xi

]
,

where µ = νρ f , rendering the following form of the Stokes equation

− ~∇P + µ∇2~u + ρ f~g = 0. (2)

Finally, we recognise that gravity is a conservative force, which may be written as a gradient
of gravitational potential Φ and introduce a modified pressure as p = P− ρ f Φ, where
~g = ~∇Φ. The final form of the Stokes equation reads

− ~∇p + µ∇2~u = 0. (3)

The Stokes flow Green’s functions satisfy the continuity equation ~∇ · ~u = 0 and are
the solutions of the singularly forced Stokes equation. Defining r̂ =~r−~r0 and r = |r̂|, the
3D free-space Green’s functions can be written as:

Gij =
δij

r
+

r̂i r̂j

r3 , Tijk = −6
r̂i r̂j r̂k

r5 . (4)
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Let ~q = σ ·~n denote the boundary traction, i.e., the flux of momentum into or out of the
boundary. The boundary integral representation for the Stokes problem [37] is:

c(~r0)uj(~r0) =
∫ PV

Γ
ui(~r)Tijk(~r,~r0)nk(~r)dΓ(~r)− 1

µ

∫
Γ
Gji(~r,~r0)qi(~r)dΓ(~r), (5)

where c(~r0) = 2α is twice the solid angle as seen from the point~r0, i.e., in the interior of the
domain c = 8π, at a smooth boundary c = 4π. The normal vector~n points into the domain.
The first term on the r.h.s represents the double layer potential of three-dimensional Stokes
flow, and the second term is the single-layer potential of three-dimensional Stokes flow.

Boundary Element Solution of Stokes Flow Over a Particle

The boundary integral Equation (5) is used as the basis of the Boundary Element
Method (BEM) solver, which we developed. The numerical implementation is based on
our Laplace BEM solver [38,39]. We consider the boundary Γ = ∑l Γl to be decomposed
into boundary elements Γl :

c(~r0)uj(~r0) = ∑
l

∫ PV

Γl

ui(~r)Tijk(~r,~r0)n
(l)
k dΓ(~r)− 1

µ ∑
l

∫
Γl

Gji(~r,~r0)qi(~r)dΓ(~r), (6)

where n(l)
k is the k component of the normal vector pointing from boundary element l into

the domain.
Let Φ and Ψ be the interpolation functions used to interpolate the function and flux

values within the boundary elements, i.e., ui = ∑m Φmu(l,m)
i and qi = ∑m Ψmq(l,m)

i , where

u(l,m)
i is the mth nodal value of the function within the lth boundary element. This yields

c(~r0)uj(~r0) = ∑
l

∑
m

u(l,m)
i

∫ PV

Γl

ΦmTijk(~r,~r0)n
(l)
k dΓ(~r)

− 1
µ ∑

l
∑
m

q(l,m)
i

∫
Γl

ΨmGji(~r,~r0)dΓ(~r). (7)

The integrals above depend only on the mesh geometry and are independent of the flow
solution. As such, they may be calculated in advance and stored. Since the boundary
elements share nodes, the number of integrals that need to be stored is smaller than the
number of integrals calculated, since the integrals, which are needed by the same node, can
be summed up.

To obtain a system of equations from unknown velocities and tractions, we place
the source point in all boundary nodes. Storing the integral values in matrices ([Tij], row
corresponding to different source points, columns to different nodes in the mesh) and flow
quantities in nodal vectors {ui}, we obtain the following system of equations:

{ux}
[
[Txx]− c[I]

]
+ {uy}[Tyx] + {uz}[Tzx] =

1
µ

[
{qx}[Gxx] + {qy}[Gxy] + {qz}[Gxz]

]
(8)

{ux}[Txy] + {uy}
[
[Tyy]− c[I]

]
+ {uz}[Tzy] =

1
µ

[
{qx}[Gyx] + {qy}[Gyy] + {qz}[Gyz]

]
(9)

{ux}[Txz] + {uy}[Tyz] + {uz}
[
[Tzz]− c[I]

]
=

1
µ

[
{qx}[Gzx] + {qy}[Gzy] + {qz}[Gzz]

]
(10)

Boundary conditions include known values for {ux}, {uy}, {uz}, {qx}, {qy}, {qz}.
Collocation points are placed only into nodes, where the value is unknown. A system
of linear equations is set up for all unknowns, where in case of unknown {ux} or {qx}
Equation (8) is used, in case of unknown {uy} or {qy} Equation (9) is used and in case of
unknown {uz} or {qz} Equation (10) is used. Additional details of the BEM employed,
such as implementation of integration, can be found in [38,39].
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When considering flow over a particle using this method, a no-slip velocity boundary
condition is prescribed at the particle surface and the algorithm renders boundary tractions.
These can be integrated over the particle’s surface to obtain the force and torque exerted on
the particle by the fluid. The main advantage of using BEM for this task over domain based
methods such as finite volumes is that boundary tractions are obtained by direct solution
of the system of equations and not post-processed from the velocity fields. Additionally,
only the particle surface must be discretizised, a volume mesh is not necessary, leading to
faster computational times.

3. A Particle in Stokes Flow

We aim to investigate the fluid flow induced forces and torques on non-spherical parti-
cles. Our main goal is to extend the currently available modelling options for non-spherical
particles, as highlighted in the introduction. Since we want to consider a wider range of
particle shapes, it is a good idea to employ a parametric surface definition approach. In or-
der to enable shape manipulation options, we introduce a superellipsoidal particle [40–42]
with four parameters λ1, λ2, e1 and e2 and fix its volume to V = π/6, which is the volume
of a sphere with diameter dp = 1. The three semiaxes are

a = λ1c, b = λ2c, c =
[

π

12λ1λ2B(e1/2 + 1, e1)B(e2/2, e2/2)

]1/3
, (11)

where B(•) is the beta function. Placing the frame of reference in the centre of the superel-
lipsoid and aligning the coordinate system axes with the semiaxes of the superellipsoid, we
can define the surface of the superellipsoid as

S(x, y, z) =
[( x

a

)2/e2
+
(y

b

)2/e2
]e2/e1

+
( z

c

)2/e1
. (12)

In Figure 1 a couple of representative superellipsoidal particles are shown highlighting the
wide variety of shapes, which can be modelled by the superellipsoidal parametrization.
The particle frame of reference (PFR) is also shown.

Figure 1. Examples of superellipsoids with particle frame of reference defined. From the left a triaxial
ellipsoid, oval, cylinder, cuboid, rhomboid and octahedron are shown. All shapes are formed from
the same axes (a, b, c), by only altering the exponential parameters (e1, e2).

We consider a particle moving in a fluid, where ~u is the fluid velocity in the PFR. The
force on the particle can be calculated by

~F =
∫

Γ
~qdΓ = πµcK · ~u, (13)

where~q = σ ·~n is the boundary traction and K is the translation resistance tensor expressed
in the PFR. The boundary traction represents the sink of momentum at the particle surface
and thus its integral over the surface yields the force. When we consider a spinning particle
in a stationary fluid, the torque is ~T =

∫
Γ~r×~qdΓ = −µπc3Ω · ~ω where Ω is the rotation

resistance tensor and ~ω is the angular velocity of the particle in the PFR. The flow shear
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also affects the rotation dynamics of the particle. Taking both contributions into account,
the torque can be expressed as

~T =
∫

Γ
~r×~qdΓ = µπc3

Π ·

 f
g
h

+ Ω ·

 ξ −ωx
η −ωy
χ−ωz

, (14)

where Π is the deformation resistance tensor. Here f , g, h are the elements of the deforma-
tion rate tensor and ξ, η and χ are elements of the spin tensor, defined as

f =
1
2

[
∂uz

∂y
+

∂uy

∂z

]
, g =

1
2

[
∂ux

∂z
+

∂uz

∂x

]
, h =

1
2

[
∂ux

∂y
+

∂uy

∂x

]
, (15)

ξ =
1
2

[
∂uz

∂y
−

∂uy

∂z

]
, η =

1
2

[
∂ux

∂z
− ∂uz

∂x

]
, χ =

1
2

[
∂uy

∂x
− ∂ux

∂y

]
. (16)

Making use of the Lorentz reciprocal theorem [43], Happel and Brenner [8] showed
that the translation resistance tensor and the rotation resistance tensors are symmetric. As
an immediate consequence of the properties of symmetric tensors, every particle must
posses principal axes of translation, i.e., three perpendicular directions such that translating
without rotation to one of them, the particle experiences a force only in that direction. In
the case, when the particle is orthotropic (possess three mutually perpendicular symmetry
planes), it follows from symmetry considerations that the principal axes of translation are
normal to the symmetry planes. Moreover, similar can be applied for the particle rotation in
a uniformly rotating and shearing flow. If we employ a two-dimensional uniform flow, with
pure rotation or pure shear, blank with the particle symmetry planes, the resulting torque is
limited to a single principal axis, normal to the symmetry plane where the flow is employed.
Thus, considering orthotropic particles and choosing the particle reference frame blank
with symmetry planes, the translation K, rotatation Ω and deformation Π resistance tensors
are diagonal. That said, one must determine nine components to completely describe the
force (13) and torque (14) experienced by a particle in an arbitrary creeping flow field. The
K, Ω and Π tensors are expressed with respect to the particle frame of reference. Using a
general tensor rotation formalism, we can transform them into the inertial (Eulerian) frame
by writing K̃ = RTKR, where K̃ is the translation resistance tensor in the inertial frame of
reference and R is the rotation matrix. The transformation of Ω and Π tensors is analogous
to that of the K tensor.

4. Numerical Setup

For the purpose of this study, we employ a three-dimensional numerical model of a
superellipsoidal particle in creeping flow. The numerical domain, in the shape of a sphere
(Figure 2), is generated with the particle under consideration positioned in its centre.

Since Stokes flow is diffusive in nature and the simulations are steady state, we expect
the perturbation of the fluid due to the particle to be non-negligible in a very large region.
The Stokes’s analytical solution for flow over a sphere reveals that the perturbation in flow
velocity diminishes as 1/r measuring away from the particle. This means that the boundary
conditions must be placed far away from the particle in order not to have a significant effect
on the force and torque calculations. Therefore, in order to correctly assess the flow field
and the resistance and rotation tensors, we take into account the findings of some recent
studies listed below. Chadil et al. [44] performed a DNS study of the flow around the sphere,
where they used an rectangular domain of 16dp × 8dp. Likewise, Zastawny et al. [45] also
employed an rectangular domain, sized to 20dp × 20dp × 10dp, in their immersed boundary
method (IBM) setup for non-spherical particles. An extensive study of low-Re flow around
non-spherical particles was conducted by Andersson and Jiang [46], who selected a volume
equivalent cube edge length as a comparative domain measure. Edge lengths from 20dp
to 170dp were examined, where the length of 135dp was claimed to produce a sufficiently
domain independent solution. In a similar fashion, Štrakl et al. [47] employed a cube-
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shaped domain, with the base edge length of 160dp, for their parametric study of drag and
lift forces acting on non-spherical particles. At least in the latter of the four studies, the
authors had to accept a compromise regarding the domain size selected for the study, as the
mesh element count was required to be kept within reasonable limits. This is typically an
inevitable consequence of the available computational resources and time, especially in the
case of parametric studies, where a high number of simulations is required. Overcoming
this limitation comes as one of the main advantages of using BEM, where meshing the
volumetric domain is not required. With this in mind, if we proceed to the question of the
domain size in the present work, we are able to chose the diameter of the outer sphere
almost arbitrarily, which we finally set to a value of 1024dp. In the case of creeping flow
around a sphere, using the domain of this size would reduce the effects of the domain
boundary to ∼0.1%, compared to ∼1%, as achieved by the domains used in [46,47].

x y

z

dp 1024dp

~u

particle

domain boundary

~u|p = 0

Figure 2. Numerical domain in the shape of a sphere, with the diameter of the 1024dp. The particle
under consideration is positioned in the centre of the domain, with its volume equivalent diameter
dp. The boundary condition, on the surface of the outer sphere is a constant velocity field ~u, while a
no slip condition ~u|p = 0 is imposed on the particle surface.

The boundary condition, imposed at the surface of the outer sphere (domain bound-
ary), is a known velocity field. We decide to process the contributions of different resistance
tensors separately. Following from that, we employ nine different velocity fields, to take in
to account all three principal axes for the translation, rotation and shear flow. In the case of
estimating the translation resistance tensor K we prescribe the velocity corresponding to
the translation of the particle in a stationary fluid, along the three axes of symmetry, namely
~u = −î (Figure 3, left). The unit vectors (î, ĵ, k̂) define the standard basis of the coordinate
vector space. To obtain the rotation resistance tensor Ω, we prescribe the velocity field cor-
responding to a uniform rotation of the particle, around the three axes of symmetry, namely
~u = −zĵ + yk̂ (Figure 3, centre). Analogously, for the deformation resistance tensor Π we
prescribe the two-dimensional pure shear velocity field, normal to the three symmetry axes,
namely ~u = zĵ + yk̂ (Figure 3, right). At the same time, we prescribe a no-slip condition at
the surface of the particle, to close the set of the required boundary conditions. According
to (8)–(10), one can see that the result of such simulation is a traction at the particle surface
~q, which is displayed in Figure 3. When integrated according to Equations (13) and (14),
this yields the force and the torque exerted on the particle by the fluid.
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~u = −î ~u = −zĵ + yk̂ ~u = zĵ + yk̂

Figure 3. Boundary traction magnitude ||~q||2 at the surface of a rectangular disc particle, shown for
the uniform flow (left), rotational flow (centre) and the shear flow (right).

5. Mesh Study and Validation

To validate the proposed algorithm and to estimate its accuracy, we first consider a
particle in the shape of a prolate ellipsoid, by varying the axial ratio λ1 and keeping the
rest of the superellipsoidal parameters at unity (λ2 = 1, e1 = 1, e2 = 1). For such a particle,
Jeffery [21] analytically derived the non-zero components of the three resistance tensors in
creeping flow. Ravnik et al. [19] established that their validity is limited to particles, whose
size is much smaller than the Kolmogorov length scale. The expressions for the tensor
components, as given by Jeffery [21], are

Kxx =
8[λ2

1 − 1]3/2

[2λ2
1 − 1] ln[λ1 +

√
λ2

1 − 1]− λ1

√
λ2

1 − 1
,

Kyy = Kzz =
16[λ2

1 − 1]3/2

[2λ2
1 − 3] ln[λ1 +

√
λ2

1 − 1] + λ1

√
λ2

1 − 1
, (17)

and

Ωxx =
16λ1

3
1
α0

, Ωyy = Ωzz =
16λ1

3
1 + λ2

1
α0 + λ2

1γ0
, (18)

Πxx = 0, Πyy = −Πzz =
16λ1

3
1− λ2

1
α0 + λ2

1γ0
. (19)

The nondimensional coefficients α0 and γ0 were defined by Gallily and Cohen [48] as

α0 =
λ2

1
λ2

1 − 1
+

λ1

2[λ2
1 − 1]3/2

ln
λ1 −

√
λ2

1 − 1

λ1 +
√

λ2
1 − 1

, (20)

γ0 = − 2
λ2

1 − 1
− λ1

[λ2
1 − 1]3/2

ln
λ1 −

√
λ2

1 − 1

λ1 +
√

λ2
1 − 1

. (21)

Starting from the special case of λ1 = 1 (where the particle is in fact a sphere) the two
nondimensional coefficients are limλ1→1 α0 = limλ1→1 λ2

1γ0 = 2
3 , while the resulting non-

zero tensor components are Kii = 6 and Ωii = 8. We continue with two additional prolate
particles, by setting λ1 = 2 and λ1 = 5, for which we compute the tensor components in
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accordance with (17)–(19). Together with the spherical particle, they are used as a reference,
to confirm the validity of the proposed numerical approach. The domain discretization is
employed in two steps. First a domain boundary (the outer sphere) is meshed separately
with approximately 4.1 · 103 degrees of freedom, which is kept constant for all cases. After
that, the particle meshing is employed, where in total four different meshes are considered.
We begin with mesh A, which has 7.4 · 103 degrees of freedom and continue with mesh B
with 15.9 · 103, mesh C with 31.1 · 103 and mesh D with 48.4 · 103 degrees of freedom. As
we are trying to capture different particle shapes, some discrepancy between the meshes
was unavoidable, so the above given DOFs are the average values for all particles. The
results, in terms of the diagonal components of the translation, rotation and deformation
resistance tensors, obtained for all meshes, are given in Table 1. As evident, the numerical
results compare well with the analytical values. The average relative errors of all three
particles, for all non-zero tensor components, are 2.1% for meshA, 0.21% for mesh B, 0.15%
for mesh C and 0.14% for mesh D.

Table 1. Comparison of the analytical and numerical values of the translation and rotation tensors in
the case of a sphere and two prolate ellipsoids.

λ1 Value Analytical MeshA Mesh B Mesh C MeshD
1 Kii 6 5.953 6.002 6.009 6.012
1 Ωii 8 7.759 7.954 7.983 7.993
1 Πii 0 0.006 0.002 0.004 0.000

2 Kxx 7.224 7.150 7.219 7.230 7.234
2 Kyy = Kzz 8.273 8.217 8.274 8.285 8.289
2 Ωxx 12.91 12.35 12.79 12.86 12.88
2 Ωyy = Ωzz 24.08 23.58 23.93 24.01 24.04
2 Πxx 0 0.016 0.004 −0.008 0.000
2 Πzz = −Πyy 14.45 14.42 14.40 14.43 14.46

5 Kxx 10.71 10.50 10.69 10.72 10.72
5 Kyy = Kzz 14.23 14.00 14.22 14.25 14.26
5 Ωxx 28.24 25.44 27.76 28.05 28.14
5 Ωyy = Ωzz 185.6 179.2 184.3 185.0 185.3
5 Πxx 0 −0.320 0.021 −0.005 0.069
5 Πzz = −Πyy 171.3 166.4 170.3 170.8 171.1

Moreover, to also demonstrate the adequacy of the mesh, when capturing real su-
perellipsoids, we select two additional particles by employing all four superellipsoidal
parameters. The first, a rectangular disc particle, is obtained by using λ1 = 5, λ2 = 5,
e1 = 0.2, e2 = 0.2 and the second, a pyramid-like particle, by using λ1 = 10, λ2 = 10,
e1 = 1.5, e2 = 1.5. We repeat the above process, where all non-zero tensor components
are computed, for the same four mesh densities. In Figure 4, the meshes A-D of the rect-
angular disc particle are visualised. Due to the lack of analytical expressions and the lack
of availability of experimental results, we have to base our verdict regarding the mesh
accuracy on the convergence of the values of interest alone. This is displayed in Figure 5,
where the resulting tensor components are plotted against the number of DOF for each
mesh. The resistance tensor components Kxx and Kzz are shown in Figure 5a, Ωxx and Ωzz
in Figure 5b and Πxx in Figure 5c. We notice that not all tensor components have been
presented, which is supported by the fact that the two considered particles possess both
axial ratios of the same value (λ1 = λ2), so the following simplifications are observed in
the resulting tensor components: Kxx = Kyy, Ωxx = Ωyy, Πxx = −Πyy and Πzz = 0. In
general, the convergence behaviour is similar to the previous study, where spherical and
prolate particles have been considered. Albeit some indications already appeared in the
results from Table 1, the plots in Figure 5 clearly show the lesser sensitivity of the K tensor
components to the mesh density, compared to the components of the Ω and Π tensors.
For example, in case of the rectangular-disc particle, the average change in the K tensor
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components, from mesh A to mesh D is around 1.8%, while the same for Ω and Π yields
around 5.1%. Nevertheless, if we take mesh B for our starting point, the average tensor
component changes reduce to approximately 0.4% for K, 1.0% for Ω and 1.1% for Π. We
can observe that all of the tensor components start to settle at the latest around 20 · 103 DOF,
which is consistent with what we have already established when considering the sphere
and the prolate ellipsoids. After the extensive mesh evaluation, we are choosing mesh B
as appropriate for the main parametric study. This mesh is also considered to have the
optimal trade-off between accuracy and the required computational resources.

A B C D

Figure 4. Surface meshes A, B, C and D on the example of rectangular disc particle. Mesh elements
in the bottom right corner of the particle are displayed in magnified detail, to show the quality of the
captured rounded edge.

(a) (b) (c)

Figure 5. Demonstration of mesh convergence, by comparing the components of: (a) translation,
(b) rotation and (c) deformation resistance tensors, for two superellipsoids: the rectangular disc
(λ1 = 5, λ2 = 5, e1 = 0.2, e2 = 0.2) and pyramid-like particle (λ1 = 10, λ2 = 10, e1 = 1.5, e2 = 1.5).

6. Results
6.1. Data Inspection

The models of shape dependant translation, rotation and deformation resistance
tensor components are based on the conducted parametric study, where we investigate
approximately 5.4 · 103 superellipsoidal particles, which are obtained from the following
range for the superellipsoidal parameters: λ1 = [1, 11], λ2 = [1, 11], e1 = [0.2, 1.8] and
e2 = [0.2, 1.8]. Additionally, we employ a minor simplification by limiting the parameter
λ2 ≤ λ1, as we recognise that, for example, the particle with axial ratios of λ1 = 5, λ2 = 3
is in fact geometrically identical to the particle with axial ratios of λ1 = 3, λ2 = 5 rotated by
90◦. This in turn allows us to reduce the final count of the particles in the study from 9.8 · 103

to 5.4 · 103, without loosing significant data in the set. That said, we compute each of the
nine tensor components, required to construct the K, Ω and Π tensors, for the remaining
range of particles in the study. At this point, we are left with a decent amount of raw data,
obtained by the direct numerical computation with BEM. In order to simplify the process
of putting the obtained results into use, we aim to find a suitable approximation scheme.
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We have to realise that the mathematical space in consideration is essentially four-
dimensional (λ1,λ2,e1,e2). As a result, we cannot expect to find any trivial solution for
producing an accurate fit expression, to capture the complex nature of the data in question.
Instead, we decide to make a number of data projections, for all nine tensor components,
where we fix some of the parameters to constant values, which, in essence, reduces the
dimensionality of the observation points. As an example of that, we present the tensor
components Kzz, Ωzz and Πzz on a 3D plot, where we fix two dimensions to a constant. In
Figure 6 the tensor components are shown with respect to λ1 and λ2, while e1 and e2 are
fixed to unity. Likewise, in Figure 7 the data is displayed with respect to e1 and e2, while
λ1 and λ2 are 5 and 3 respectively. By observing the Figures 6 and 7, one can immediately
establish that the data shows distinctively non-linear characteristics. We can maybe identify
a slightly less pronounced non-linear behaviour in the case of Kzz, whereas the behaviour
of the Ωzz and Πzz components is relatively similar.

(a) (b) (c)

Figure 6. Tensor component values are presented with respect to λ1 and λ2, for the examples of
tensor components Kzz, Ωzz and Πzz, shown at (a–c) sections respectively. Parameters e1 and e2 are
fixed to unity. Note the triangular shape of the plot surface, due to the imposed limitation λ2 ≤ λ1.
Black and blue dotted lines are displaying the one-dimensional fit functions, which are positioned at
the fixed values of λ1 and λ2 as indicated in the plot legend.

(a) (b) (c)

Figure 7. Tensor component values are presented with respect to e1 and e2, for the examples of tensor
components Kzz, Ωzz and Πzz, shown at (a–c) sections respectively. Parameters λ1 and λ2 are fixed to
the values of 5 and 3. Black and blue dotted lines are displaying the one-dimensional fit functions,
which are positioned at the fixed values of e1 and e2 as indicated in the plot legend.

With this in mind, we proceed by finding approximation functions, to reconstruct the
resulting tensor components with respect to the particle geometric parameters. Initially,
we limit ourselves to fit only a single variable function, while fixing other parameters to
constant, due to the enormous complexity involved, when considering more than one
parameter at once. By making a few educated guesses, we employ a general polynomial as
a one-dimensional non-linear fit expression, which we fit to data observations, presented
on Figures 6 and 7. Four functions are fitted to the results of each tensor component,
namely two by fixing λ1 and two by fixing λ2 in Figure 6 and analogously with e1 and e2 in
Figure 7. After comparing the fit accuracy for different order polynomials, we establish a
third order polynomial as appropriate for fitting the parameters λ1 and λ2 and a second
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order polynomial for e1 and e2. To confirm that, we evaluate the corresponding coefficient
of determination R2 for each fitted function, where we obtain R2 = 0.98 as an average for
all fitted functions.

6.2. Approximation Scheme Derivation

We are deriving a multivariate approximation scheme to predict each of the nine
tensor components individually. We begin by first writing a general m− th order univariate
polynomial, using vector notation, as pm(x) = [ 1 x x2 ... xm ]T . At the moment
we assume its coefficients to be equal to unity. We set up the initial expression for each
geometric parameter, employing the polynomial order as just established, which yields
p3(λ1), p3(λ2), p2(e1) and p2(e2). Prior to introducing the momentarily missing polyno-
mial coefficients, we combine the first two and the second two polynomials together, to
obtain two bi-variate polynomials. We write their tensor product and vectorize [49] its
transpose back to the column vector, namely p3,3(λ1, λ2) = vec

([
p3(λ1)p3(λ2)

T]T
)

and

p2,2(e1, e2) = vec
([

p2(e1)p2(e2)
T]T
)

. At this point we define the matrix of polynomial
coefficients A, with dimensions 16× 9, where 16 is the dimension of a vector p3,3(λ1, λ2)
and 9 is the dimension of a vector p2,2(e1, e2). With everything set up so far, we write

f (λ1, λ2, e1, e2) = p3,3(λ1, λ2)
T Ap2,2(e1, e2) =

A16,9λ3
1λ3

2e2
1e2

2 + A16,8λ3
1λ3

2e2
1e2 + ... + A1,2e2 + A1,1,

(22)

where f (λ1, λ2, e1, e2) is the resulting approximation scheme for an individual tensor com-
ponent. To obtain the coefficients of A we reformulate (22) into an optimization problem,
again, for each tensor component separately. First, let us define the sum of squared errors,
which we try to minimise, namely

min
A

n

∑
i=1

[
fi(λ1, λ2, e1, e2)− yi

yi

]2

, (23)

where fi(λ1, λ2, e1, e2) is the approximation scheme result (for the individual tensor compo-
nent), evaluated for the i− th particle, yi is the tensor component of the i− th particle shape
and n is the number of considered particle shapes. Considering the full range of the numer-
ical results, we detect an increased standard deviation for Ω and Π results, which in turn
increases the prediction difficulty for the approximation scheme. This increase of standard
deviation in the results is mostly contributed by the exponentially rising magnitudes of the
Ω and Π tensor components, with respect to λ1. To reduce this drawback as far as possible,
we split the numerical results into two sub-ranges, to group together the values of similar
magnitude and thus reduce the approximation error. By introducing a simple selection
criteria, based on a single parameter λ1 we obtain the two ranges, namelyR1 for λ1 ≤ 5
andR2 for λ1 > 5. For solving the presented optimization problem, we use a multivariate
non-linear regression method, from the software package GEKKO optimization suite [50].
As a result, we obtain the polynomial coefficient matrices with best-fitting terms for the
individual tensor components in both ranges, namely AR1

(Kxx), AR1
(Kyy), ..., AR1

(Πzz)
and AR2

(Kxx), AR2
(Kyy), ..., AR2

(Πzz). The resulting coefficient matrices are given in the
Appendix A. With that, we are able to determine all tensor components, for an arbitrary
particle k within the range of the study, by simply evaluating (22) for λ1, λ2, e1, e2 of the
k− th particle, using AR(α) as the coefficient matrix, where index α denotes the tensor
component andR the range under consideration.
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6.3. Validation of the Approximation Scheme

Let us investigate the accuracy of the derived approximation schemes for the tensor
components. Please note that there are particles in the parametric study, for which some
of the tensor components are zero (or very close to zero, due to numerical errors). This in
turn raises a question of representing the relative errors, as in those cases a relatively small
absolute discrepancy would cause erratically high errors. For that purpose, we decide
to use a modified relative error expression, which, on the example of Kzz component, is
given by

ε(Kzz) =
|K∗zz − K′zz|
||K′||F

, (24)

where ε is a modified relative error, K∗zz is the tensor component of the particle, as predicted
by the approximation function, K′zz is a numerical result of the tensor component and
||K′||F is the Frobenius norm of the numerically computed K tensor. In Figures 8 and 9
we present the ε errors for Kzz, Ωzz and Πzz tensor components, plotted in terms of λ1,
λ2, and e1, e2 respectively. If we first focus on Figure 8, we see that the distribution of Kzz
errors is fairly flat, with relatively low average error, indicated as ε(Kzz) in the right hand
corner of the plot. On the contrary, the distributions for Ωzz and Πzz are showing a slightly
increased dispersion between the values on the displayed range, with comparatively
increased average errors. This is an expected behaviour, as we already identified that
the standard deviation in the results of the latter two tensor components is much higher
than in the results of the first. On the other hand, the plots in terms of e1, e2 (Figure 9)
are showing a very flat distribution for all considered tensor components. Following
from that, we establish that the parameters λ1 and λ2 are significantly contributing to the
standard deviation of the results and consequently to the increase of the approximation
difficulty. This is also the main reason for the selection of the third order polynomial as
the approximation function for λ1 and λ2 and the second order polynomial for e1 and
e2. Finally, to draw a conclusion from the above, we give the final values of modified
relative errors, in terms of average for each tensor, namely ε(K) = 0.11%, ε(Ω) = 0.28%
and ε(Π) = 0.31%.

(a) (b) (c)

Figure 8. Modified relative errors ε are presented, with respect to λ1 and λ2, for the examples of
tensor components Kzz, Ωzz and Πzz, shown at (a–c) sections respectively. Parameters e1 and e2 are
fixed to unity. The average error for the plot is displayed in the top right corner.
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(a) (b) (c)

Figure 9. Modified relative errors ε are presented, with respect to e1 and e2, for the examples of tensor
components Kzz, Ωzz and Πzz, shown at (a–c) sections respectively. Parameters λ1 and λ2 are fixed to
5 and 3. The average error for the plot is displayed in the top right corner.

6.4. Demonstration of the Force and Torque Model Using Parametrically Defined Particles

To evaluate the performance of the derived models on some common particle shapes,
we put them to the test by comparing the results to various existing methods that have been
extensively employed so far. For testing, we choose five particle shapes, namely the sphere
(I), a prolate with λ1 = 5 (I I), an ellipsoid with λ1 = 5 and λ2 = 3 (I I I), a rectangular disc
superellipsoid with λ1 = λ2 = 5 and e1 = e2 = 0.2 (IV) and a pyramid-like superellipsoid
with λ1 = λ2 = 10 and e1 = e2 = 1.5 (V). We start by predicting the translation resistance
tensor K components. As already highlighted in the introduction, a simplification of the
particle shape to a sphere is still commonly in use, so we first compare to the analytical
model for the drag on a sphere. Another readily available analytical model that we include
for comparison, is the drag on a prolate, first derived by Oberbeck. For more irregular,
non-spherical particles, a number of empirical models, based on experimental results, are
available. We use the models of Haider and Levenspiel [27], Leith [28] and Holzer and
Sommerfeld [29] for our comparison. The results in terms of predicted K tensor components
are given in Table 2. The shaded area in the last row of each particle section is the average
of all component errors, computed by the modified relative error expression (24). For
particles, where analytical results are available, we use those as a reference, while for other
particles we use the results as obtained by the direct simulation. Obviously, particles I and
I I are best captured by the corresponding analytical models, where the error is zero. On
the other hand, as soon the particle geometry starts to deviate spherical or prolate shape,
the errors of the analytical models start to increase significantly. In those cases, all three
empirical models perform much better, where the most accurate off all three appears to
be the one from Holzer and Sommerfeld. However, we can see that for all particles under
consideration, the present model significantly outperforms all of the considered empirical
models, while also performing very close to the accuracy of the analytical models, for
the particles I and I I. The average errors obtained by the present model are of negligible
magnitude, staying well below the order of 1%.
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Table 2. K tensor coefficients are determined for particles I–V, using different methods. First, the
analytical result is presented for the considered particle (applies only for particles I and I I). In the
next column, a direct result from the present BEM code is presented. This is followed by the results
obtained analytically with two simplified particle representations, namely the sphere and the prolate
(considering λ1 of the particle). After that, the empirical models from Haider and Levenspiel [27],
Leith [28] and Holzer and Sommerfeld [29] follow. In the last column, the result of the derived
approximation scheme is shown.

Particle a Coeff.
K

An.
Res.

Pres.
BEM Sphere Prolate

ell. b [27] [28] [29] Approx.
Scheme

x y

z
I.

Kxx 6.0 6.002 6.0 6.0 6.046 5.845 5.871 6.003
Kyy 6.0 6.002 6.0 6.0 6.046 5.894 5.876 6.003
Kzz 6.0 6.002 6.0 6.0 6.046 5.845 5.854 6.004

Average error: 0.0% 0.0% 0.44% 1.34% 1.28% 0.03%

x y

z
I I.

Kxx 10.71 10.69 6.0 10.71 10.54 9.728 11.16 10.70
Kyy 14.23 14.22 6.0 14.23 10.54 12.23 12.03 14.23
Kzz 14.23 14.22 6.0 14.23 10.54 12.12 11.97 14.24

Average error: 30.95% 0.00% 11.04% 7.44% 7.17% 0.05%

x y

z
I I I.

Kxx − 15.50 6.0 10.71 15.24 14.73 16.39 15.50
Kyy − 17.07 6.0 14.23 15.24 15.82 16.62 17.06
Kzz − 20.56 6.0 14.23 15.24 18.87 18.40 20.57

Average error: 37.91% 15.08% 8.00% 4.00% 3.78% 0.02%

x y

z
IV.

Kxx − 24.73 6.0 10.71 22.37 22.18 25.27 24.83
Kyy − 24.73 6.0 14.23 22.37 22.22 25.29 24.82
Kzz − 30.92 6.0 14.23 22.37 27.97 28.25 30.98

Average error: 44.54% 29.44% 9.48% 5.72% 2.69% 0.17%

x y

z
V. Kxx − 32.33 6.0 15.88 29.76 30.00 35.39 32.40

Kyy − 32.31 6.0 22.87 29.76 30.41 35.43 32.35
Kzz − 45.87 6.0 22.87 29.76 42.16 41.44 45.98

Average error: 47.62% 25.16% 10.93% 4.08% 5.47% 0.11%
a I: λ1 = λ2 = e1 = e2 = 1.0, I I: λ1 = 5.0, λ2 = e1 = e2 = 1.0, I I I: λ1 = 5.0, λ2 = 3.0, e1 = e2 = 1.0, IV:
λ1 = λ2 = 5.0, e1 = e2 = 0.2, V: λ1 = λ2 = 10, e1 = e2 = 1.5; b λ = λ1.

We continue with the prediction of the rotation resistance tensor Ω components. By
analogy with the K tensor, we compare the results to other available models. One of the
very few models available for the rotational dynamics of non-spherical particles is Jefferys
analytical model for prolate ellipsoids. Despite our greatest efforts, we were not able to
find any empirical models based on experiments that would be appropriate for modelling
general non-spherical particles. Therefore, we use Jefferys model to produce the results
for the sphere and for the prolate ellipsoid (using the particle λ1 as the axial ratio). These
are then used as a comparison for the effectiveness of the present approximation scheme,
which is listed in Table 3. The fact that the availability of rotational dynamics models
for non-spherical particles (other than prolate ellipsoids) is practically non-existent only
further highlights the importance of the present model. Up until now, authors researching
distinctively non-spherical particles, such as for example particles I I I, IV or V, have often
neglected the rotational dynamics. The only practical alternative so far has been to simplify
the particle shape to prolate and model it with the Jefferys model. Although this is still
better than not considering the rotations at all, it is evident from Table 3 that the accuracy
of such assumption quickly degrades when the actual particle shape migrates away from
the prolate ellipsoid. For exactly this purpose, the advantage of the present model shows
its true potential. One can observe that much like for the K tensor, the average prediction
errors for all considered particles are well below the order of 1%. This also applies to
predicting the sphere or the prolate particle, where the present model is able to almost
perfectly reconstruct the analytical results.
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Table 3. Ω tensor coefficients are determined for particles I–V, using different methods. First, the
analytical result is presented for the considered particle (applies only for particles I and I I). In the next
column, a direct result from the present BEM code is presented. This is followed by the results obtained
analytically with two simplified particle representations, namely the sphere and the prolate (considering
λ1 of the particle). In the last column, the result of the derived approximation scheme is shown.

Particle a Coeff. Ω An. Res. Pres.
BEM Sphere Prolate

ell. b
Approx.
Scheme

x y

z
I.

Ωxx 8.0 7.954 8.0 8.0 7.978
Ωyy 8.0 7.954 8.0 8.0 7.978
Ωzz 8.0 7.954 8.0 8.0 7.968

Average error: 0.0% 0.0% 0.18%

x y

z
I I.

Ωxx 28.24 27.76 8.0 28.24 27.91
Ωyy 185.6 184.4 8.0 185.6 185.2
Ωzz 185.6 184.2 8.0 185.6 185.0

Average error: 47.41% 0.0% 0.19%

x y

z
I I I.

Ωxx − 155.1 8.0 28.24 154.9
Ωyy − 316.3 8.0 185.6 316.8
Ωzz − 303.0 8.0 185.6 303.3

Average error: 53.83% 26.89% 0.06%

x y

z
IV.

Ωxx − 782.0 8.0 28.24 784.5
Ωyy − 782.0 8.0 185.6 784.0
Ωzz − 1023 8.0 185.6 1025

Average error: 56.71% 48.40% 0.14%

x y

z
V. Ωxx − 2443 8.0 54.44 2465

Ωyy − 2443 8.0 1069.4 2466
Ωzz − 2656 8.0 1069.4 2677

Average error: 57.51% 40.91% 0.50%
a I: λ1 = λ2 = e1 = e2 = 1.0, I I: λ1 = 5.0, λ2 = e1 = e2 = 1.0, I I I: λ1 = 5.0, λ2 = 3.0, e1 = e2 = 1.0, IV:
λ1 = λ2 = 5.0, e1 = e2 = 0.2, V: λ1 = λ2 = 10, e1 = e2 = 1.5; b λ = λ1

As already mentioned, flow shear also affects the rotational dynamics of the particle,
which we capture with the deformation resistance tensor Π. We predict its components in
the same way as for the Ω tensor, where we also use the same comparison method. The
results are presented in Table 4, from which we can draw a similar conclusion to Ω and
K tensors, as far as the present model performance is concerned. Unlike for the Ω and
K, in case of a Π tensor, some of its components are essentially zero, where the absolute
error is few times greater than the target value. However, if we compare the magnitude of
this error to the magnitude of the other non-zero tensor components, the ratio is actually
negligible. From that we can assume that the practical consequences of this, in terms of
particle rotational dynamics in the flow, would be essentially unnoticeable for any realistic
engineering application.
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Table 4. Π tensor coefficients are determined for particles I–V, using different methods. First, the
analytical result is presented for the considered particle (applies only for particles I and I I). In the next
column, a direct result from the present BEM code is presented. This is followed by the results obtained
analytically with two simplified particle representations, namely the sphere and the prolate (considering
λ1 of the particle). In the last column, the result of the derived approximation scheme is shown.

Particle a Coeff. Π An. Res. Pres.
BEM Sphere Prolate

ell. b
Approx.
Scheme

x y

z
I.

Πxx 0.0 0.001 0.0 0.0 0.001
Πyy 0.0 0.004 0.0 0.0 0.002
Πzz 0.0 0.001 0.0 0.0 0.000

Average error: − − −

x y

z
I I.

Πxx 0.0 0.021 0.0 0.0 0.021
Πyy −171.3 −170.4 0.0 −171.3 −171.1
Πzz 171.3 170.2 0.0 171.3 170.8

Average error: 47.14% 0.0% 0.11%

x y

z
I I I.

Πxx − 124.1 0.0 0.0 123.7
Πyy − −292.0 0.0 −171.3 −292.3
Πzz − 142.7 0.0 171.3 143.2

Average error: 53.54% 26.20% 0.11%

x y

z
IV.

Πxx − 672.9 0.0 0.0 676.1
Πyy − −671.9 0.0 −171.3 −675.2
Πzz − −0.083 0.0 171.3 −0.006

Average error: 47.14% 47.14% 0.23%

x y

z
V. Πxx − 2416 0.0 0.0 2440

Πyy − −2414 0.0 −1048.3 −2440
Πzz − 0.744 0.0 1048.3 −0.011

Average error: 47.15% 47.13% 0.49%
a I: λ1 = λ2 = e1 = e2 = 1.0, I I: λ1 = 5.0, λ2 = e1 = e2 = 1.0, I I I: λ1 = 5.0, λ2 = 3.0, e1 = e2 = 1.0, IV:
λ1 = λ2 = 5.0, e1 = e2 = 0.2, V: λ1 = λ2 = 10, e1 = e2 = 1.5; b λ = λ1.

6.5. Demonstration of the Force and Torque Model Using a Realistic Particle

To show the applicability of the present model to a realistic engineering problem,
we decide to demonstrate the process of predicting the translation, rotation and deforma-
tion resistance tensor components on an example of the realistic pollen particle [51]. In
Figure 10a we present a microscope image of the pollen grain under consideration. We
begin by creating a 3D reconstruction of the particle, which was employed to the best of our
abilities, using all of the available information from [51], the result of which is the surface
shown in Figure 10b.

(a) (b) (c)

Figure 10. Pollen grain in consideration for testing the performance of the present model. The picture
of the original particle [51] is shown in (a), reprinted with permission from [51], copyright 2016 John
Wiley and Sons. In (b) the reconstructed 3D surface of the particle is displayed and in (c) the best
matching superellipsoid (λ1 = 1.96, λ2 = 1.83, e1 = 0.564, e2 = 0.472) is given.
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To generate reference results, we employ the presented numerical model on the
geometry of the reconstructed particle. We use the same set-up as established in the section
of mesh study and model validation. Prior to obtaining the tensor components in question
from our approximation scheme, we need to determine the four superellipsoidal parameters
for the considered shape. We determine the bounding box of the particle, by finding its
most-outer points. To obtain the optimal position in space, we rotate the particle so that
we get the smallest possible bounding box. In the next step, we use bounding box edge
lengths to identify the approximate axial ratios λ1 and λ2 and assume e1 = e2 = 1 to first
obtain the ellipsoid shape that approximately fits the particle in question. The surface of
an superellipsoid is given by (12), which yields unity for all points that lie on the surface.
From that, we can form a numerical optimization problem, by writing an objective function
[S(x, y, z)− 1]2, which we try to minimise for the given set of parameters λ1, λ2, e1, e2. The
resulting superellipsoidal particle, as obtained from the GEKKO optimization suite [50], has
the parameters λ1 = 1.96, λ2 = 1.83, e1 = 0.564, e2 = 0.472 and is displayed in Figure 10c.
We repeat the same process of determining the tensor coefficients as above, including the
comparison with all available correlations. The results are presented in Table 5.

Table 5. K, Ω and Π tensor coefficients are determined for an example of the pollen grain. First the
present BEM code result is presented, obtained for the actual reconstructed particle geometry, as
illustrated in Figure 10b. This is followed by the results obtained analytically with two simplified
particle representations, namely the sphere and the prolate (considering λ1 of the particle). After that,
the empirical models from Haider and Levenspiel [27], Leith [28] and Holzer and Sommerfeld [29]
follow (applies only for the K tensor components). In the last column, the result of the approximation
scheme is shown, for the superellipsoid (λ1 = 1.96, λ2 = 1.83, e1 = 0.564, e2 = 0.472), that best
matches the pollen grain.

Coeff. K, Ω, Π
Pres.
BEM Sphere Prolate

ell. b [27] [28] [29] Approx.
Scheme

Kxx 10.77 6.0 7.174 9.505 9.324 9.922 10.58
Kyy 10.80 6.0 8.184 9.505 9.431 9.968 10.71
Kzz 12.01 6.0 8.184 9.505 10.36 10.46 11.86

Average error: 26.76% 17.24% 8.70% 7.68% 5.56% 0.74%

Ωxx 50.07 8.0 12.70 − − − 47.23
Ωyy 50.88 8.0 23.14 − − − 50.71
Ωzz 63.20 8.0 23.14 − − − 61.65

Average error: 49.00% 36.77% − − − 1.60%

Πxx 25.31 0.0 0.0 − − − 23.51
Πyy −26.22 0.0 −13.57 − − − −27.56
Πzz 0.86 0.0 13.57 − − − 3.791

Average error: 47.90% 46.34% − − − 2.36%
b λ = λ1.

If we focus initially on the translation resistance, we see again that the analytical
models for the sphere or prolate produce quite poor results, which is unsurprising, since
the particle shape is very different from the sphere or the prolate. As expected, the empirical
correlations from [27–29] definitely provide some improvement to that. Much like with
the results for particles I–V, the present approximation scheme offers the best replicate
of the numerically obtained results, with almost perfect accuracy. In case of the rotation
and deformation resistance tensors, the gap between the accuracy of currently available
models and the present model is even more pronounced. We already established that the
analytical model of Jeffery was essentially the only available approximation so far, which
performs poorly for particles very different to prolates. Especially in this cases, the results
of the present model, offer by far the greatest improvement. Overall we see that the average
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errors range from less than 1% for the translation, to ≈2% and ≈3% for the rotation and
deformation resistance tensors respectively.

7. Conclusions

In the present work, we first describe the numerical framework for the prediction
of forces and torques on non-spherical particles in Stokes flow. Due to the nature of
the problem, we employ the BEM approach, which is proven to be superior in terms of
computational cost and accuracy for the proposed problem set-up, as it enables a direct
evaluation of the boundary tractions, leading to excellent accuracy of computed forces
and torques acting on a particle. Additionally we also show the advantages of BEM
for the problems where a large computational domain size is required, by including the
comparison with similar approaches, employed by other authors. The numerical setup is
described along with boundary conditions and the results of the mesh study and model
validation are presented, where the final parameters for the parametric study are selected.
This is followed by the presentation of the numerical study results, where a few examples
of 3D data visualizations are given, on a limited range of parameters. The methods of
data simplification are explained, where the initial, approximate relationships are first
found on a limited data range, by fixing some of the parameters to constant, and thus
temporarily reducing the dimensionality of the data. After that, the reconstruction of the
simplified relationships into a functional multivariate approximation scheme is presented.
Next, we demonstrate the reconstructed model functionality on various different particle
examples, where we examine the model performance in terms of predicting the translation,
rotation and deformation resistance tensors. The results of the present model are compared
with different readily available models, where it is established that the present model
delivers significantly improved results as compared to existing models. Furthermore,
we identify that the existing models were only able to predict the translation resistance
of the non-spherical particles with fairly acceptable accuracy. As it turns out, there is
a significant lack of models that are able to account for the rotational dynamics of the
non-spherical particles (other than prolates). As a result, researchers were often forced to
neglect the rotational dynamics, or they had to rely on the simplification of the particle
shape, which we demonstrate to be very inaccurate for most of complex particles. That
said, we prove that the present model offers significant advantages, especially in modelling
the rotational dynamics, as it can predict the rotation and deformation tensor components
with essentially the same accuracy as for the translation resistance. As a final result, we
have established that the average modified errors remain well below the order of 1%
for all particles used for comparison. Even when trying to approximate a complex, non-
symmetrical pollen particle, with a best-fitting superellipsoid, we are able to reconstruct
the tensor components with the accuracy in the order of 1% for the translation, 2% for
the rotation and 3% for the deformation resistance. To the best of our knowledge, the
present model is outperforming currently available models in terms of accuracy for all
non-spherical particles (except for the sphere and the prolate, where the analytical models
are obviously superior), within the considered parameter range. Moreover, it is also one of
the first models to account for both, the translational and rotational dynamics, on such a
wide range of complex, non-spherical particles. With the derivation of the approximation
scheme it is also very simple to implement in practically any numerical Lagrangian particle
tracking framework and it comes with a very moderate computational cost, as compared
to some of the empirical model approaches, which require complicated projection area
computation with every position change, relative to the flow. With this in mind, we are
convinced that this is a significant step towards closing the gap in research, when it comes
to modelling distinctively non-spherical particles.
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Appendix A. Coefficient Matrices A for Closing the Approximation Scheme (22)

The C++ code of the presented approximation scheme, with resulting coefficient
matrices A, is available on https://github.com/transport-phenomena/superellipsoid-
force-torque-model, accessed on 2 February 2022.

Appendix A.1. Coefficient Matrices A for RangeR1

R1 parameter limits: λ1 ≤ 5, λ2 ≤ λ1, 0.2 ≤ e1 ≤ 1.8, 0.2 ≤ e2 ≤ 1.8;

AR1
(Kxx) =



3.533 −0.3393 0.0457 −0.6900 0.0458 0.0147 0.0215 0.0156 −0.0117
2.316 −0.2352 0.0511 −0.4720 0.0758 −0.0043 0.0391 −0.0169 −0.0017
0.6592 −0.0422 0.0489 −0.1128 −0.0240 0.0167 0.0144 0.0115 −0.0121
−0.1833 0.0082 −0.0028 0.0298 −0.0288 0.0 −0.0058 0.0168 −0.0032

1.762 −0.2668 −0.0475 −0.3260 −0.0118 0.0067 −0.0155 0.0288 0.0015
0.6936 −0.2035 −0.0297 −0.1883 0.1422 −0.0512 0.0419 −0.0650 0.0311
−0.5351 0.0361 −0.0036 0.1449 −0.0507 0.0133 −0.0090 0.0113 −0.0032
0.1226 0.0028 −0.0036 −0.0255 0.0338 −0.0065 0.0041 −0.0154 0.0041
−0.1682 0.1056 0.0252 0.0992 −0.1517 0.0604 −0.0281 0.0691 −0.0344
0.0176 −0.0837 0.0056 −0.1172 0.2400 −0.0816 0.0812 −0.1181 0.0399
0.0573 0.0486 −0.0059 0.0499 −0.1213 0.0396 −0.0439 0.0649 −0.0211
−0.0191 −0.0097 0.0024 −0.0062 0.0101 −0.0038 0.0055 −0.0060 0.0020
0.0176 −0.0142 −0.0024 −0.0165 0.0297 −0.0111 0.0072 −0.0146 0.0062
−0.0146 0.0176 −0.0005 0.0286 −0.0493 0.0159 −0.0168 0.0246 −0.0081
0.0018 −0.0095 0.0010 −0.0140 0.0251 −0.0078 0.0088 −0.0130 0.0041
0.0006 0.0017 −0.0003 0.0020 −0.0031 0.0010 −0.0012 0.0016 −0.0005



(A1)

https://github.com/transport-phenomena/superellipsoid-force-torque-model
https://github.com/transport-phenomena/superellipsoid-force-torque-model
www.hpc-rivr.si
eurohpc-ju.europa.eu
www.izum.si
https://github.com/transport-phenomena/superellipsoid-force-torque-model
https://github.com/transport-phenomena/superellipsoid-force-torque-model
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AR1
(Kyy) =



3.213 −0.3366 0.0043 −0.6481 0.0555 0.0189 0.0116 0.0166 −0.0097
1.714 −0.2129 −0.0357 −0.3708 0.0646 0.0166 0.0072 0.0005 −0.0040

0.0296 0.0423 −0.0929 0.0180 −0.1294 0.1085 −0.0335 0.0800 −0.0481
0.0717 −0.0758 0.0697 −0.1254 0.1038 −0.0479 0.0739 −0.0486 0.0108
2.910 −0.3564 0.1581 −0.5437 0.0758 −0.0782 0.0607 −0.0385 0.0264
1.116 −0.3027 0.1089 −0.2787 0.2685 −0.1618 0.0764 −0.1402 0.0781
−0.5947 0.1243 −0.0638 0.2458 −0.1977 0.0875 −0.0648 0.0851 −0.0349
0.0346 0.0273 −0.0212 0.0384 −0.0005 −0.0071 −0.0296 −0.0013 0.0092
−0.1413 0.2751 −0.1095 0.1922 −0.4022 0.2229 −0.0859 0.1960 −0.1082
−0.2840 −0.1968 0.0590 −0.1334 0.4317 −0.2073 0.1031 −0.2120 0.1026
0.1962 0.0546 −0.0027 0.0087 −0.1374 0.0640 −0.0256 0.0733 −0.0362
−0.0194 −0.0149 0.0048 −0.0146 0.0180 −0.0053 0.0104 −0.0090 0.0021
0.0089 −0.0406 0.0161 −0.0286 0.0720 −0.0381 0.0150 −0.0364 0.0193
0.0225 0.0415 −0.0139 0.0339 −0.0913 0.0435 −0.0215 0.0462 −0.0222
−0.0176 −0.0143 0.0032 −0.0104 0.0349 −0.0159 0.0076 −0.0182 0.0086
0.0020 0.0024 −0.0006 0.0023 −0.0043 0.0016 −0.0015 0.0022 −0.0008



(A2)

AR1
(Kzz) =



2.925 −0.2980 −0.0088 −0.7012 0.0307 0.0395 0.0446 0.0306 −0.0271
1.766 −0.1977 −0.0128 −0.4014 0.0314 0.0281 0.0131 0.0174 −0.0161

0.2646 0.0449 −0.0394 0.0875 −0.2642 0.1379 −0.0978 0.1467 −0.0665
0.0892 −0.0737 0.0389 −0.2074 0.1791 −0.0698 0.1464 −0.1007 0.0277
2.566 −0.3583 0.0354 −0.5645 0.1516 −0.0859 0.1845 −0.1009 0.0440
1.304 −0.3333 0.0464 −0.3465 0.4116 −0.2022 0.1908 −0.2330 0.1082
−0.3678 0.1076 −0.0438 0.3958 −0.3362 0.1174 −0.1411 0.1510 −0.0466
−0.0522 0.0248 −0.0092 0.0459 0.0037 −0.0039 −0.0534 0.0111 0.0013
−0.2885 0.2573 −0.0643 0.3579 −0.6030 0.2768 −0.2048 0.3138 −0.1418
0.0446 −0.2332 0.0650 −0.3200 0.6713 −0.2786 0.2091 −0.3312 0.1348
−0.0238 0.0872 −0.0153 0.0470 −0.2037 0.0871 −0.0543 0.1086 −0.0475
0.0264 −0.0184 0.0040 −0.0220 0.0257 −0.0092 0.0200 −0.0172 0.0057
0.0355 −0.0404 0.0117 −0.0588 0.1075 −0.0478 0.0349 −0.0561 0.0246
−0.0300 0.0493 −0.0141 0.0754 −0.1413 0.0576 −0.0463 0.0715 −0.0285
0.0131 −0.0202 0.0048 −0.0247 0.0537 −0.0214 0.0165 −0.0279 0.0111
−0.0036 0.0032 −0.0007 0.0042 −0.0065 0.0024 −0.0030 0.0037 −0.0013



(A3)

AR1
(Ωxx) =



1.530 −0.0802 0.0048 −1.705 1.172 −0.3209 0.4999 −0.4237 0.0973
2.856 −1.652 0.2931 −3.825 3.882 −1.012 1.527 −1.920 0.5521
2.445 −0.5882 −0.1653 −0.4062 −1.185 0.7360 −0.1420 0.3930 −0.1911
2.483 −0.7415 0.3376 −1.518 −0.4010 0.0556 0.1488 0.8736 −0.3046
3.299 0.7844 −0.2134 0.5807 −4.582 1.308 −1.296 2.828 −0.8607
5.805 −3.474 0.8165 −6.745 6.235 −1.921 2.473 −2.740 0.8742
2.379 0.0626 −0.4867 2.121 −4.348 1.679 −1.309 1.738 −0.5614
−0.4023 −0.3133 0.0527 −0.1211 1.873 −0.6395 0.4777 −1.192 0.3833
−2.347 3.495 −1.123 6.566 −9.142 3.103 −3.084 4.040 −1.321
3.847 −5.550 1.677 −11.70 15.87 −5.050 5.616 −7.513 2.349
−1.145 2.020 −0.5611 4.597 −6.484 1.953 −2.235 3.365 −1.054
0.2762 −0.2458 0.0733 −0.5747 0.4863 −0.1281 0.1911 −0.2159 0.0680
0.5603 −0.8035 0.2565 −1.484 2.076 −0.6906 0.7108 −0.9488 0.3078
−0.9329 1.320 −0.4085 2.579 −3.558 1.144 −1.247 1.680 −0.5320
0.3547 −0.5538 0.1660 −1.108 1.587 −0.4982 0.5433 −0.7868 0.2492
−0.0552 0.0726 −0.0219 0.1429 −0.1838 0.0562 −0.0634 0.0899 −0.0288



(A4)
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AR1
(Ωyy) =



1.714 0.6730 −0.2218 0.6564 −1.346 0.2460 −0.6540 0.7029 −0.1396
1.783 0.5335 −0.3550 1.990 −2.878 0.9027 −1.754 1.708 −0.4544
−0.2501 3.438 −1.617 6.675 −12.86 5.415 −4.652 7.236 −2.858

2.693 −3.300 1.317 −10.03 11.44 −3.763 6.489 −6.686 1.940
4.165 −3.737 1.388 −11.02 11.40 −3.937 5.796 −6.131 2.021
5.087 −5.968 2.072 −10.43 15.77 −6.327 5.182 −8.301 3.383
−1.686 3.718 −1.735 8.155 −14.45 5.888 −5.929 8.410 −3.093
−1.372 0.6839 −0.1234 3.414 −1.351 −0.1683 −2.022 0.8915 0.0984
0.7674 5.161 −2.531 8.961 −20.61 8.972 −6.368 11.63 −4.848
7.682 −8.830 3.063 −12.23 22.94 −9.705 7.004 −12.50 5.191
−1.084 2.187 −0.8160 2.549 −6.205 2.736 −0.9169 3.081 −1.467
0.5051 −0.4709 0.1319 −1.114 1.052 −0.2638 0.5652 −0.5592 0.1399
1.158 −1.035 0.4646 −1.789 3.392 −1.462 1.092 −1.925 0.7896
−0.3451 1.126 −0.5215 2.235 −4.515 1.896 −1.339 2.519 −1.031
0.1999 −0.5194 0.2133 −0.7835 1.754 −0.7405 0.4021 −0.9317 0.3997
−0.0614 0.0870 −0.0296 0.1594 −0.2366 0.0830 −0.0802 0.1244 −0.0444



(A5)

AR1
(Ωzz) =



−1.170 1.438 −0.4035 1.019 −0.8623 0.1765 −0.3390 0.2791 −0.0683
0.7566 1.343 −0.9077 0.7364 −1.943 1.027 −0.6665 0.7848 −0.3533
1.334 5.122 −2.817 4.247 −12.27 5.863 −2.940 5.797 −2.636
5.055 −5.979 3.034 −7.411 9.358 −3.910 3.593 −3.923 1.397
2.761 −7.227 3.324 −5.353 10.16 −4.691 2.655 −4.106 1.854
5.091 −9.853 3.608 −7.992 16.35 −6.996 3.646 −7.304 3.249

0.2710 4.330 −2.861 6.092 −12.85 5.934 −3.874 6.195 −2.565
−1.586 1.381 −0.6613 1.879 −0.4370 −0.1120 −0.7569 −0.1011 0.2458
1.067 9.581 −4.372 7.640 −21.90 9.890 −4.927 10.42 −4.655
7.161 −11.50 4.475 −12.20 23.53 −10.03 5.882 −11.08 4.719
−0.8921 1.796 −0.5394 2.570 −5.670 2.328 −1.116 2.875 −1.265
0.4428 −0.4891 0.1834 −0.7005 0.6898 −0.1903 0.2936 −0.2903 0.0729
1.623 −1.729 0.7693 −2.039 3.813 −1.659 0.9840 −1.841 0.7858
−0.8699 1.943 −0.8299 2.459 −4.874 2.024 −1.231 2.348 −0.9702
0.2667 −0.6012 0.2297 −0.8262 1.705 −0.6921 0.4026 −0.8433 0.3497
−0.0567 0.0875 −0.0321 0.1249 −0.1934 0.0689 −0.0572 0.0919 −0.0332



(A6)

AR1
(Πxx) =



−3.748 1.302 −0.2267 1.975 −0.9820 0.2835 −0.4802 0.4509 −0.1819
−0.1292 −0.6995 0.3404 −0.8403 1.839 −0.6828 0.5277 −1.000 0.3357

2.166 −0.1699 −0.0287 0.8437 −2.159 0.6454 −0.7226 0.8160 −0.1732
1.618 −0.4623 −0.0136 −1.086 −0.1598 0.3145 0.1594 0.6834 −0.3727
−4.291 1.656 −0.6669 3.818 −3.223 1.164 −1.286 1.766 −0.6342
1.542 −3.183 0.9262 −3.901 6.616 −2.126 2.143 −3.049 0.9578
2.465 −0.2377 −0.1621 2.208 −3.396 1.005 −1.228 1.172 −0.2319
0.3622 −0.6040 0.2407 −0.6454 1.590 −0.6411 0.5051 −0.9315 0.3329
−2.702 3.728 −1.274 6.526 −9.068 2.940 −3.147 3.905 −1.156
3.587 −5.490 1.967 −10.01 14.17 −4.614 4.893 −6.436 1.954
−0.9581 2.161 −0.8689 3.926 −6.103 2.071 −2.005 3.096 −1.022
0.0599 −0.1734 0.0646 −0.3609 0.4797 −0.1413 0.1543 −0.2364 0.0766
0.5474 −0.7718 0.2505 −1.382 1.911 −0.6042 0.6795 −0.8600 0.2564
−0.8248 1.236 −0.4167 2.220 −3.131 1.005 −1.096 1.447 −0.4422
0.3124 −0.5464 0.1974 −0.9642 1.441 −0.4775 0.4851 −0.7033 0.2265
−0.0346 0.0647 −0.0232 0.1145 −0.1692 0.0551 −0.0557 0.0841 −0.0276



(A7)
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AR1
(Πyy) =



4.277 −2.147 0.6511 −4.000 2.857 −0.6945 1.389 −1.163 0.2510
3.098 −2.321 0.9326 −5.153 4.989 −1.515 2.569 −2.391 0.6060
3.100 −5.413 2.425 −9.077 15.34 −6.311 5.406 −8.033 3.085
−2.940 5.048 −2.088 10.47 −13.84 4.686 −6.705 7.381 −2.146
−0.1596 4.872 −2.342 8.429 −13.59 4.930 −5.619 6.986 −2.235
−2.085 6.494 −2.802 8.060 −16.85 7.114 −4.881 8.728 −3.573
2.880 −5.304 2.303 −9.867 16.32 −6.589 6.380 −8.884 3.263

0.7478 −1.090 0.3729 −2.811 2.003 −0.1138 1.904 −1.082 −0.0512
−0.4975 −6.750 3.420 −9.989 22.99 −10.04 6.915 −12.40 5.129
−7.650 9.782 −3.672 12.16 −23.85 10.46 −6.944 12.64 −5.402
0.4569 −1.773 0.7901 −1.768 5.478 −2.659 0.6915 −2.798 1.440
−0.2411 0.4633 −0.1712 0.8270 −1.029 0.2937 −0.4904 0.5370 −0.1379
−1.246 1.304 −0.6081 1.992 −3.779 1.643 −1.183 2.048 −0.8403
0.4044 −1.386 0.6703 −2.345 4.826 −2.091 1.378 −2.599 1.089
−0.1590 0.5273 −0.2403 0.7360 −1.729 0.7695 −0.3880 0.9116 −0.4073
0.0367 −0.0844 0.0341 −0.1313 0.2276 −0.0861 0.0722 −0.1189 0.0442



(A8)

AR1
(Πzz) =



−0.2800 0.7054 −0.0663 1.529 −1.107 1.384 −0.9328 1.102 0.6447
−2.354 2.407 −1.158 3.633 −4.450 0.9444 −1.322 1.744 −1.101
−3.725 4.619 −2.627 3.559 −8.825 3.706 −1.745 3.683 −2.901
−0.8505 −2.750 1.572 −2.885 6.942 −2.368 2.375 −3.435 1.736

2.510 −5.485 2.490 −6.074 10.73 −4.845 3.254 −5.176 2.456
−0.7440 −3.324 2.214 −1.311 7.671 −5.564 1.016 −4.980 1.332
−3.264 3.914 −1.682 2.960 −6.491 5.343 −1.778 5.088 −0.8775
−0.1875 0.8596 −0.3780 1.336 −1.467 −0.4652 −0.9917 0.3078 −0.3107

5.049 3.377 −2.408 −1.794 −9.458 6.131 −0.5574 5.435 −3.665
2.687 −3.996 2.023 0.7138 6.241 −4.466 −0.2884 −3.403 3.421

0.1238 0.1652 −0.2285 −1.148 −0.5375 0.3593 0.7191 −0.1168 −0.9900
0.0659 −0.1937 0.0936 −0.2054 0.3006 0.1028 0.1422 −0.0133 0.1301
0.7150 −0.4185 0.3489 0.1269 1.071 −0.8511 −0.0387 −0.7120 0.5443
0.3736 0.1028 −0.2386 −0.7584 −0.7587 0.7871 0.3077 0.5735 −0.6092
−0.1246 0.0042 0.0548 0.3282 0.1700 −0.2030 −0.1618 −0.1051 0.2151
0.0041 0.0123 −0.0099 −0.0091 −0.0307 0.0059 0.0019 0.0072 −0.0233



(A9)

Appendix A.2. Coefficient Matrices A for RangeR2

R2 parameter limits: λ1 > 5, λ2 ≤ λ1, 0.2 ≤ e1 ≤ 1.8, 0.2 ≤ e2 ≤ 1.8;

AR2
(Kxx) =



−1.490 2.399 0.1400 6.755 1.714 −4.288 −3.356 −1.606 2.604
9.752 −6.779 0.6789 −11.02 3.714 3.013 4.401 −0.1966 −2.298
−2.572 2.880 −0.5147 4.044 −3.221 0.0292 −1.695 1.094 0.2095
0.2896 −0.3609 0.0886 −0.4715 0.5215 −0.1110 0.2014 −0.2032 0.0309
3.211 −0.7074 −0.1795 −2.646 −1.628 2.086 1.103 0.9978 −1.163
−1.809 1.585 −0.0625 3.202 −0.0264 −1.704 −1.333 −0.4379 1.079
0.7137 −0.8092 0.1274 −1.243 0.7535 0.1736 0.5319 −0.2375 −0.1487
−0.0865 0.1093 −0.0262 0.1498 −0.1515 0.0241 −0.0649 0.0592 −0.0049
−0.2177 0.0251 0.0452 0.2431 0.3170 −0.3082 −0.1068 −0.1687 0.1619
0.1998 −0.1364 −0.0154 −0.3142 −0.1293 0.2639 0.1325 0.1045 −0.1523
−0.0733 0.0765 −0.0085 0.1255 −0.0479 −0.0387 −0.0542 0.0119 0.0246
0.0090 −0.0110 0.0025 −0.0156 0.0142 −0.0013 0.0068 −0.0055 0.0
0.0073 0.0011 −0.0027 −0.0072 −0.0171 0.0142 0.0032 0.0085 −0.0072
−0.0070 0.0033 0.0015 0.0099 0.0098 −0.0124 −0.0042 −0.0060 0.0068
0.0025 −0.0023 0.0 −0.0041 0.0004 0.0021 0.0018 0.0 −0.0012
−0.0003 0.0004 0.0 0.0005 −0.0004 0.0 −0.0002 0.0002 0.0



(A10)
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AR2
(Kyy) =



−0.3007 0.6187 1.125 6.742 1.878 −3.724 −3.887 −0.0099 1.257
7.634 −5.645 −0.0882 −10.86 3.813 2.832 4.876 −1.572 −1.444
−2.044 2.407 −0.2709 3.713 −2.687 −0.2134 −1.655 1.191 0.1423
0.2343 −0.3167 0.0692 −0.4388 0.4648 −0.0839 0.1945 −0.2053 0.0315
3.970 0.1213 −0.5496 −2.662 −1.904 1.972 1.272 0.4568 −0.6909
−1.574 1.060 0.2897 3.137 −0.0296 −1.678 −1.495 0.0711 0.7663
0.5838 −0.6230 0.0146 −1.118 0.5807 0.2621 0.5164 −0.2830 −0.1195
−0.0717 0.0932 −0.0176 0.1381 −0.1344 0.0152 −0.0625 0.0614 −0.0060
−0.2126 −0.0737 0.0886 0.2312 0.3570 −0.2980 −0.1259 −0.1084 0.1075
0.1731 −0.0684 −0.0576 −0.3030 −0.1368 0.2643 0.1513 0.0483 −0.1173
−0.0596 0.0534 0.0057 0.1102 −0.0272 −0.0496 −0.0523 0.0168 0.0215
0.0075 −0.0091 0.0014 −0.0142 0.0123 −0.0003 0.0065 −0.0058 0.0001
0.0066 0.0052 −0.0044 −0.0064 −0.0193 0.0142 0.0039 0.0065 −0.0053
−0.0059 0.0005 0.0031 0.0093 0.0105 −0.0126 −0.0049 −0.0040 0.0055
0.0020 −0.0014 −0.0005 −0.0035 −0.0004 0.0026 0.0017 0.0 −0.0011
−0.0003 0.0003 0.0 0.0005 −0.0004 0.0 −0.0002 0.0002 0.0



(A11)

AR2
(Kzz) =



−3.140 2.016 1.139 10.86 1.631 −6.289 −5.876 −1.229 3.626
10.84 −6.973 −0.0368 −15.42 4.424 5.036 7.211 −0.5423 −3.710
−2.944 3.060 −0.4173 5.397 −4.039 −0.2280 −2.577 1.635 0.4040
0.3515 −0.4171 0.0979 −0.6390 0.7097 −0.1434 0.3082 −0.3113 0.0419
4.184 −0.3349 −0.6674 −3.973 −2.253 3.144 1.976 1.096 −1.657
−1.775 1.348 0.3146 4.571 0.3903 −2.793 −2.157 −0.5979 1.727
0.7563 −0.7896 0.0512 −1.625 0.8371 0.3710 0.7818 −0.3425 −0.2579
−0.1006 0.1220 −0.0261 0.1999 −0.2007 0.0272 −0.0969 0.0902 −0.0058
−0.2466 −0.0455 0.1134 0.3700 0.4440 −0.4599 −0.1960 −0.1998 0.2284
0.2016 −0.0861 −0.0712 −0.4347 −0.2431 0.4209 0.2096 0.1502 −0.2387
−0.0745 0.0667 0.0039 0.1578 −0.0375 −0.0706 −0.0769 0.0155 0.0406
0.0101 −0.0118 0.0022 −0.0204 0.0182 −0.0009 0.0099 −0.0084 −0.0002
0.0080 0.0047 −0.0057 −0.0110 −0.0243 0.0211 0.0062 0.0106 −0.0101
−0.0069 0.0005 0.0040 0.0132 0.0165 −0.0194 −0.0065 −0.0087 0.0104
0.0024 −0.0017 −0.0005 −0.0050 −0.0006 0.0036 0.0025 0.0003 −0.0019
−0.0003 0.0004 0.0 0.0007 −0.0005 0.0 −0.0003 0.0002 0.0



(A12)

AR2
(Ωxx) =



−273.2 85.28 7.823 393.2 −62.92 −91.68 −192.9 78.95 21.80
368.9 −128.8 −11.81 −560.3 135.2 119.5 289.9 −151.8 −17.26
−158.1 68.97 −3.403 263.2 −118.1 −18.90 −144.5 102.9 −11.42
21.20 −11.28 1.935 −34.14 19.44 −0.6740 18.98 −13.99 2.156
93.42 −20.30 −6.431 −115.4 −6.066 41.68 52.91 −12.87 −11.89
−111.7 28.37 9.739 151.4 −4.372 −55.19 −76.67 30.94 11.92
56.24 −21.33 −0.3608 −79.12 27.41 10.80 42.36 −28.44 2.165
−6.509 3.270 −0.4724 10.44 −5.360 −0.1577 −5.738 4.077 −0.5664
−9.341 1.219 1.140 10.38 3.383 −5.614 −4.441 0.0482 1.731
11.82 −1.773 −1.683 −13.82 −3.285 7.468 6.482 −1.490 −1.864
−5.461 1.643 0.2638 7.623 −1.768 −1.608 −3.986 2.526 −0.0899
0.6953 −0.3195 0.0358 −1.049 0.4751 0.0538 0.5682 −0.3889 0.0479
0.3244 −0.0184 −0.0530 −0.3158 −0.1912 0.2283 0.1212 0.0329 −0.0722
−0.4022 0.0302 0.0757 0.4081 0.2063 −0.2991 −0.1755 0.0092 0.0777
0.1903 −0.0491 −0.0138 −0.2470 0.0400 0.0646 0.1253 −0.0792 0.0016
−0.0246 0.0107 −0.0010 0.0353 −0.0150 −0.0025 −0.0188 0.0128 −0.0016



(A13)
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AR2
(Ωyy) =



−1021 796.8 −72.69 2117 −1586 25.31 −1172 1159 −213.8
1414 −1564 335.3 −2901 2939 −424.2 1498 −1655 306.3
−462.6 581.0 −146.7 952.5 −1126 234.7 −481.6 604.9 −138.6
51.09 −68.35 19.76 −104.5 137.5 −36.97 51.78 −69.83 19.09
343.6 −222.5 −5.137 −705.9 433.8 60.86 402.2 −371.3 53.71
−482.4 504.5 −93.92 979.9 −929.7 89.97 −515.9 551.1 −88.53
158.0 −190.9 45.14 −322.1 366.1 −66.91 164.7 −203.1 43.59
−17.46 22.87 −6.435 35.56 −45.96 11.85 −17.73 23.75 −6.332
−32.94 16.94 4.898 72.67 −33.22 −15.84 −43.84 37.49 −3.360
59.89 −55.88 8.348 −109.6 95.75 −3.764 58.51 −60.04 8.091
−17.92 20.68 −4.516 35.67 −38.98 6.069 −18.44 22.34 −4.482
1.974 −2.524 0.6897 −3.968 5.046 −1.248 1.990 −2.649 0.6904
2.011 −0.4005 −0.3403 −2.626 0.5020 0.9803 1.598 −1.154 −0.0145
−1.939 1.730 −0.1727 3.964 −3.095 −0.1366 −2.157 2.107 −0.2147
0.6495 −0.7175 0.1416 −1.290 1.345 −0.1668 0.6752 −0.8019 0.1491
−0.0727 0.0909 −0.0241 0.1451 −0.1816 0.0431 −0.0732 0.0969 −0.0248



(A14)

AR2
(Ωzz) =



−741.2 473.0 −40.33 1528 −1093 18.68 −861.0 971.2 −258.5
1002 −1013 215.9 −2059 2016 −264.6 1080 −1278 289.4
−327.5 388.6 −98.26 674.2 −770.4 150.2 −346.3 448.4 −112.4
38.74 −49.61 15.26 −75.29 98.75 −27.10 37.44 −52.04 15.27
240.5 −102.9 −19.01 −495.7 250.1 71.40 290.4 −299.7 65.52
−336.0 296.9 −46.14 686.3 −589.8 23.32 −368.2 411.8 −78.19
114.8 −122.9 26.90 −226.7 239.3 −34.82 117.5 −147.0 33.35
−12.81 16.12 −4.721 25.39 −32.36 8.251 −12.71 17.48 −4.942
−18.89 2.770 6.956 47.87 −10.64 −18.51 −30.86 28.38 −3.967
40.29 −30.32 2.407 −75.31 54.25 5.544 40.99 −42.62 6.014
−12.52 12.27 −2.197 24.58 −23.60 1.872 −12.92 15.50 −3.056
1.431 −1.722 0.4779 −2.798 3.439 −0.8015 1.409 −1.905 0.5144
1.600 0.2451 −0.4632 −1.800 −0.4119 1.159 1.110 −0.7885 −0.0228
−1.317 0.7700 0.0789 2.649 −1.459 −0.5536 −1.476 1.413 −0.1051
0.4467 −0.3898 0.0468 −0.8713 0.7468 0.0084 0.4650 −0.5342 0.0870
−0.0522 0.0599 −0.0156 0.1012 −0.1199 0.0251 −0.0513 0.0683 −0.0176



(A15)

AR2
(Πxx) =



−166.0 198.3 −85.24 365.6 −559.7 234.6 −244.5 406.5 −166.2
250.4 −234.7 87.14 −515.4 634.4 −226.3 333.2 −475.0 176.7
−109.3 85.57 −26.55 219.6 −234.5 70.97 −144.3 183.6 −62.96
15.16 −10.34 2.730 −26.71 24.29 −5.842 17.52 −18.73 5.499
49.07 −68.83 30.87 −109.4 191.7 −85.33 73.77 −138.2 59.70
−82.33 81.44 −32.45 155.4 −212.7 83.70 −98.35 157.7 −63.61
41.41 −31.73 10.18 −67.96 78.14 −26.43 43.57 −60.68 22.63
−4.561 3.288 −0.9384 8.135 −7.866 2.129 −5.309 6.055 −1.938
−6.059 8.640 −4.049 11.78 −22.86 10.77 −7.527 15.86 −7.224
9.194 −10.10 4.358 −16.04 25.05 −10.83 9.694 −17.77 7.731
−4.069 3.534 −1.315 6.965 −8.948 3.396 −4.356 6.740 −2.723
0.4975 −0.3774 0.1188 −0.8339 0.8732 −0.2692 0.5361 −0.6570 0.2288
0.2254 −0.3534 0.1703 −0.4248 0.9152 −0.4464 0.2621 −0.6137 0.2897
−0.3391 0.4159 −0.1895 0.5652 −1.005 0.4635 −0.3261 0.6806 −0.3132
0.1490 −0.1430 0.0577 −0.2444 0.3544 −0.1471 0.1477 −0.2548 0.1098
−0.0181 0.0148 −0.0051 0.0290 −0.0336 0.0117 −0.0182 0.0243 −0.0091



(A16)
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AR2
(Πyy) =



735.4 −331.3 −87.57 −1590 684.6 299.3 961.0 −787.6 77.30
−1006 911.6 −119.3 2152 −1680 −16.52 −1199 1137 −120.1
323.9 −358.3 72.18 −690.1 697.0 −85.76 375.6 −430.0 76.91
−37.12 46.81 −12.45 77.91 −95.85 22.52 −40.98 52.85 −13.16
−238.4 61.48 59.88 519.6 −125.7 −170.3 −328.7 245.2 −8.104
346.0 −279.6 19.97 −723.6 496.1 60.25 412.7 −373.1 25.25
−109.5 113.7 −19.57 230.0 −218.0 16.06 −127.5 142.7 −22.56
12.58 −15.43 3.932 −26.26 31.61 −6.920 13.94 −17.90 4.311
21.42 0.9438 −10.90 −52.23 −0.4598 27.59 35.80 −23.83 −1.467
−43.94 30.45 −0.1742 79.95 −47.03 −12.75 −46.63 40.12 −1.157
12.33 −11.95 1.664 −25.10 22.28 −0.4269 14.17 −15.55 2.156
−1.415 1.683 −0.4099 2.901 −3.427 0.6992 −1.555 1.989 −0.4658
−1.587 −0.2462 0.5531 1.885 0.6894 −1.385 −1.310 0.6787 0.1772
1.340 −0.7944 −0.1219 −2.858 1.319 0.7252 1.717 −1.386 −0.0306
−0.4398 0.3952 −0.0380 0.8942 −0.7321 −0.0366 −0.5157 0.5537 −0.0657
0.0517 −0.0598 0.0139 −0.1051 0.1219 −0.0231 0.0569 −0.0727 0.0166



(A17)

AR2
(Πzz) =



378.7 −643.4 260.8 −590.8 773.6 −221.9 183.2 −19.01 −106.8
−73.69 193.2 −92.26 13.26 −36.60 −4.668 39.65 −121.0 83.56
−80.27 88.71 −27.99 191.9 −282.9 111.3 −92.95 147.5 −60.73
13.23 −18.62 6.444 −32.10 50.50 −19.87 14.79 −24.12 9.606
−268.8 413.0 −162.4 485.2 −701.8 247.8 −187.0 192.7 −32.86
149.0 −241.5 97.01 −265.6 421.4 −159.7 102.1 −139.2 40.82
−4.910 11.18 −5.472 −5.213 2.424 −0.4955 5.553 −8.341 4.222
−3.118 3.892 −1.265 7.317 −11.12 4.289 −3.448 5.497 −2.172
54.03 −71.43 27.62 −94.05 134.3 −49.29 37.68 −45.74 12.62
−29.16 46.14 −18.19 61.56 −96.55 36.97 −25.81 37.90 −13.00
3.549 −5.598 2.221 −6.446 10.71 −4.216 2.535 −4.086 1.459
0.1492 −0.1551 0.0391 −0.3873 0.5519 −0.2047 0.1938 −0.2982 0.1178
−1.699 3.562 −1.368 4.687 −7.207 2.684 −2.013 2.682 −0.8437
1.819 −2.609 0.9750 −3.572 5.503 −2.094 1.543 −2.278 0.8064
−0.2655 0.3827 −0.1425 0.5168 −0.8129 0.3124 −0.2198 0.3431 −0.1255
0.0024 −0.0049 0.0022 −0.0025 0.0054 −0.0023 0.0004 −0.0009 0.0002



(A18)
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40. Jaklič, A.; Leonardis, A.; Solina, F. Segmentation and Recovery of Superquadrics; Computational Imaging and Vision Book Series;

Springer Netherlands: Dordrecht, The Netherlands, 2000; Volume 20. [CrossRef]
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