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We propose a novel, demonstrably effective, utmost versatile and computationally highly efficient 
pseudo-rigid body approach for tracking the barycenter and shape dynamics of soft, i.e. non-
linearly deformable micro-particles dilutely suspended in viscous flow. Pseudo-rigid bodies are 
characterized by affine deformation and thus represent a first-order extension to the kinematics 
of rigid bodies. Soft particles in viscous flow are ubiquitous in nature and sciences, prominent 
examples, among others, are cells, vesicles or bacteria. Typically, soft particles deform severely 
due to the mechanical loads exerted by the fluid flow. Since the shape dynamics of a soft particle -
a terminology that shall here also include its orientation dynamics - also affects its barycenter 
dynamics, the resulting particle trajectory as a consequence is markedly altered as compared to 
a rigid particle. Here, we consider soft micro-particles of initially spherical shape that affinely 
deform into an ellipsoidal shape. These kinematic conditions are commensurate with i) the affine 
deformation assumption inherent to a pseudo-rigid body and ii) the celebrated Jeffery-Roscoe 
model for the traction exerted on an ellipsoidal particle due to creeping flow conditions around 
the particle. Without loss of generality, we here focus on non-linear hyperelastic particles for the 
sake of demonstration. Our novel numerical approach proves to accurately capture the particular 
deformation pattern of soft particles in viscous flow, such as for example tank-treading, thereby 
being completely general regarding the flow conditions at the macro-scale and, as an option, the 
constitutive behavior of the particle. Moreover, our computational method is highly efficient and 
allows straightforward integration into established Lagrangian tracking algorithms as employed 
for the point-particle approach to track rigid particles in dilute viscous flow.

1. Introduction

While the suspension of rigid particles has been widely studied for decades and is considered consolidated, [1], (see several ana-
lytical ([2–6]), experimental ([7–11]), and computational ([12–20]) studies for spherical and non-spherical rigid particles), research 
in the field of soft deformable particles is less established, [21]. Nevertheless, there are relevant examples of suspensions, both of 
industrial and scientific interest, where the suspension consists of soft, non-linearly deformable micron- and submicron-sized parti-
cles (hereafter referred to as micro-particles) that have a non-spherical shape due to the deformability of the particles, [22]. These 
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particles include microgels, filled polymers, [23], biological cells, [1,24], as well as liquid droplets, vesicles and liquid capsules, [25], 
with elastic or viscoelastic properties. To model or control systems which include these soft, deformable particles, the governing 
physics of the particle system must be well understood, [26]. However, detailed knowledge about the dynamics of various types of 
soft particles suspended in flows is often sparse, [27], so these particle suspensions remain one of the most pressing problems in 
science and engineering, leading to increasing interest from the scientific community, [1]. Unfortunately, the complexity, challenges 
and costs of both experimental techniques and analytical and computational approaches increase dramatically in the case of soft 
micro-particles, especially when a large number of particles need to be considered, which is often a limiting factor.

1.1. State of the art

The shape change of soft particles is predominantly caused by hydrodynamic-induced mechanical loads, with the shape dynamics 
being key to determining the effective rheology of the suspension, [25]. Observe that the effective rheology of colloidal suspensions 
with deformable inclusions can differ significantly from suspensions consisting of rigid particles, [2]. As noted by Sanagavarapu et 
al., [25], an effective non-Newtonian rheology may be observed even in dilute suspensions, where inter-particle interactions are 
negligible, due to the deformation of the particles by the hydrodynamics-induced mechanical loads.

Fröhlich and Sack, [28], were arguably the first to study Hookean elastic, spherical particles suspended in a Newtonian fluid 
experiencing pure expansional motion. Later, Cerf, [29], considered an infinite dilute suspension of viscoelastic spheres in a viscous 
fluid subjected to small amplitude oscillatory motion. Oldroyd, [30], studied a dilute emulsion consisting of incompressible viscous 
droplets suspended in a viscous fluid, assuming a constant surface tension between the two phases. The analysis concluded that 
the deformation of the droplets and the surface tension lead to a suspension with effective visco-elastic behavior and an Oldroyd-
type constitutive relationship. Another key step was Eshelby’s approach for the confinement of an elastic inclusion in an elastic 
matrix, [31,32]. Goddard & Miller, [33], studied the time-dependent problem of slightly deformable visco-elastic spheres suspended 
in a Newtonian fluid under Stokes flow conditions. Taken together, the above authors ([28,29,33]) restricted their investigations of 
deformable elastic (and visco-elastic) particles to small deformations by assuming a simplifying linear constitutive relation for the 
elastic stress, [25].

Using the results of Jeffery, [6], for rigid ellipsoids and extending the work of Cerf, [29], Roscoe, [34], was the first to systemati-
cally investigate the suspension of initially spherical visco-elastic micro-particles (with either Neo-Hookean or Mooney-Rivlin elastic 
constitutive sub-models) in a viscous flow subjected to finite deformations. Roscoe found that initially spherical particles can obtain a 
stationary ellipsoidal shape with a fixed orientation in certain conditions (i.e. when suspended in shear flow) while the material within 
the ellipsoidal particle undergoes continuous deformation, i.e. the material points within the ellipsoid are in a tank-treading motion, 
[34]. Murata, [35], conducted a theoretical analysis using spherical harmonics of Hookean elastic particles suspended in an arbitrary 
Newtonian flow and observed that particles can deform to a steady-state shape. The author found that the suspended soft particle 
takes on an ellipsoidal shape if the particle is located at the stagnation point of a plane hyperbolic flow, [35]. In two dimensions Gao 
& Hu, [36], validated Roscoe’s underlying assumption of affine deformation numerically. They studied two-dimensional, initially cir-
cular and elastic particles suspended in viscous shear flow and observed that after an initial transient deformation, a steady state with 
elliptical particle shape and tank-treading motion is reached. Later, Gao et al., [37], extended the validation of Roscoe’s assumptions 
to the three-dimensional case. In this context, they studied the shape dynamics of elastic, initially spherical Neo-Hookean ellipsoids 
suspended in Stokes flow of a viscous fluid. The authors employed a polarization technique to obtain a theoretical framework for 
describing the shape and orientation dynamics of the elastic particles. The authors observed the predicted tank-treading motion in 
the ellipsoidal equilibrium shape.

Finally, Gao et al., [38], extended the analysis to elastic particles with an initially prolate spheroidal shape that move in a planar 
shear flow. Based on Eshelby’s approach ([31,32]), they obtained a set of coupled nonlinear ordinary differential equations for the 
shape (half axes and orientation) and stress components. They employed fourth-order shape tensors to relate the stress rate to the 
strain rate of the particle. An important observation of this study was that, in addition to the tumbling regime in the quasi-rigid 
particle limit, a trembling regime was identified for the first time. In a later work, see [39], the authors investigated initially elliptical 
particles (2D) with arbitrary initial orientation suspended in an extensional flow using the polarization technique. Here, the authors 
report that the steady-state shape obtained in an extensional flow deviates from the steady-state shape of a particle suspended in a 
shear flow. The authors observed that the particle deforms in the former to an elliptical steady-state shape, with the long axis of the 
particle aligned with the extensional direction of the flow.

The works of Gao et al., [36–39], rely on the upper convective time derivative of the Neo-Hooke constitutive relation to determine 
the relationship between the stress rate and the strain rate. Sanagavarapu et al., [25], emphasize however that in more general 
constitutive relations such as, e.g., the Mooney-Rivlin constitutive model, despite the strain rate also the total strain appears in the 
expression for stress rate and thus cannot be related to strain rate alone. Therefore, the authors propose to take the conventional 
approach in incompressible hyperelasticity and directly relate the total stress to the total strain, [25]. They also note that such an 
approach to soft particle shape dynamics offers further insight into the underlying physics, since, for example, the orientation of soft 
particles is also influenced by hydrodynamics-induced strain and rotation.

Observe that all of the above authors studied initially stress-free spherical or ellipsoidal particles under restrictive assumptions 
regarding the flow conditions on the macro -scale and/or the constitutive behavior of the soft particles in order to allow either for 
analytical and/or computational solutions, the latter typically at significant computational cost.

In addition to the fluid-structure model such as presented above or immersed boundary techniques (see p.e. [40]) for soft de-
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formable solids suspended in flows, another approach to track soft deformable particles in flows is the fluid-fluid approach, which 
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models the interactions between two fluids that are typically separated by an interface, [21]. In this context, Rosti and Brandt, [41], 
studied hyperelastic deformable particles of initially spherical shape suspended in a Couette flow at low Reynolds number. The au-
thors solve the fluid-structure interaction problem with a one-continuum formulation, [41]. We would like to draw attention to the 
recent review article by Silva et al., [21], which provides an overview of the models available to simulate the transport of suspended, 
deformable, fluid-filled bodies and their interaction in a Newtonian fluid. The authors present different models for the treatment of 
fluid-structure and fluid-fluid interface, while focusing in the hydrodynamic part on the lattice Boltzmann method, [21]. As Silva et 
al., [21], state, fluid-structure models are computationally more demanding than fluid-fluid models, as the interface does not have to 
be explicitly tracked in the latter. However, the authors point out that the disadvantage of fluid-fluid models is that they do not pro-
vide sufficient control over the mechanical properties of the interfaces, which are often required in biological applications. Another 
critical point related to fluid-fluid models is that, to date, spurious currents occur at the interface, which, as Silva et al., [21], noted, 
arise as a result of the lack of sufficient isotropy of the underlying grid. Although the fluid-structure models are computationally 
more demanding, they provide better control over the interface (i.e. its mechanical properties) and consequently over the shape of 
the deformed particle. In addition, fluid-structure models do not introduce undesirable currents and offer considerable freedom in 
the shape space. The computational effort increases with the explicit consideration of the shape dynamics and consequently with the 
number of soft particles investigated and the number of degrees of freedom employed per particle, which depend on the discretization, 
i.e. the particle mesh.

1.2. General applications involving soft deformable particles suspended in flows

In this section we give a more detailed overview of applications for soft, deformable particles suspended in flows. Soft particles 
are becoming increasingly important in areas such as pharmaceutics and medicine, as they can be used as flexible microparticulate 
drug carriers, [42]. One example is liposomes, which are among the most widely used and well-studied therapeutic agents, [43]. 
Liposomes are increasingly popular in areas such as cancer diagnosis and treatment, [44]. Research in this area includes, among 
others [45–51], which mainly focused on the dynamics of vesicles and capsules. In recent years, self-propelling microorganisms have 
gained importance in fields such as biology and medicine, [1]. Zhao et al., [52] modeled a jellyfish in 2D assuming a Neo-Hooke elastic 
model. In addition, Nasouri et al., [53] modeled a two-sphere swimmer consisting of a rigid and a neo-Hookean sphere connected by 
a rod with periodically varying rod length. The authors report that the deformability of one part of the object, i.e. the neo-Hookean 
sphere, allows the object to move in the suspension (Newtonian fluid). Another important application for soft, deformable particles is 
the measurement of mechanical properties. Recently, Gerum et al., [54], developed an effective microfluidic shear flow deformation 
cytometry method in which the shear flow-induced deformation of cells into an ellipsoidal shape with observed tank-treading motion 
can be used to determine the viscoelastic properties of cells, including the elastic and viscous modulus. Another important application 
of soft deformable particles is in the field of particle separation. As Villone and Maffettone, [1], noted, the separation of small 
suspended particles is an important step in a variety of biological and chemical applications. In this context, Villone et al., [55]
investigated the separation of elastic neo-Hookean beads based on their deformation while suspended in a Newtonian fluid in a T-
shaped bifurcation. The authors observed that when the flow is evenly split between the outflow branches, stiffer particles migrate 
straight, while particles with a higher Capillary number, i.e. softer particles, tend to migrate to the side branch. The novel model 
presented in this work is intended to shed light on soft, deformable solid particles suspended in liquids, as they occur in applications 
involving suspensions of microgels, filled polymers and biological fluids. The present model is the ideal launching pad to model more 
complex behaviors, such as non-spherical initial particle shapes, surface tension, etc, in future works, as it is easily extendable to 
capture more physics

1.3. Pseudo-rigid body approach for soft deformable micro-particles in dilute flows

In this work, based on the heretofore mostly overlooked pseudo-rigid body theory, [56], that perfectly matches the kinematic con-
ditions of soft ellipsoidal micro-particles in viscous flows, we propose a novel, utmost versatile, and highly efficient computational 
approach. It is straightforward to extend the model to non-spherical initial shapes, different material models and the consideration 
of surface tension. In addition, the model is not restricted to specific flow conditions, (usually in the literature models are derived for 
simple shear flow or extensional flow [25,36–39]) and is therefore more general and can readily be employed for particle tracking 
in any flow configuration as it can be coupled with any standard Lagrangian particle tracking. In general, pseudo-rigid bodies are 
characterized by affine deformation and thus represent a first-order extension to the kinematics of rigid bodies. To investigate the dy-
namics of large numbers of micro-particles in flow fields, the point-particle approach with Lagrangian particle tracking in combination 
with state-of-the-art computational solution of the Navier-Stokes equations is a general method of choice, [57]. However, without loss 
of generality and for demonstration purposes, analytical (or reported) flow fields are used in this work. The point-particle approach 
is advantageous due to its comparatively low computational cost, especially when a large number of particles are tracked, [58]. In 
the point-particle approach, the shape of a particle is not resolved, which is in contrast to the much more computationally intensive 
methods used in the soft particle literature presented above

The presented novel approach reproduces all of the challenging benchmark results from the pertinent literature, however without 
any of the typical restrictions and at minimal computational cost. Due to its low computational demand and straightforward inte-
grability into the setting of established point-particle Lagrangian tracking algorithms for rigid particles, our approach is well suited 
to potentially capture a realistically large number, say O(105 − 106), of soft, deformable micro-particles suspended in viscous fluids 
3

under general flow conditions.
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Here, we consider tracking soft micro-particles in flows as a global-local, i.e. a two-scale problem. This is possible as we employ 
a one-way coupling approach, which resolves solely the impact of the fluid on the particle and not vice versa. Thus, we can inde-
pendently address the update of the flow field from the particle problem. The global problem at the macro-scale consists of finding the 
fluid flow quantities at a given time step in a given macro-scale flow field. The local problem is twofold. The first local problem at the 
micro-scale consists of finding the deformed shape 𝑡 (reducing to finding the orientation for rigid particles) for a given initial shape 
0 and for given tractions 𝒕𝑡 exerted by the flow on the particle, see Fig. 1. Given the new particle shape 𝑡, the second local problem 
at the micro-scale is to obtain the particle’s time-discrete barycenter trajectory within the fluid flow field. In this context, established 
force models 𝒇 are employed that are based on the deformed particle shape 𝑡. Note that on the micro-scale, the Reynolds numbers 
are typically well below one and thus the local flow around a micro-particle is safely assumed as viscous and accurately described by 
Stokes flow, [59].

Fig. 1. Sketch of the novel pseudo-rigid body approach to the non-linear dynamics of soft micro-particles in viscous flow. Tracking soft micro-particles in flows is 
treated as a global-local, i.e. two-scale problem. In the macro-scale problem (global characteristic length 𝑙glob) we solve for the flow field without accounting for 
the particle phase, i.e. one-way coupling approach. Then, the flow velocity 𝒖𝑛+1 and the velocity gradient 𝒍𝑛+1f at the current particle center 𝒙c are obtained. On the 
micro-scale (local characteristic length 𝑙loc with 𝑙loc ≪ 𝑙glob) there are two separate problems. The first is denoted as shape dynamics and consists of finding the new 
particle shape 𝑭 𝑛+1 . Given the new particle shape, we can solve the second local problem, i.e. the barycentric dynamics, where we update the particle position 𝒙c using 
established force models 𝒇 . In the next time step, we first update the flow field (neglecting the particle influence on the fluid, since we consider one-way coupling). 
Next we can identify the new flow velocity 𝒖𝑛+1 and the velocity gradient 𝒍𝑛+1f at the particle position 𝒙𝑛+1c , which are required inputs for the shape and barycentric 
dynamics.

1.4. Notation

In this work, we express tensors of various orders using bold italic font. First-order tensors (vectors) are denoted by bold italic 
lowercase letters such as 𝒂, while second-order tensors are denoted by bold italic uppercase letters such as 𝑨. Using Einstein’s 
summation convention, we can write the coordinate representation in Cartesian coordinate systems with base vectors 𝒆′

𝑖
, 𝒆𝑖 (𝑖 = 1, 2, 3) 

as follows:

𝒂 = 𝑎′𝑖 𝒆
′
𝑖 = 𝑎𝑖 𝒆𝑖 and 𝑨 =𝐴′

𝑖𝑗 𝒆
′
𝑖 ⊗ 𝒆

′
𝑗 =𝐴𝑖𝑗 𝒆𝑖 ⊗ 𝒆𝑗 ,

where 𝑎′
𝑖
, 𝑎𝑖 and 𝐴′

𝑖𝑗
, 𝐴𝑖𝑗 are the corresponding coefficients in the coordinate system 𝒆′

𝑖
, 𝒆𝑖, respectively. The tensor coefficients 𝑎′

𝑖
, 

𝑎𝑖 and 𝐴′
𝑖𝑗

, 𝐴𝑖𝑗 can be arranged in coefficient matrices, which we denote by underlined italic letters:

𝑎′ =
⎡⎢⎢⎣
𝑎′1
𝑎′2
𝑎′3

⎤⎥⎥⎦ , 𝑎 =
⎡⎢⎢⎣
𝑎1
𝑎2
𝑎3

⎤⎥⎥⎦ and 𝐴′ =
⎡⎢⎢⎣
𝐴′
11 𝐴′

12 𝐴′
13

𝐴′
21 𝐴′

22 𝐴′
23

𝐴′
31 𝐴′

32 𝐴′
33

⎤⎥⎥⎦ , 𝐴 =
⎡⎢⎢⎣
𝐴11 𝐴12 𝐴13
𝐴21 𝐴22 𝐴23
𝐴31 𝐴32 𝐴33

⎤⎥⎥⎦ .
Note that the employed notation is based on our previous work, [18]. The rotation matrix 𝑄 transforming coefficients with respect 
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to the base vectors 𝒆𝑖 to coefficients with respect to the base vectors 𝒆′
𝑖

follows as
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𝑄 =
⎡⎢⎢⎣
𝑄11 𝑄12 𝑄13
𝑄21 𝑄22 𝑄23
𝑄31 𝑄32 𝑄33

⎤⎥⎥⎦ with 𝑄𝑖𝑗 = 𝒆′𝑖 ⋅ 𝒆𝑗 and 𝒆′𝑖 =𝑄𝑖𝑗 𝒆𝑗 . (1)

The corresponding rotation tensor 𝑸 = 𝒆′
𝑗
⊗𝒆𝑗 mapping 𝒆𝑗 into 𝒆′

𝑗
=𝑸 ⋅𝒆𝑗 has therefore coordinate representation 𝑸 = [𝒆′

𝑗
⋅𝒆𝑖] 𝒆𝑖⊗𝒆𝑗 =

𝑄𝑗𝑖 𝒆𝑖 ⊗ 𝒆𝑗 , i.e. the coefficient matrix of 𝑸 is the matrix transpose 𝑄𝑇 . Taken together, coefficient matrices of vectors and second 
order tensors transform as

𝑎′ =𝑄𝑎 and 𝐴′ =𝑄𝐴𝑄𝑇 . (2)

1.5. Outline

To set the stage, Sect. 2 recalls the non-linear kinematics, Lagrangian and resulting dynamics of a pseudo-rigid body. Next, Sect. 3
first reviews the Jeffery and Roscoe traction exerted on rigid and soft ellipsoidal micro-particles in viscous flow and then derives 
the resultant force and force dyad acting on a pseudo-rigid body. Subsequently, Sect. 4 proposes an implicit-explicit time-stepping 
algorithm for the determination of the discrete phase space trajectory following the barycenter and shape dynamics of a pseudo-rigid 
body. Finally, in Sect. 5, our approach is comprehensively validated by application to demonstrative benchmarks for the dynamics 
of soft micro-particles in, for example, rotational, simple shear and pipe flow. To close, Sect. 6 summarizes the paper and presents 
the main conclusions.

2. Pseudo-rigid body dynamics

This section first briefly reiterates the dynamics of pseudo-rigid bodies in the sense of Cohen and Muncaster [56] that we use as 
a modeling framework for soft deformable micro-particles suspended in Stokes flow.

Fig. 2. Example of a pseudo-rigid body: Affine deformation of a sphere into an ellipsoid. Notation: Radius of a sphere 𝑅 > 0 deforming into the half axes of an ellipsoid 
𝑟1 = 𝜆1𝑅, 𝑟2 = 𝜆2𝑅, 𝑟3 = 𝜆3𝑅 > 0; Relative material and spatial positions 𝜩 and 𝝃 connecting the barycenter with the material and spatial positions 𝑿 in the material 
configuration 0 and 𝒙 in the spatial configuration 𝑡 , respectively, of a pseudo-rigid body; Lagrangian principal directions 𝑵𝑎 in the material configuration 0
and Eulerian principal directions 𝒏𝑎 in the spatial configuration 𝑡 with 𝑎 = 1, 2, 3 (note that 𝑵𝑎 and 𝒏𝑎 are not body-fixed, i.e. they rather float through the body 
depending on the deformation); Fixed inertial frame of reference 𝑬𝐴 with 𝐴 = 1, 2, 3 (iFoR); Spatial bulk and surface force density 𝒃𝑡 and 𝒕𝑡 , respectively.

2.1. Kinematics of a pseudo-rigid body

Let 0 and 𝑡 denote the material and spatial configurations of a solid continuum body 𝐵 = {𝑃 } consisting of physical points 
𝑃 . Then the material positions 𝑿 ∈ 0 of the physical points 𝑃 are taken to their spatial positions 𝒙 ∈ 𝑡 by the deformation map 
𝒙 = 𝒚(𝑡, 𝑿), a nonlinear vector-valued function of time and space. The mass density (of the solid material) per unit volume in 0 is 
denoted1 as 𝜌s0, a scalar-valued function of 𝑿; its counterpart in the spatial configuration 𝑡 is denoted as 𝜌s𝑡 .

The material positions 𝑿 of a pseudo-rigid body, see the example in Fig. 2, are parameterized by the material position 𝑿c of its 
barycenter and the relative material position 𝜩 as

𝑿 =𝑿c +𝜩 with 𝜩 ∶=𝑿 −𝑿c and the barycenter condition ∫
0

𝜌s0𝜩 d𝑉 ≡ 0 , (3)

with the material volume element d𝑉 . Then the deformation map 𝒚(𝑡, 𝑿) of a pseudo-rigid body is composed of the motion 𝒙c = 𝒚c(𝑡)
of its barycenter and its shape change 𝝃(𝑡, 𝜩), a superposed, affine deformation given by the (spatially uniform) deformation gradient 
𝑭 (𝑡), a two-point tensor, as

𝒙 = 𝒚(𝑡,𝑿) = 𝒚c(𝑡) + 𝝃(𝑡,𝜩) with 𝑿c = 𝒚c(𝑡 = 0) and 𝝃 ∶= 𝑭 (𝑡) ⋅𝜩 with 1 = 𝑭 (𝑡 = 0) . (4)

Here 1 denotes the two-point unit tensor (with coefficients 𝛿𝑖𝐽 , i.e. the Kronecker-delta). The material volume element d𝑉 is mapped 
by the Jacobian 𝐽 ∶= det 𝑭 > 0 of the deformation gradient into the spatial volume element d𝑣 = 𝐽 d𝑉 , a relation that, due to 𝐽 being 

1 In order to simplify the notation as much as possible, we only use super- or subscripts (∙)s , (∙)s and (∙)f, (∙)f indicating whether a property (superscript) or kinematic 
5

quantity (subscript) (∙) refers to the solid or the fluid embedding it, if there is otherwise a risk of confusion.
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spatially uniform, also holds for the total volumes vol(𝑡) and vol(0) occupied by the pseudo-rigid body in its spatial and material 
configuration, thus vol(𝑡) = 𝐽 vol(0). The velocities of the physical points 𝑃 of the pseudo-rigid body are defined as the material 
time derivative of the deformation map and result in the decomposed representation

𝒗 ∶= 𝒗c(𝑡) + 𝝊(𝑡,𝜩) with 𝒗c ∶= 𝒚̇c(𝑡) and 𝝊 ∶= 𝝃̇(𝑡,𝜩) = 𝑭̇ (𝑡) ⋅𝜩 =∶𝑨(𝑡) ⋅𝜩 , (5)

whereby the material velocity gradient 𝑭̇ is abbreviated as 𝑨 ∶= 𝑭̇ .

Remark (Ellipsoidal Spatial Shape Resulting from Spherical Material Shape of a Pseudo-Rigid Body). Due to the condition 𝐽 > 0 the 
deformation gradient 𝑭 allows unique (right and left) polar decompositions into a properly orthogonal tensor 𝑹, the continuum 
rotation tensor with 𝑹𝑡 ≡𝑹−1 and det𝑹 = 1, and positive definite symmetric tensors, either 𝑼 , the right stretch tensor with 𝑼 𝑡 ≡𝑼
and det𝑼 > 0, or 𝑽 , the left stretch tensor with 𝑽 𝑡 ≡ 𝑽 and det 𝑽 > 0, as

𝑭 =𝑹 ⋅𝑼 = 𝑽 ⋅𝑹 . (6)

In singular value (spectral) representation the continuum rotation and the stretch tensors expand as

𝑹 =
∑
𝑎

𝒏𝑎 ⊗𝑵𝑎, 𝑼 =
∑
𝑎

𝜆𝑎𝑵𝑎 ⊗𝑵𝑎 and 𝑽 =
∑
𝑎

𝜆𝑎 𝒏𝑎 ⊗ 𝒏𝑎 , (7)

with 𝑎 = 1, 2, 3 and 𝑵𝑎 and 𝒏𝑎 the orthonormal Lagrangian and Eulerian principal directions, see Fig. 2, and 𝜆𝑎 > 0 the corresponding 
principal stretches. The Lagrangian and Eulerian principal directions 𝑵𝑎 and 𝒏𝑎 are not body-fixed, rather they float through the 
body depending on the deformation gradient 𝑭 that expands in singular value (spectral) representation as

𝑭 =
∑
𝑎

𝜆𝑎 𝒏𝑎 ⊗𝑵𝑎. (8)

Observe that 𝑹 relates the Lagrangian principal directions 𝑵𝑎 to the Eulerian principal directions 𝒏𝑎 as

𝒏𝑎 =𝑹 ⋅𝑵𝑎 . (9)

When expressed in the fixed Cartesian frame 𝑬𝐴 (the inertial frame of reference iFoR) with 𝐴 = 1, 2, 3 the Eulerian principal directions 
𝒏𝑎, 𝑎 = 1, 2, 3 follow via the rotation tensor 𝑸 ∶= 𝒏𝑏 ⊗𝑬𝐵 = [𝒏𝑏 ⋅𝑬𝐴] 𝑬𝐴 ⊗𝑬𝐵 , 𝑏 ≡𝐵 = 1, 2, 3 as 𝒏𝑎 =𝑸 ⋅𝑬𝐴.

The polar decomposition of the deformation gradient 𝑭 for a pseudo-rigid body with spherical shape in the material configuration 
0 that is deformed by a uniform (affine) 𝑭 to an ellipsoidal shape in the spatial configuration 𝑡 is illustrated in Fig. 3.

Fig. 3. Deformation of a pseudo-rigid body with spherical shape in the material configuration 0 (with vol(0) = 3 𝜋𝑅3∕4 and 𝜣 =𝑚 𝑅2∕5 𝑰 ) to an ellipsoidal shape 
in the spatial configuration 𝑡 . For clarity, the deformation is exemplified by a deformable planet, whereby the body-fixed, i.e. convecting axes connecting the north 
and south pole 𝑁 and 𝑆 and the west and the east pole 𝑊 and 𝐸 (parallel to the equator) together with the not body-fixed, i.e. deformation-dependent, free floating 
Lagrangian and Eulerian principal directions 𝑵𝑎 and 𝒏𝑎 , 𝑎 = 1, 2, 3 are highlighted. For a sphere with radius 𝑅 > 0 in the material configuration 0 the half axes in 
the Lagrangian principal directions 𝑵𝑎 are either first stretched by 𝜆𝑎 > 0, into their spatial counterparts 𝑟1 = 𝜆1𝑅, 𝑟2 = 𝜆2𝑅, 𝑟3 = 𝜆2𝑅 > 0 and then rotated by 𝑹 into 
the Eulerian principal directions 𝒏𝑎 , or first rotated by 𝑹 into the Eulerian principal directions 𝒏𝑎 and then stretched by 𝜆𝑎 into 𝑟𝑎 , to give the unique orientation of 
the deformed ellipsoid in the spatial configuration 𝑡 . Observe that the 𝑁 − 𝑆 and 𝑊 −𝐸 axes convect with the deformation, i.e. are always attached to the same 
6

physical points of the planet, and thus do not remain orthogonal, whereas 𝑵𝑎 and 𝒏𝑎 are ortonormal triads.
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2.2. Lagrangian of a pseudo-rigid body

The Lagrangian 𝐿 of a pseudo-rigid body, a functional of the deformation map in terms of its barycenter and shape contributions, 
expands as

𝐿 ∶=𝐾(𝒗) −𝑈 (𝒚,𝑭 ) =𝐾(𝒗c,𝑨) −𝑊 (𝑭 ) − 𝑉 (𝒚) , (10)

with 𝐾 and 𝑈 denoting the kinetic and the total potential energy, whereby 𝑈 is the sum of the internal and the external potential 
energies 𝑊 and 𝑉 .

The kinetic energy 𝐾 follows from an integral of its material density 𝑘0 = 𝜌s0 |𝒗|2∕2 over the bulk of the material configuration 
0 of the pseudo-rigid body and, taking into account the barycenter condition2, eventually results in

𝐾 = 1
2 ∫
0

𝜌s0 |𝒗|2d𝑉 = 1
2
𝑚 |𝒗c|2 + 1

2
𝜣 ∶ [𝑨𝑡 ⋅𝑨] , (11)

with the total mass 𝑚 and the material Euler tensor 𝜣 of the pseudo-rigid body defined as

𝑚 ∶= ∫
0

𝜌s0 d𝑉 and 𝜣 ∶= ∫
0

𝜌s0𝜩 ⊗𝜩 d𝑉 . (12)

Note that the shape contribution to the kinetic energy 𝜣 ∶ [𝑨𝑡 ⋅𝑨]∕2 is alternatively expressed in terms of the spatial Euler tensor 
𝜽 ∶= 𝑭 ⋅𝜣 ⋅ 𝑭 𝑡 and the spatial velocity gradient 𝒍s ∶=𝑨 ⋅ 𝑭 −1 as

1
2
𝜣 ∶ [𝑨𝑡 ⋅𝑨] ≡ 1

2
𝜽 ∶ [𝒍𝑡s ⋅ 𝒍s] with 𝜽 ∶= ∫

𝑡
𝜌s𝑡 𝝃⊗ 𝝃 d𝑣 . (13)

For hyperelastic pseudo-rigid bodies, the internal potential energy 𝑊 expands as an integral of the stored energy density 𝑤0 , a 
function 𝑤0 =𝑤0(𝑭 ) that will be specified below, over the bulk of the material configuration 0 of the pseudo-rigid body and, due 
to the spatial uniformity of 𝑭 , simplifies to

𝑊 = ∫
0

𝑤0(𝑭 ) d𝑉 =𝑤0(𝑭 ) ∫
0

d𝑉 =∶𝑤0(𝑭 ) vol(0) . (14)

Finally the external potential energy 𝑉 expands as an integral of its bulk and surface densities 𝑣0 = 𝑣0(𝒚) and 𝑣̂0 = 𝑣̂0(𝒚) over the 
bulk and surface of the material configuration 0 of the pseudo-rigid body

𝑉 = ∫
0

𝑣0(𝒚) d𝑉 + ∫
𝜕0

𝑣̂0(𝒚) d𝐴. (15)

The equations of motion for a pseudo-rigid body deriving from the Lagrangian 𝐿 will be detailed in the sequel.

2.3. Barycenter dynamics

The Euler-Lagrange equation ̇
𝜕𝐿∕𝜕𝒗c = 𝜕𝐿∕𝜕𝒚c governing the dynamics of the barycenter of a pseudo-rigid body results as

𝒗̇c𝑚 = 𝒇 with 𝒇 ∶= ∫
0

𝒃0 d𝑉 + ∫
𝜕0

𝒕0 d𝐴 ≡ ∫
𝑡
𝒃𝑡 d𝑣+ ∫

𝜕𝑡
𝒕𝑡 d𝑎 . (16)

Here, the force 𝒇 is the resultant of the conservative bulk and surface force densities, the latter commonly denoted as the traction, 
that are defined as

𝒃0 ∶= −
𝜕𝑣0
𝜕𝒚

with 𝒃0 d𝑉 (=∶ 𝒂𝜌s0 d𝑉 ) ≡ 𝒃𝑡 d𝑣 (=∶ 𝒂𝜌s𝑡 d𝑣) and 𝒕0 ∶= −
𝜕𝑣̂0
𝜕𝒚

with 𝒕0 d𝐴 ≡ 𝒕𝑡 d𝑎 , (17)

where 𝜕𝒚∕𝜕𝒚c = 𝒊 with 𝒊 the spatial unit tensor (with coefficients 𝛿𝑖𝑗 , i.e. the Kronecker-delta) has tacitly been used. For spatially 
uniform mass-specific bulk force density 𝒂 (with dimension of an acceleration) the corresponding contribution to 𝒇 simplifies to 𝒂𝑚. 
The traction 𝒕0 is furthermore decomposed into its surface average 𝒕̄0, a constant vector, and a fluctuation 𝒕̃0 as

2 The squared velocity expands into

|𝒗|2 = |𝒗c + 𝝊|2 = |𝒗c|2 + |𝝊|2 + 2𝒗c ⋅ 𝝊 = |𝒗c|2 + [𝜩 ⊗𝜩] ∶ [𝑨𝑡 ⋅𝑨] + 2𝒗c ⋅𝑨 ⋅𝜩 .

When multiplied by 𝜌s , and upon integration, the first and the second term on the right result in 𝑚 |𝒗c|2 and 𝜣 ∶ [𝑨𝑡 ⋅𝑨], whereas the last term vanishes due to the 
7

0
barycenter condition.
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𝒕0 = 𝒕̄0 + 𝒕̃0 with 𝒕̄0 ∶=
1

sur(𝜕0) ∫
𝜕0

𝒕0 d𝐴 and 0 ≡ ∫
𝜕0

𝒕̃0 d𝐴, (18)

with sur(𝜕0) denoting the surface area of the pseudo-rigid body in its material configuration. The corresponding contribution to 𝒇
thus simplifies to 𝒕̄0 sur(𝜕0). Analogous relations and consequences hold for the traction 𝒕𝑡 with 𝒕̄𝑡 sur(𝜕𝑡) ≡ 𝒕̄0 sur(𝜕0).

The above equation of motion for the barycenter of a pseudo-rigid body is also valid for non-conservative bulk and surface force 
densities, the only difference being that no external potential energy densities exist.

2.4. Shape dynamics

The Euler-Lagrange equation ̇
𝜕𝐿∕𝜕𝑨 = 𝜕𝐿∕𝜕𝑭 governing the dynamics of the shape of a pseudo-rigid body results in two-point 

description as

𝑨̇ ⋅𝜣 + 𝑷 vol(0) =𝑴 with 𝑴 ∶= ∫
0

𝒃0 ⊗𝜩 d𝑉 + ∫
𝜕0

𝒕0 ⊗𝜩 d𝐴. (19)

Here, the force dyad 𝑴 , a two-point tensor, is the resultant of the dyadic moment of the bulk and surface force densities with 𝜩 . 
Finally, the Piola stress 𝑷 , a two-point tensor, follows from the stored energy density 𝑤0 as

𝑷 ∶=
𝜕𝑤0
𝜕𝑭

. (20)

By a right-sided push-forward with 𝑭 𝑡 the above equation of motion for the shape of a pseudo-rigid body reads equivalently in spatial 
description as

[𝒍̇s + 𝒍s ⋅ 𝒍s] ⋅ 𝜽+ 𝝈 vol(𝑡) =𝒎 with 𝒎 ∶= ∫
𝑡
𝒃𝑡 ⊗ 𝝃 d𝑣+ ∫

𝜕𝑡
𝒕𝑡 ⊗ 𝝃 d𝑎 , (21)

where 𝝈 denotes the Cauchy stress, a spatial tensor, that relates to the Kirchhoff stress 𝝉 ∶= 𝐽 𝝈 = 𝑷 ⋅ 𝑭 𝑡 via the Jacobian 𝐽 , and 
𝒎 ∶=𝑴 ⋅ 𝑭 𝑡 is the spatial force dyad.

Observe that for spatially uniform mass-specific bulk force density 𝒂 the corresponding contribution to the force dyad 𝑴 (and 
equivalently to 𝒎 =𝑴 ⋅𝑭 𝑡) vanishes identically due to the barycenter condition. Furthermore, for the case of spherically symmetric 
distribution of mass density 𝜌s0 the center of volume and the center of surface of an initially spherical pseudo-rigid body coincide 
with its barycenter (its center of mass)3, i.e.

3 Consider a unit sphere S(2) with barycenter coordinates 𝜩̄ ∈ ̄0 , radial coordinate 𝛯̄(𝜩̄) ∶= |𝜩̄| ≤ 1, unit director 𝑵̄ ∶= 𝜩̄∕𝛯̄ and spherically symmetric mass 
density distribution 𝜌̄s0 = 𝜌̄s0(𝛯̄). Then the barycenter follows as

∫̄
0

𝜌̄s0(𝛯̄) 𝜩̄ d𝑉 = ∫̄
0

𝜌̄s0(𝛯̄) 𝛯̄ 𝑵̄ d𝑉 =

1

∫
0

𝜌̄s0(𝛯̄) 𝛯̄ d𝛯̄ ∫̄
𝛺

𝑵̄ d𝛺̄ = 0 with ∫̄
𝛺

𝑵̄ d𝛺̄ = 0.

Here 𝛺̄ and d𝛺̄ denote the solid angle and its differential. By setting 𝜌̄s0 = 1 the center of volume also follows as 𝜩̄ = 0. The surface of the unit sphere is given by the 
level set 𝛯̄ = 1 with outwards pointing unit normal 𝑵̄ , thus the center of surface follows from the surface theorem as

∫
𝜕̄0

𝜩̄ d𝐴̄ = ∫
𝜕̄0

𝛯̄ 𝑵̄ d𝐴̄ = ∫
𝜕̄0

𝑵̄ d𝐴̄ = ∫
𝜕̄0

d𝑨̄ = 0.

The above shows that for a unit sphere with spherically symmetric mass density distribution the barycenter, the center of volume, and the center of surface coincide.
Consider next an affine mapping 𝝃 = 𝑭̄ ⋅ 𝜩̄ ∈𝑡 with constant 𝑭̄ , 𝐽 ∶= det 𝑭̄ > 0, from the unit sphere to an ellipsoid (or for 𝑭̄ =𝑅 1 to a non-unit sphere of radius 

𝑅). With 𝒇̄ ∶= 𝑭̄ −1 the radial coordinate parameterized in 𝝃 reads as 𝜉𝑐 (𝝃; ̄𝒄) ∶= |𝝃 ⋅ 𝒄̄ ⋅ 𝝃| ≤ 1 in the metric 𝒄̄ ∶= 𝒇̄ 𝑡 ⋅ 𝒇̄ . For the barycenter, it thus follows that

∫
𝑡
𝜌s
𝑡
(𝜉𝑐 )𝝃 d𝑣= ∫̄

0

[𝜌̄s0(𝛯̄)∕𝐽 ] [𝑭̄ ⋅ 𝜩̄] [𝐽 d𝑉 ] = 𝑭̄ ⋅ ∫̄
0

𝜌̄s0(𝛯̄) 𝜩̄ d𝑉 = 0.

The surface of the ellipsoid is given by the level set 𝜉𝑐 (𝝃) = 1 with outwards pointing unit normal 𝒏 ∶= 𝑝(𝑵̄ ; ̄𝒇 ) ̄𝒇 𝑡 ⋅ 𝑵̄ where 𝒇̄ ⋅ 𝝃 = 𝜩̄ ≡ 𝑵̄ holds at the surface (thus 
𝒄̄ ⋅ 𝝃 = 𝒇̄ 𝑡 ⋅ 𝑵̄ ) and with the function 𝑝(𝑵̄ ; ̄𝒇 ) = |𝒇̄ 𝑡 ⋅ 𝑵̄|−1 that is periodic and positive over the surface. Then for computing the area center, 𝝃 is decomposed into 
normal and tangential parts, i.e. 𝝃 = 𝝃𝑛 + 𝝃𝑡 , with 𝝃𝑛 ∶= 𝜉𝑛 𝒏 and 𝜉𝑛 ∶= 𝝃 ⋅ 𝒏. From 𝝃 ⋅ 𝒄̄ ⋅ 𝝃 = [𝝃 ⋅ 𝒏]∕𝑝(𝑵̄ ; ̄𝒇 ) = 1 it holds that 𝜉𝑛 = 𝑝(𝑵̄ ; ̄𝒇 ). Furthermore, the surface 
gradient ∇̂𝑡(∙) ∶= ∇𝑡(∙) ∶ [𝒊− 𝒏⊗ 𝒏] of the function 2 𝑓 (𝝃𝑡) = |𝝃𝑡|2 renders ∇̂𝑡𝑓 = 𝝃𝑡 . Then, with the Nanson formula and the surface divergence theorem evaluated on 
a smooth and closed (𝜕2𝑡 = ∅) surface (for the details on continuum mechanics and differential geometry see Steinmann [60]) it follows that

∫
𝜕𝑡

𝝃𝑛 d𝑎 = ∫
𝜕𝑡

𝜉𝑛 d𝒂 = 𝐽 𝒇̄ 𝑡 ⋅ ∫
𝜕̄0

𝑝(𝑵̄ ; 𝒇̄ ) d𝑨̄ = 0 and ∫
𝜕𝑡

𝝃𝑡 d𝑎 = ∫
𝜕𝑡

∇̂𝑡𝑓 (𝝃𝑡) d𝑎 = ∫
𝜕2𝑡

𝑓 (𝝃𝑡) d𝒍̂ = 0.

The above shows that also for an ellipsoid affinely mapped from a unit sphere with spherically symmetric mass density distribution the barycenter, the center of 
8

volume, and the center of surface coincide.
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1
𝑚 ∫

0

𝜌s0𝜩 d𝑉
symmetry≡ 1

𝑉 ∫
0

𝜩 d𝑉 ≡ 1
𝐴 ∫
𝜕0

𝜩 d𝐴 ≡ 0 . (22)

Due to the spatial uniformity of 𝑭 and 𝐽 , analogous relations hold for the integrals of 𝝃. As a consequence, the contribution of the 
traction 𝒕0 to the force dyad 𝑴 (and equivalently of 𝒕𝑡 to 𝒎 =𝑴 ⋅ 𝑭 𝑡) depends on its fluctuation 𝒕̃0 (and equivalently on 𝒕̃𝑡) only, 
that is

∫
𝜕0

𝒕0 ⊗𝜩 d𝐴
symmetry≡ ∫

𝜕0

𝒕̃0 ⊗𝜩 d𝐴 and ∫
𝜕𝑡

𝒕𝑡 ⊗ 𝝃 d𝑎
symmetry≡ ∫

𝜕𝑡
𝒕̃𝑡 ⊗ 𝝃 d𝑎 . (23)

It is remarked that the transition to the common equations of motion of a rigid body is detailed in Appendix A.

Remark (Quasi-Incompressible Neo-Hooke Hyperelasticity). In the sequel we will assume without loss of generality a quasi-
incompressible Neo-Hooke stored energy density 𝑤0 = 𝑤0(𝑭 ) as the most elementary non-linear hyperelastic model. Then the 
resulting Piola stress 𝑷 = 𝜕𝑤0∕𝜕𝑭 expands as

𝑷 = 𝜇s [𝑭 − 𝑭 −𝑡] + 𝜆s ln𝐽 𝑭 −𝑡 , (24)

with Lamé parameters 𝜆s and 𝜇s, the former controlling the compressibility and the latter denoting the shear modulus of the solid. 
The incompressible limit is obtained for 𝜆s →∞.

3. Resultant loading on a pseudo-rigid body

For an ellipsoidal body immersed in Stokes flow analytical results exist for the traction (fluctuation) 𝒕̃𝑡 exerted on the surface of 
the ellipsoidal body. Jeffery [6] considered rigid ellipsoids, results that were extended by Roscoe [34] to deformable ellipsoids. Since 
the assumptions put forward in these works are compliant with those of an ellipsoidal pseudo-rigid body, the Jeffery-Roscoe traction 
(fluctuation) ̃𝒕𝑡 constitutes the key ingredient to determine the resultant force dyad driving the shape dynamics of a pseudo-rigid body 
with spherical material shape. The force driving the barycenter dynamics results from the mass-specific bulk force density 𝒂 (gravity 
and buoyancy) and the surface-average traction ̄𝒕𝑡 (drag), the resultant of the latter is here modeled by the Brenner approach [61,62]. 
This section briefly details the key steps and the final expressions for the resultant loading exerted by Stokes flow on a pseudo-rigid 
body.

3.1. Jeffery traction

By analytically solving Stokes flow equations for an incompressible Newtonian fluid (characterized by constant density 𝜌f (due to 
incompressibility we need not distinguish between 𝜌f

𝑡 and 𝜌f
0), kinematic viscosity 𝜈f, and dynamic viscosity 𝜇f = 𝜌f 𝜈f) in the vicinity 

of an immersed ellipsoidal rigid body (particle), Jeffery [6] deduced the traction (fluctuation) 𝒕̃𝑡 exerted by the flow on the surface 
of the ellipsoidal rigid body in the format of

𝒕̃𝑡 = [−𝑝̃(𝒅f ) 𝒊+ 𝜇f 𝒔̃(𝒅f ,𝒘)] ⋅ 𝒏 . (25)

Here 𝑝̃ and 𝒔̃ are a spatially constant factor and a spatially constant (non-symmetric) and deviatoric second-order tensor, respectively, 
and 𝒏 denotes the outwards pointing normal to the surface of the ellipsoid. The factor 𝑝̃ = 𝑝̃(𝒅f ) as well as the coefficients of 𝒔̃ =
𝒔̃(𝒅f , 𝒘), with 𝒅f and 𝒘 ∶=𝒘f −𝒘s the fluid rate of deformation tensor and the modified spin (vorticity) tensor (with 𝒘s the spin 
tensor of the solid angular velocity vector), respectively, in the particle frame of reference (pFoR) that is oriented along the ellipsoidal 
half axes are assembled for convenience in Appendix B.

3.2. Roscoe traction

Roscoe [34] extended the analytical result of Jeffery [6] regarding the traction (fluctuation) 𝒕̃𝑡 exerted by Stokes flow on the 
surface of an ellipsoidal rigid body to the case of an ellipsoidal deformable body. The final result reads

𝒕̃𝑡 =
[
− 𝑝̃(𝒅) 𝒊+ 𝜇f [𝒔̃(𝒅,𝒘) + 2𝒅s]

]
⋅ 𝒏 , (26)

with the modified rate of deformation tensor 𝒅 ∶= 𝒅f − 𝒅s (recall also the already previously used definition of the modified spin 
(vorticity) tensor 𝒘 ∶= 𝒘f − 𝒘s). Here and below 𝒅s and 𝒘s denote the rate of deformation tensor and the spin tensor for the 
deformable ellipsoid, i.e. 𝒅s ∶= 𝒍

sym
s and 𝒘s ∶= 𝒍skws with 𝒍s the spatial velocity gradient of the solid (recall the definition 𝒍s ∶=𝑨 ⋅𝑭 −1). 

For a deformable ellipsoid in Stokes flow the rate of deformation tensor 𝒅s proves spatially homogeneous as confirmed by, e.g., Gao et 
al. [37,38], a kinematic condition compliant with the above assumptions of a pseudo-rigid body. Moreover, 𝑝̃ = 𝑝̃(𝒅) and 𝒔̃ = 𝒔̃(𝒅, 𝒘)
are as given by Jeffery [6] when evaluated in terms of the modified rate of deformation tensor 𝒅 ∶= 𝒅f − 𝒅s (and, as already used 
before in the Jefferey expressions, the modified spin (vorticity) tensor 𝒘 ∶= 𝒘f −𝒘s) and in the pFoR that is oriented along the 
half axes of the deformed ellipsoid (see Appendix B). Since the above Roscoe traction (fluctuation) is linear in the outwards pointing 
normal 𝒏 to the surface of the ellipsoid, i.e. ̃𝒕𝑡 = 𝝈̃ ⋅𝒏, it can finally be expressed in terms of a spatially uniform (constant) Cauchy-type 
9

stress 𝝈̃ expanding as
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𝝈̃ = −𝑝̃(𝒅) 𝒊+ 𝜇f [𝒔̃(𝒅,𝒘) + 2𝒅s] . (27)

The key steps in the derivation of the Roscoe traction (fluctuation) 𝒕̃𝑡, [34], exerted on a deformable ellipsoid in a viscous flow 
are summarized in Appendix C.

3.3. Resultant force

For spatially uniform mass-specific bulk force density 𝒂G, an acceleration, the reduced gravity force 𝒇G (i.e. reduced by buoyancy) 
that is exerted on an ellipsoid in a fluid reads as

𝒇G = 𝒂G𝑚 with 𝒂G =
𝜌s𝑡 − 𝜌f

𝜌s𝑡
𝒈 , (28)

with 𝒈 the gravity acceleration assumed spatially uniform. Recall that the spatial mass density 𝜌s𝑡 = 𝜌
s
0∕𝐽 of the pseudo-rigid body 

is spatially uniform for the here assumed spatially uniform 𝜌s0, thus the total mass of the pseudo-rigid body reads as 𝑚 = 𝜌s𝑡 vol(𝑡). 
Moreover, due to its incompressibility, also the mass density of the fluid 𝜌f is uniform (constant), thus the total fluid mass equivalent 
to the volume vol(𝑡) occupied by the pseudo-rigid body is simply 𝜌f vol(𝑡). In summary, the reduced gravity force reads as

𝒇G = [𝜌s𝑡 − 𝜌f]𝒈vol(𝑡) . (29)

Moreover, we employ the drag expression for arbitrarily shaped bodies, i.e. particularly including ellipsoids, as proposed by 
Brenner, [61]. Thus, the drag force 𝒇D exerted on an ellipsoid in a viscous fluid is given as

𝒇D = 𝒕̄𝑡 sur(𝜕𝑡) = 𝜋 𝜇f 𝑟min 𝒌 ⋅ [𝒖− 𝒗c] , (30)

where 𝜇f denotes the dynamic viscosity of the fluid, 𝑟min the minor half axis of the ellipsoid, 𝒌 its translational resistance tensor, and 
𝒖 and 𝒗c the velocity of the fluid at the barycenter of the ellipsoid and its barycentric velocity 𝒗c. The coefficients of the translational 
resistance tensor in the pFoR are detailed in Appendix D.

Further contributions to 𝒇 due to added mass and pressure gradient effects are negligible under the here considered conditions 
(locally small Stokes number, i.e. St≪ 1). Taken together, the resultant force 𝒇 exerted on an ellipsoid in a viscous fluid here combines 
as 𝒇 = 𝒇G + 𝒇D.

3.4. Resultant force dyad

Since the mass-specific bulk force density 𝒂 is spatially uniform, the resultant force dyad 𝒎 expands with 𝒕̃𝑡 = 𝝈̃ ⋅ 𝒏 as4

𝒎 = ∫
𝜕𝑡

𝒕̃𝑡 ⊗ 𝝃 d𝑎 = ∫
𝜕𝑡

[𝝃⊗ 𝝈̃ ⋅ d𝒂]𝑡 = ∫
𝑡

[div(𝝃⊗ 𝝈̃)]𝑡 d𝑣 = 𝝈̃ vol(𝑡) , (31)

with d𝒂 ∶= 𝒏d𝑎 the vectorial area element on 𝜕𝑡. When introducing the Kirchhoff-type stress 𝝉̃ ∶= 𝐽 𝝈̃ the resultant force dyad 𝒎
expands as 𝒎 = 𝝉̃ vol(0), furthermore with the Piola-type stress 𝑷̃ ∶= 𝝉̃ ⋅ 𝑭−𝑡 the resultant force dyad 𝑴 =𝒎 ⋅ 𝑭 −𝑡 finally reads as

𝑴 = 𝑷̃ vol(0) . (32)

Note that 𝝈̃, 𝝉̃ and 𝑷̃ derive from the (Jeffery and) Roscoe expressions for the traction (fluctuation) 𝒕̃𝑡 exerted by Stokes flow on an 
ellipsoid.

4. Time stepping

In summary, the equations of motion describing the barycenter and shape dynamics of an ellipsoidal pseudo-rigid body (particle), 
spherical in 0, that is immersed in Stokes flow read in first-order ODE format as

𝒙̇c = 𝒗c , 𝒗̇c = 𝒂G + 𝒂D and 𝑭̇ =𝑨 , 𝑨̇ = vol(0) [𝑷̃ − 𝑷 ] ⋅𝜣−1 , (33)

with the mass-specific reduced gravity and drag contributions to the resultant force

𝒂G ∶= 𝒇G∕𝑚 =∶ 𝛽𝑡 𝒈 and 𝒂D ∶= 𝒇D∕𝑚 =∶ 1
𝜏D
𝒌 ⋅ [𝒖− 𝒗c] . (34)

Here, 𝛽𝑡 and 𝜏D denote the buoyancy-induced gravity reduction and the characteristic drag time, respectively, defined as

𝛽𝑡 ∶=
𝜌s𝑡 − 𝜌f

𝜌s𝑡
and 𝜏D ∶= 1

𝜈f

𝜌s0
𝜌f

4
3
𝑅3

𝑟min
. (35)
10

4 Due to 𝝈̃ = constant the expression div(𝝃⊗ 𝝈̃) results in 𝝈̃𝑡 as straightforwardly demonstrated in index notation [𝜉𝑖 𝜎̃𝑗𝑘],𝑘 = 𝛿𝑖𝑘 𝜎̃𝑗𝑘 = 𝜎̃𝑗𝑖 .
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The time stepping algorithms (time integrators) for the integration of these evolution equations in discrete time steps Δ𝑡 ∶= 𝑡𝑛+1 − 𝑡𝑛, 
with 𝑡𝑛+1 and 𝑡𝑛 discrete time points, over a finite time interval 𝑇 ∶= ∪𝑁−1

𝑛=0 [𝑡𝑛+1 − 𝑡𝑛], i.e. over 𝑁 discrete time steps Δ𝑡 are detailed in 
the following. Therein we assume the barycenter position 𝒙𝑛𝑐 and the barycenter velocity 𝒗𝑛𝑐 together with the deformation gradient 𝑭 𝑛
and the material velocity gradient 𝑨𝑛 of the pseudo-rigid body at the discrete time point 𝑡𝑛 as well as the fluid velocity 𝒖𝑛+1 together 
with the spatial fluid velocity gradient 𝒍𝑛+1f =∶ 𝒅𝑛+1f +𝒘𝑛+1f at the discrete time point 𝑡𝑛+1, considered as the external loading for the 
time step Δ𝑡, be given for a given time step Δ𝑡.

4.1. Barycenter dynamics

Here we update the barycenter position 𝒙𝑐 and the barycenter velocity 𝒗c over Δ𝑡 by the implicit Euler backwards time integrator

𝒙𝑛+1𝑐 = 𝒙𝑛𝑐 +Δ𝑡𝒗𝑛+1𝑐 and 𝒗𝑛+1c = 𝒗𝑛c + Δ𝑡 [𝒂𝑛+1G + 𝒂𝑛+1D ] , (36)

with the implicit update of the mass-specific reduced gravity and drag forces 𝒂𝑛+1G and 𝒂𝑛+1D

𝒂𝑛+1G ∶= 𝛽𝑛+1𝑡 𝒈 and 𝒂𝑛+1D ∶= 1
𝜏D
𝒌𝑛+1 ⋅ [𝒖𝑛+1 − 𝒗𝑛+1c ] . (37)

Thereby, the buoyancy-induced gravity reduction 𝛽𝑛+1𝑡 and the translational resistance tensor 𝒌𝑛+1 are updated as

𝛽𝑛+1𝑡 ∶= 𝛽𝑡(𝑭 𝑛+1) and 𝒌𝑛+1 ∶= 𝒌(𝑭 𝑛+1) , (38)

where the dependence of 𝛽𝑛+1𝑡 on 𝑭 𝑛+1 is via 𝐽𝑛+1 and the dependence of 𝒌𝑛+1 on 𝑭 𝑛+1 is via 𝒏𝑛+1𝑎 and 𝜆𝑛+1𝑎 to update the pFoR with 
the rotation matrix 𝑄𝑛+1 ∶= [𝑄𝑛+1

𝑎𝐵
] = [𝒏𝑛+1𝑎 ⋅𝑬𝐵], 𝑎, 𝐵 = 1, 2, 3 and the ellipsoid’s half axes 𝑟𝑛+1𝑎 = 𝜆𝑛+1𝑎 𝑅, 𝑎 = 1, 2, 3, respectively.

Observe that due to the decoupled determination of 𝑭 𝑛+1 from the time stepping for the shape dynamics as detailed in the sequel, 
𝛽𝑛+1𝑡 and 𝒌𝑛+1 are given quantities in the time stepping for the barycenter dynamics and do not require iterative updates within Δ𝑡, 
thus avoiding the need for cumbersome linearization with respect to 𝑭 𝑛+1. The updates for 𝒙𝑛+1c and 𝒗𝑛+1c conceptually require the 
concurrent iterative solution of a coupled system in the two unknowns 𝒙𝑛+1c and 𝒗𝑛+1c with residua

𝒓𝑥(𝒙𝑛+1c ,𝒗𝑛+1c ) ∶= 𝒙𝑛+1c − 𝒙𝑛c − Δ𝑡𝒗𝑛+1c ≐ 0 , (39)

𝒓𝑣( ,𝒗𝑛+1c ) ∶= 𝒗𝑛+1c − 𝒗𝑛c − Δ𝑡
[
𝒂𝑛+1G + 1

𝜏D
𝒌𝑛+1 ⋅ [𝒖𝑛+1 − 𝒗𝑛+1c ]

] ≐ 0 . (40)

However, the residual 𝒓𝑥 ≐ 0 allows closed form solution Δ𝑡 𝒗𝑛+1c = 𝒙𝑛+1c − 𝒙𝑛c that can be inserted into Δ𝑡 𝒓𝑣 ≐ 0 to result in a single 
linear residual in the unknown barycenter position 𝒙𝑛+1c that reads

𝒓(𝒙𝑛+1c ) ∶= 𝒙𝑛+1c − 𝒙𝑛c − Δ𝑡𝒗𝑛c − Δ𝑡2 𝒂𝑛+1G − Δ𝑡
𝜏D
𝒌𝑛+1 ⋅ [Δ𝑡𝒖𝑛+1 − 𝒙𝑛+1c + 𝒙𝑛c] ≐ 0 . (41)

Then, due to the linearity of the residual 𝒓(𝒙𝑛+1c ) in the unknown 𝒙𝑛+1c its solution follows in closed form as

𝒙𝑛+1c = −k−1 ⋅ 𝒓(0) with k ∶= 𝒊+ Δ𝑡
𝜏D
𝒌𝑛+1 . (42)

The step-by-step algorithm for the implicit time integrator for the barycenter dynamics of a pseudo-rigid body with a spherical 
shape in the material configuration based on its barycenter position is given in Appendix E.

Remark (Alternative Algorithm based on Barycenter Velocity). Alternatively, due to its independence on 𝒙𝑛+1c the solution of the residual 
𝒓𝑣(𝒗𝑛+1c ) ≐ 0 follows in closed form as

𝒗𝑛+1c = −k−1 ⋅ 𝒓𝑣(0) (43)

Then, the residual 𝒓𝑥 ≐ 0 allows closed form solution 𝒙𝑛+1c = 𝒙𝑛c + Δ𝑡 𝒗𝑛+1c rendering the same 𝒙𝑛+1c as in the above.

4.2. Shape dynamics

Here we update the deformation gradient 𝑭 over Δ𝑡 by the implicit Euler backwards time integrator, whereas we update the 
material velocity gradient 𝑨 over Δ𝑡 by an implicit-explicit time integrator

𝑭 𝑛+1 = 𝑭 𝑛 +Δ𝑡𝑨𝑛+1 and 𝑨𝑛+1 =𝑨𝑛 +Δ𝑡vol(0) [𝑷̃ ⋆ − 𝑷 𝑛+1] ⋅𝜣−1 , (44)

with the implicit update of the Piola stress 𝑷 𝑛+1 and the implicit-explicit update of the Piola-type stress 𝑷̃ ⋆, as denoted by a superscript 
star

𝑷 𝑛+1 ∶= 𝑷 (𝑭 𝑛+1) and 𝑷̃ ⋆ ∶= 𝐽𝑛+1 𝝈̃⋆ ⋅ [𝑭 𝑛+1]−𝑡 . (45)
11

Furthermore, the implicit-explicit update of the Cauchy-type stress 𝝈̃⋆ is given as
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𝝈̃⋆ ∶= 𝝈̃(𝑭 𝑛,𝑨𝑛; 𝒍𝑛+1f ) . (46)

The dependence of 𝝈̃⋆ on 𝑭 𝑛 is via 𝒏𝑛𝑎 and 𝜆𝑛𝑎 to update the pFoR with the rotation matrix 𝑄𝑛 ∶= [𝑄𝑛
𝑎𝐵
] = [𝒏𝑛𝑎 ⋅ 𝑬𝐵], 𝑎, 𝐵 = 1, 2, 3

and the ellipsoid’s half axes 𝑟𝑛𝑎 = 𝜆
𝑛
𝑎 𝑅, 𝑎 = 1, 2, 3. In addition, 𝝈̃⋆ depends on 𝑭 𝑛 and 𝑨𝑛 via the spatial solid velocity gradient 

𝒍𝑛s = 𝑨
𝑛 ⋅ [𝑭 𝑛]−1 with coefficients 𝑙′s

𝑛
𝑎𝑏

in the pFoR defined as 𝑙′s
𝑛
𝑎𝑏

∶= 𝒏𝑛𝑎 ⋅ 𝒍
𝑛
s ⋅ 𝒏

𝑛
𝑏
. Finally, 𝝈̃⋆ is parameterized (as indicated in its 

argument list by the separation via a semi-colon) in the given 𝒍𝑛+1f with coefficients 𝑙′f
⋆
𝑎𝑏

in the pFoR defined as 𝑙′f
⋆
𝑎𝑏

∶= 𝒏𝑛𝑎 ⋅ 𝒍
𝑛+1
f ⋅ 𝒏𝑛

𝑏
and representing the external loading for Δ𝑡.

Observe that due to its implicit-explicit treatment, 𝝈̃⋆ is a given quantity for Δ𝑡 and does not require iterative updates within 
Δ𝑡, thus avoiding the need for its cumbersome linearization with respect to 𝑭 𝑛+1 and 𝑨𝑛+1. Nevertheless, 𝑷̃ ⋆ depends on 𝑭 𝑛+1, i.e. 
𝑷̃ ⋆ = 𝑷̃ ⋆(𝑭 𝑛+1; 𝝈̃⋆), thus the updates for 𝑭 𝑛+1 and 𝑨𝑛+1 conceptually require the concurrent iterative solution of a coupled system 
in the two unknowns 𝑭 𝑛+1 and 𝑨𝑛+1 with residua

𝑹𝐹 (𝑭 𝑛+1,𝑨𝑛+1) ∶= 𝑭 𝑛+1 − 𝑭 𝑛 −Δ𝑡𝑨𝑛+1 ≐ 0 , (47)

𝑹𝐴(𝑭 𝑛+1,𝑨𝑛+1) ∶=𝑨𝑛+1 −𝑨𝑛 −Δ𝑡vol(0)
[
𝑷̃ ⋆(𝑭 𝑛+1; 𝝈̃⋆) − 𝑷 (𝑭 𝑛+1)

]
⋅𝜣−1 ≐ 0 . (48)

Since the residual 𝑹𝐹 ≐ 0 allows closed form solution Δ𝑡 𝑨𝑛+1 = 𝑭 𝑛+1 − 𝑭 𝑛 that can be inserted into Δ𝑡 𝑹𝐴 ≐ 0, a single nonlinear 
residual in the unknown deformation gradient 𝑭 𝑛+1 results as

𝑹(𝑭 𝑛+1) ∶= 𝑭 𝑛+1 − 𝑭 𝑛 −Δ𝑡𝑨𝑛 −Δ𝑡2 vol(0)
[
𝑷̃ ⋆(𝑭 𝑛+1; 𝝈̃⋆) − 𝑷 (𝑭 𝑛+1)

]
⋅𝜣−1 ≐ 0 . (49)

Then, the solution for 𝑭 𝑛+1 is obtained by a Newton iteration with iterative updates 𝑭 𝑛+1 ← 𝑭 𝑛+1 −K−1 ∶ 𝑹(𝑭 𝑛+1), whereby we 
determined the linearization K ∶= 𝜕𝑹∕𝜕𝑭 𝑛+1, a two-point fourth-order tensor, in analytical format as

K = I−Δ𝑡2 vol(0)
[
Ã⋆ −A

] 21
⋅ 𝜣−1 with Ã⋆ ∶= 𝜕𝑷̃ ⋆∕𝜕𝑭 𝑛+1 and A ∶= 𝜕𝑷 𝑛+1∕𝜕𝑭 𝑛+1 , (50)

where I and 21⋅ denote the two-point fourth-order unit tensor and single contraction of the second slot of Ã⋆ −A with the first slot of 
𝜣−1. The Newton iteration shows quadratic rate of convergence for the norm of the residual |𝑹| until it falls under a given tolerance.

The step-by-step algorithm for the implicit-explicit time integrator for the shape dynamics of a pseudo-rigid body with spherical 
shape in the material configuration based on the deformation gradient is given in Appendix E. Note that a discussion on the efficiency 
of the algorithm is provided in Appendix F.

Remark (Alternative Algorithm based on Material Velocity Gradient). Alternatively, the residual 𝑹𝐹 ≐ 0 allows closed form solution 
𝑭 𝑛+1 = 𝑭 𝑛 + Δ𝑡 𝑨𝑛+1 that can be inserted into 𝑹𝐴 ≐ 0 to result in a single nonlinear residual in the unknown material velocity 
gradient 𝑨𝑛+1 that reads

𝑹(𝑨𝑛+1) ∶=𝑨𝑛+1 −𝑨𝑛 −Δ𝑡vol(0)
[
𝑷̃ ⋆(𝑭 𝑛 +Δ𝑡𝑨𝑛+1; 𝝈̃⋆) − 𝑷 (𝑭 𝑛 +Δ𝑡𝑨𝑛+1)

]
⋅𝜣−1 ≐ 0 . (51)

Then, the solution for 𝑨𝑛+1 is obtained by a Newton iteration with iterative updates 𝑨𝑛+1 ←𝑨𝑛+1 −K−1 ∶𝑹(𝑨𝑛+1).

5. Demonstrative examples

In the following, characteristic scales for the non-dimensionalization are chosen as the length scale 𝑑eq (volume-equivalent particle 
diameter), the time scale 𝛾̇−1 (inverse fluid shear rate), and the pressure/stress scale 𝜇f 𝛾̇ . Then we employ the capillary number Ca
as a dimensionless parameter representing the ratio of the viscous forces in the fluid to the elastic forces in the particle, [37] as

Ca = 𝜇
f 𝛾̇

𝜇s
. (52)

Note that an increasing Ca is associated with a softer particle, [37]. The capillary number Ca defined in Eq. (52) differs from that for 
fluid vesicles as we employ 𝜇s with units 𝑁∕𝑚2 instead of the membrane shear modulus in units 𝑁∕𝑚 (as is common for vesicles), 
[36]. Note that 𝜇f has the units 𝑁𝑠∕𝑚2, while 𝛾̇ has the units 𝑠−1. Here, the particle Reynolds number is defined using the shear rate 
𝛾̇ as

Re =
𝛾̇ 𝑑2eq

𝜈f
(53)

and is required to be Re≪ 1 for the Jeffery-Roscoe solution to hold. To describe the deformation of the particles, it is also useful to 
introduce the Taylor deformation parameter D, which is commonly used as a measure of the deformation of droplets and vesicles, 
[63]. The deformation parameter can be determined using the particle semi-axis ratio 𝛿1 = 𝑏∕𝑎 (and 𝛿2 = 𝑐∕𝑎) as follows [37]:

𝑎− 𝑏 1 − 𝛿1
12

D=
𝑎+ 𝑏

=
1 + 𝛿1

. (54)
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As stated by Gao et al., [37], for D < 0.2, i.e. for stiff particles, the relation between Ca and D can be approximated as D= Ca. As the 
particles become softer (Ca↗), a nonlinear relation can be observed, [37]. Furthermore, Gao et al., [37], observed, that for Ca→∞
(for super small solid 𝜇s) one obtains D→ 1 (𝛿1 → 0), thus the particle behaves like a super soft particle.

5.1. Soft particle in a pure rotational flow

The first validation study considers the limit of a nearly rigid particle (i.e. Ca → 0 approaching zero), further referred to as 
quasi-rigid particle, suspended in a pure rotational flow. For the case of pure rotational flow, the fluid rate of deformation tensor 𝒅f
vanishes so that the fluid velocity gradient coincides with the fluid spin (vorticity) 𝒍f ≡𝒘f . In the case of pure rotational flow around 
the negative 𝑥3-axis, the only non-zero elements of the fluid velocity gradient are 𝑙f 12 = −𝑙f 21 = 𝛾̇∕2. For validation, we compare 
our pseudo-rigid particle solver in the limiting case of quasi-rigid particles with our previously developed rigid particle solver, see 
[18]. To capture the quasi-rigid particle behavior, we set the capillary number to Ca = 0.0001 and the Reynolds number to Re = 0.1. 
Fig. 4 (a) shows excellent agreement in the dimensionless angular velocity |𝜔̂s 3| = |𝜔s 3|∕𝛾̇ of the rigid and the quasi-rigid body while 
suspended in a pure rotational flow. As observed, both models reach the final angular velocity of 𝜔s 3 = 𝛾̇∕2, i.e. half the vorticity 
rate. Moreover, Fig. 4 (b) presents the evolution of the dimensionless torque 𝑀̂ =𝑀∕ 

[
𝜇f 𝛾̇ 𝑑3eq

]
, achieving again excellent agreement 

between the quasi-rigid particle (Ca→ 0) and the rigid particle.

Fig. 4. Comparison of |𝜔̂s 3| = |𝜔s 3|∕𝛾̇ and 𝑀̂ =𝑀∕ 
[
𝜇f 𝛾̇ 𝑑3eq

]
for a rigid and a quasi-rigid particle suspended in pure rotational flow. rigid particle, quasi-rigid 

deformable particle.

5.2. Soft particle in an extensional flow

In the second validation study we consider an elastic, initially spherical particle in an extension flow device, as used by Villone 
et al., [1]. The extensional flow device consists of two coaxial cylindrical tubes with dimensions: 𝐷1 = 700 μm, 𝐷2 = 234 μm, 
𝐿1 = 1500 μm, 𝐿2 = 60 μm, 𝐿3 = 117 μm, see the sketch in Fig. 5 (a), [1]. The authors released the elastic bead at 𝑥3 (0) = 1000 𝑚𝑚 and 
studied the translation and deformation of the soft particle. We employ the evolution of the fluid velocity gradient 𝑙f 33 = 𝜕𝑢3∕𝜕𝑥3 as 
well as the particle velocity 𝑢3 as provided by Villone et al., [1] to model the particle motion and deformation through the extensional 
flow device. Fig. 5 (a) displays the extracted data for the fluid velocity gradient 𝑙f 33 from Villone et al., [1], to which the elastic bead 
is subjected as it travels through the device. Furthermore, Fig. 5 (b) displays the obtained deformation parameter D as a function of 
the relative axial position 𝑥3 −𝑥3(0) of the reference results of Villone et al., [1], and the present model. As shown, by using the given 

Fig. 5. Elastic, initially spherical particle in an extensional flow. Fluid velocity gradient 𝑙f 33 = 𝜕𝑢3∕𝜕𝑥3 ( ) as provided by Villone et al., [1], and resulting deformation 
13

parameter D: Villone et al., [1], present model.
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shear rate 𝑙f 33 (as function of 𝑥3 − 𝑥3(0)) and the provided particle velocity 𝑢3, see [1], we achieve excellent agreement with the 
reference work and thus validate our model in the limit of extensional flow and small deformation. Fig. 5 also shows that the elastic 
deformation of the bead caused by the extensional flow due to the channel reduction becomes notable after 𝑥3 −𝑥3(0) > 200 μm, [1].

5.3. Soft particle in a simple shear flow

In this section, we study the three-dimensional problem of an elastic (neo-Hookean) particle of an initial spherical stress-free shape 
subjected to a simple shear flow (𝑙f 12 = 𝛾̇). In this context, we use the results of Gao et al., [37], as a reference. Gao et al. obtained a 
perfect agreement with the earlier results of Roscoe [34]. Note that for comparison with the viscoelastic results of Roscoe, Gao et al. 
neglected the viscous contribution present in Roscoe’s solution. First, we compare the steady-state results of the particle deformation 
parameters (D, 𝛿1, 𝛿2, 𝜗) as a function of capillary number Ca. In Fig. 6, the steady-state particle deformation parameters of an initially 
spherical neo-Hookean elastic particle in simple shear flow are shown. Fig. 6 (a) compares the steady state particle deformation 
parameter D obtained by Gao et al. to the results obtained with the present model based on the equations of Jeffery-Roscoe. As 
shown, both Jeffery’s model, [6], and Roscoe’s model, [34], achieve excellent agreement with the results of Gao et al. for small 
deformations (Ca ≤ 0.2). Note that in this range the relationship between D and Ca can be approximated as linear, [36]. However, 
for larger deformations (Ca > 0.2), the relationship between D and Ca becomes nonlinear and the application of Jeffery’s equations, 
[6], leads to large deviations. Nevertheless, using the corrections of Roscoe, [34], we achieve excellent agreement throughout the 
range of Ca numbers studied for D as well as the aspect ratios 𝛿1, 𝛿2, see Fig. 6 (a, b).

Fig. 6. Steady state particle deformation parameter D and aspect ratios 𝛿1 = 𝑏∕𝑎 and 𝛿2 = 𝑐∕𝑎 as a function of the capillary number Ca: Gao et al., [37], present 
model using Jeffery’s equations, [6], present model using Roscoes’s equations, [34].

In addition, Fig. 7 compares the steady-state particle orientation of the present model with the results of Gao et al., [37]. We 
reproduce their results accurately in the whole range of Ca numbers studied (0 < Ca < 1). Note that the orientation of particles for 
arbitrary Ca numbers using Jeffery’s equations, [6], yields 𝜗 = 45 ◦. This proves, that applying the original Jeffery’s model without 
the Roscoe correction is not suitable for modeling particle orientation, even in the linear D−Ca regime. This example is noteworthy 
as the soft particles display the phenomenon of tank-treading, i.e. stationary particle shape and orientation are achieved while inside 
the particle material keeps deforming as if being kneaded between two plates, [54]. Fig. 7 (b) displays the relation between particle 
softness and tank-treading frequency. Our modeling approach reveals that a higher particle deformability leads to a higher tank-
treading frequency, where the lower limit (for Ca→ 0) coincides with half the flow vorticity (𝛾̇∕2), i.e. the angular velocity of a rigid 
particle.

Fig. 7. Steady state particle orientation 𝜗 and tank-treading frequency 𝜔s 3 as a function of the capillary number Ca: Gao et al., [37], present model using Roscoes’s 
14

equations, [34].
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In a second step, we investigate the time-dependent solutions for initially spherical (three-dimensional) particles with a capillary 
number of Ca = 0.4, see Fig. 8. As shown in Fig. 8, our present deformable particle model can reproduce the evolution of the aspect 
ratios 𝛿1, 𝛿2 as well as the particle orientation 𝜗 of Gao et al. [37].

Fig. 8. Transient deformation and orientation of a neo-Hookean elastic particle (Ca = 0.4) suspended in simple shear flow: / Gao et al., [37], present model.

Furthermore, Fig. 9 visualizes the transient deformation, orientation as well as tank-treading motion of the deforming particle 
of Ca = 0.3, by highlighting the position of a material point during the deformation. As displayed, we observe that until 𝑡𝛾̇ ≤ 1.0
the particle shape and orientation are changing significantly. From 𝑡𝛾̇ ≥ 1.0 the change of particle orientation decreases strongly 
until steady-state shape and orientation are reached. Tank-treading motion can be observed from 𝑡𝛾̇ > 1.0, as the particle shape is 
quasi-stationary, however, the material point continues to change its position in the clockwise direction.

Fig. 9. Visualization of transient deformation and orientation of a neo-Hookean elastic particle (Ca = 0.3) suspended in simple shear flow. Tank-treading motion is 
observed and highlighting by tracking a chosen material point over time. Note that our approach is meshless and the displayed mesh is only for visualization purposes. 
See animation in supplementary material.

5.4. Soft particle in laminar pipe flow

Here we target the tracking of particles and their deformation in laminar pipe flow as employed by Tian et al., [64]. The case 
set-up is presented in Fig. 10. The Reynolds number of the flow is set to Re = 1. In agreement with Tian et al., [64], the fluid density 
is chosen as 𝜌f = 1.208 𝑘𝑔∕𝑚3 and the kinematic viscosity as 𝜈f = 1.491 × 10−5 𝑚2∕𝑠. The diameter of the pipe is set to 𝐷 = 4.2 𝑚𝑚. 
The particle volume equivalent diameter is chosen as 𝑑eq = 5 μm, and the particle density is set to 𝜌s0 = 2560 𝑘𝑔∕𝑚3 for the sake of 
comparison to Tian et al., [64]. Note that the capillary number Ca in the following is defined based on 𝛾̇max = 923.8 𝑠−1 found at the 
15

pipe walls while the shear rate at the injection position is equal to 𝛾̇ = 725.9 𝑠−1.
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Fig. 10. Sketch of the laminar pipe flow (Re = 1) set-up, with pipe diameter 𝐷 = 4.2 𝑚𝑚 and pipe length 𝐿 = 0.75 𝑚. The gravitational direction points in the negative 
𝑥2 direction, while the streamwise direction is in positive 𝑥1 direction. The initially spherical soft particle is released at 𝑥𝑖 = 0, 𝑖 = 1, 2, 3. The volume equivalent 
diameter of the particle is 𝑑eq = 5 μm and the particle density is 𝜌s0 = 2560 𝑘𝑔∕𝑚3 .

5.4.1. Quasi-rigid particle

In the first case, we compare a rigid particle to a quasi-rigid particle (Ca→ 0) of initially spherical shape. The particles are injected 
at (0, 𝑥2(0), 0) with 𝑥2(0) = −1.65 𝑚𝑚 and tracked for 𝑡 = 0.1 𝑠.

Fig. 11 displays the evolution of the direction cosines of a particle half axis with the streamwise direction 𝑥1 and the spanwise 
direction 𝑥2 for both the rigid as well as the quasi-rigid particle. As presented, the direction cosines of the quasi-rigid particle with 
negligible deformability (Ca = 0.0001) are in excellent agreement with the results obtained using the rigid particle.

Fig. 11. Comparison of the direction cosines of rigid spherical particles and quasi-rigid spherical particle with negligible deformability (Ca = 0.0001) suspended in 
laminar pipe flow: rigid particle using the reference method [18], quasi-rigid particle (present model).

Furthermore, Fig. 12 (a-d) compares the resulting angular velocity around the 𝑥3-axis 𝜔s 3 as well as the torque for both rigid and 
quasi-rigid particles. As observed, we obtain excellent agreement between the quasi-rigid and the rigid particle in their orientation 
dynamics. Furthermore, we observe that the particle angular velocity accelerates to around 𝜔s 3 = 363 𝑠−1, which is identical to 
the prescribed velocity gradient component 𝑙f 12 at the injection position (0, 𝑥2(0), 0). These results prove the consistency of our 
pseudo-rigid body approach for particle tracking with a corresponding rigid body approach.

5.4.2. Soft deformable particle

In the second case, we study soft deformable particles that are injected at (0, 𝑥2(0), 0) with 𝑥2(0) = −1.65 𝑚𝑚. The particles 
are injected with zero velocity and angular velocity and are tracked until deposition. Fig. 13 (a-d) displays the trajectory and the 
velocities of the particles considered. Our approach demonstrates a strong dependency of the particle motion on its deformability. The 
particle with Ca = 0.25 possesses the largest settling velocity 𝑣2 , see Fig. 13 (d), and thus travels the least in the streamwise distance 
(Fig. 13 (b)). The softest particle considered, i.e. the particle with Ca = 1.0, possesses the lowest settling velocity (Fig. 13 (d)) and 
largest streamwise velocity (Fig. 13 (c)) and is thus able to achieve the largest traveling distance in 𝑥1-direction, i.e. around 9866 𝑑eq
further than the particle with Ca = 0.25. Note that the rigid particle reaches a final streamwise distance of 9165 𝑑eq and is in excellent 
agreement with the quasi-rigid particle (Ca = 0.0001) as the shape change for the quasi-rigid body is negligible. Furthermore, the 
rigid and quasi-rigid body settling velocity 𝑣2 is in agreement with the terminal settling velocity of a sphere, see Fig. 13 (d).

Fig. 14 (a) presents a more detailed dependency of the maximal streamwise traveling distance and the particle deformability. We 
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first observe a decrease in streamwise traveling distance towards low deformable particles (Ca <= 0.3). However, for particles with 
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Fig. 12. Comparison of the angular velocity component |𝜔̂s 3| = |𝜔s 3|∕𝛾̇max with 𝛾̇max = 923.8 𝑠−1 and torque 𝑀̂ =𝑀∕ 
[
𝜇f 𝛾̇max 𝑑

3
eq

]
with 𝑑eq = 5 μm of a rigid spherical 

particle and a quasi-rigid spherical particle with negligible deformability (Ca = 0.0001 suspended in laminar pipe flow: rigid particle using the reference method 
[18], quasi-rigid particle (present model).

Fig. 13. Comparison of the trajectory (𝑥̂𝑖 = 𝑥𝑖∕𝑑eq with 𝑑eq = 5 μm) and velocity (𝑣̂𝑖 = 𝑣𝑖∕𝑣sett with the settling velocity 𝒗sett = 𝑑2eq
[
𝜌s0 − 𝜌f

]
𝒈∕ [18𝜈f𝜌f]) of various soft 

deformable particles suspended in laminar pipe flow at position the initial position (0, 𝑥2(0), 0) with 𝑥2(0) = −1.65 𝑚𝑚. Note that ̂𝑡 = 𝑑eq∕𝒗sett and that the reference 
17

shear rate is chosen as 𝛾̇max = 923.8 𝑠−1 . rigid particle, Ca = 0.0001 (quasi-rigid particle), Ca = 0.25, Ca = 0.5, Ca = 0.75, Ca = 1.0.
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Fig. 14. Dependence of the maximal traveling distance in 𝑥̂1max = 𝑥1max∕𝑑eq as well as the tank-treading frequency 𝜔s 3 (𝜔s 3 ref : final rotation of rigid particle) on the 
particle softness: × rigid particle, Ca = 0.0001 − 1.0.

Ca > 0.35, the trend reverses and an increase in streamwise traveling distance is observed for softer particles. The maximum traveling 
distance displays an approximately linearly increasing dependency for particles with Ca >= 0.6 towards Ca >= 1.0. This phenomenon 
occurs due to the change of particle elongation as well as the particle orientation leading to altered drag forces in streamwise and 
gravitational directions.

In addition, Fig. 14 (b) shows the impact of particle softness on the tank-treading frequency. Our approach demonstrates that the 
higher the particle deformability the higher the tank-treading frequency with the lower limit (for Ca→ 0) coinciding with the angular 
velocity of the rigid particle.

6. Conclusions

We presented a novel pseudo-rigid body approach for simulating the dynamics of initially spherical soft deformable micro-particles 
in dilute flows. For the sake of demonstration, we assume hyperelastic particles, however, our approach is entirely general in terms 
of the constitutive behavior of the particles. To induce the deformation of initially spherical particles to ellipsoids under the applied 
fluid flow-induced tractions, we employ the celebrated Jeffery-Roscoe model, [6,34].

The soft deformable particle tracking was validated through a series of pertinent benchmark test cases, including pure rotational 
flow, extensional flow, and simple shear flow conditions. In these investigations, we proved the excellent agreement between quasi-
rigid particles, i.e. Ca→ 0, and rigid particles in their orientational dynamics. Furthermore, for soft particles, we achieved excellent 
agreement in the barycentric and orientation dynamics in comparison with the reference results from the literature in extensional 
as well as simple shear flow conditions. As observed in the literature, we find that the micro-particles under investigation achieved 
a stationary ellipsoidal shape with a fixed orientation, while the material points within the soft micro-particle continuously move, 
i.e. the characteristic tank-treading phenomenon of soft deformable micro-particles suspended in flows. Furthermore, the obtained 
results highlight the importance of employing the Roscoe correction, [34], even for particles with low deformability (Ca < 0.2) in 
order to accurately predict the change in particle orientation.

In addition, the novel pseudo-rigid body approach enabled the study of the dependency of the particle trajectory on its deforma-
bility, while suspended in laminar pipe flow. In this context, we observed a strong dependency of the final particle position and the 
deposition time on the particle softness, highlighting the importance of accounting for the particle deformability.

Note that the results in the literature were obtained by using computationally costly discretizations as well as simplified assump-
tions such as limitation to incompressible and hyperelastic particles and specific flow conditions. On the contrary, our approach 
covers the whole range of macro-scale flow fields without limiting the material behavior of the particle and is thus utmost versatile. 
Our pseudo-rigid body algorithm is based on the point-particle assumption and therefore meshless and consequently computationally 
highly efficient (three degrees of freedom for the barycentric dynamics and only nine for the shape dynamics). Thus, the novel ap-
proach is suitable for tracking large numbers of soft deformable particles, while all surface discretization-based methods are strongly 
limited due to computational constraints.

Taken together, the developed novel pseudo-rigid body approach presents an utmost versatile and optimally efficient computa-
tional framework that can be applied within point-particle Lagrangian tracking of deformable micro-particles in dilute fluid flows.
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Appendix A. Rotational dynamics of a rigid body

Here, we sketch the transition from the equations of motion for the shape dynamics of a pseudo-rigid body to the equations of 
motion for the rotational dynamics of a rigid body. For a rigid body the deformation gradient 𝑭 degenerates to the proper orthogonal 
tensor 𝑹 ∈ SO(3), i.e. the (continuum) rotation tensor. Note that 𝒆𝑎 =𝑹 ⋅𝑬𝐴, 𝑎 ≡𝐴 = 1, 2, 3, thus 𝑹 = 𝒆𝑎 ⊗𝑬𝐴 =𝑅𝑎𝐵 𝑬𝐵 ⊗𝑬𝐴 with 
𝑅𝑎𝐵 ∶= 𝒆𝑎 ⋅ 𝑬𝐵 , 𝐵 = 1, 2, 3, where 𝒆𝑎 = 𝑅𝑎𝐵 𝑬𝐵 and 𝑬𝐴 = 𝑅𝑏𝐴 𝒆𝑏 denote the (rotating) particle frame of reference and the (fixed) 
inertial frame of reference, respectively. Then 𝒍s =𝑨 ⋅𝑹𝑡 and 𝑨 with 𝑨 = 𝑹̇ compute as

𝒍s =∶𝒘s =𝑹 ⋅𝑾 ⋅𝑹𝑡 and 𝑨 =∶𝒘s ⋅𝑹 =𝑹 ⋅𝑾 , (A.1)

where 𝒘s, 𝑾 ∈ SO(3), respectively, are the skew-symmetric spatial and material spin tensors of the rigid body. Upon introducing the 
third-order spatial and material permutation tensors

𝒆 = 𝑒𝑎𝑏𝑐 𝒆𝑎 ⊗ 𝒆𝑏 ⊗ 𝒆𝑐 and 𝑬 =𝐸𝐴𝐵𝐶 𝑬𝐴 ⊗𝑬𝐵 ⊗𝑬𝐶 , (A.2)

where 𝑒𝑎𝑏𝑐 = 𝑅𝑎𝐷 𝑅𝑏𝐸 𝑅𝑐𝐹 𝐸𝐷𝐸𝐹 and 𝐸𝐴𝐵𝐶 = 𝑅𝑑𝐴 𝑅𝑒𝐵 𝑅𝑓𝐶 𝑒𝑑𝑒𝑓 denote the fully skew-symmetric permutation symbol, the spin 
tensors 𝒘s and 𝑾 relate to their corresponding angular velocity vectors 𝝎s and 𝜴, respectively, as

𝒘s = −𝒆 ⋅𝝎s ↔ 𝝎s = −1
2
𝒆 ∶𝒘s and 𝑾 = −𝑬 ⋅𝜴 ↔ 𝜴 = −1

2
𝑬 ∶𝑾 , (A.3)

where the properties 𝒆 ∶ 𝒆 = 2 𝒊 and 𝑬 ∶𝑬 = 2 𝑰 , the spatial and material second-order unit tensors, and 𝒆 ⋅𝒆 = 2 iskw and 𝑬 ⋅𝑬 = 2 Iskw, 
the spatial and material skew-symmetric fourth-order unit tensors, hold. The spatial and material spin tensors and the corresponding 
angular velocity vectors are related as

𝒘s =𝑹 ⋅𝑾 ⋅𝑹𝑡 and 𝝎s =𝑹 ⋅𝜴 , (A.4)

transformation relations that due to the skew-symmetry of the spin tensors and the properties 𝒘s ⋅ 𝝎s = 𝝎s × 𝝎s ≡ 0 and 𝑾 ⋅𝜴 =
𝜴 ×𝜴 ≡ 0 also hold for the time derivatives of the spatial and material spin tensors and the corresponding angular velocity vectors

𝒘̇s =𝑹 ⋅ 𝑾̇ ⋅𝑹𝑡 and 𝝎̇s =𝑹 ⋅ 𝜴̇ . (A.5)

Then, consistent with 𝒘2
s =𝑹 ⋅𝑾 2 ⋅𝑹𝑡, the time derivatives of 𝒍s and 𝑨 = 𝒍s ⋅𝑹 expand as

𝒍̇s + 𝒍2s = 𝒘̇s +𝒘2
s and 𝑨̇ =𝑹 ⋅ [𝑾̇ +𝑾 2] , (A.6)

Taken together, with 𝑷 (𝑹) ≡ 0 and consequently 𝝈(𝑹) ≡ 0 ∀𝑹 ∈ SO(3) as well as with  ∶=𝑹𝑡 ⋅𝑴 , a material tensor, the equation 
of motion for the shape dynamics of a pseudo-rigid body read in equivalent formats as

[𝒘̇s +𝒘2
s ] ⋅ 𝜽 =𝒎 and [𝑾̇ +𝑾 2] ⋅𝜣 = . (A.7)

Finally, projecting with the negative of the permutation tensors 𝒆 and 𝑬, respectively, results after tedious but straightforward 
algebraic manipulations in the familiar formats for the equation of motion governing the rotational dynamics of a rigid body

𝒋 ⋅ 𝝎̇s +𝝎s × [𝒋 ⋅𝝎s] = 𝒕 and 𝑱 ⋅ 𝜴̇ +𝜴 × [𝑱 ⋅𝜴] = 𝑻 . (A.8)

Here, with 𝑩0 ∶=𝑹𝑡 ⋅ 𝒃0 and 𝑻 0 ∶=𝑹𝑡 ⋅ 𝒕0, material vectors, the external torque exerted on the rigid body follows as

𝒕 ∶= −𝒆 ∶𝒎 = ∫
𝑡
𝝃 × 𝒃𝑡 d𝑣+ ∫

𝜕𝑡
𝝃 × 𝒕𝑡 d𝑎 and 𝑻 ∶= −𝑬 ∶ = ∫

0

𝜩 ×𝑩0 d𝑉 + ∫
𝜕0

𝜩 × 𝑻 0 d𝐴 (A.9)

so that 𝒕 =𝑹 ⋅𝑻 holds (since, e.g., 𝜩 ×𝑩0 d𝑉 = [𝑹𝑡 ⋅ 𝝃] × [𝑹𝑡 ⋅ 𝒃0] d𝑉 =𝑹𝑡 ⋅ [𝝃 × 𝒃𝑡] d𝑣) and the spatial and material tensors of inertia 
19

𝒋 and 𝑱 are related to the spatial and material Euler tensors 𝜽 and 𝜣 , respectively, as
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𝒋 ∶= [𝜽 ∶ 𝒊]𝜽− 𝜽 = ∫
𝑡
𝜌s𝑡
[|𝝃|2 𝒊− 𝝃⊗ 𝝃]d𝑣 and 𝑱 ∶= [𝜣 ∶ 𝑰]𝜣 −𝜣 = ∫

0

𝜌s0
[|𝜩|2 𝑰 −𝜩 ⊗𝜩]d𝑉 . (A.10)

Observe that consistent with 𝜽 =𝑹 ⋅𝜣 ⋅𝑹𝑡 and thus 𝜽 ∶ 𝒊 ≡ 𝜣 ∶ 𝑰 also 𝒋 =𝑹 ⋅ 𝑱 ⋅𝑹𝑡 holds. Summarizing, the transition from the 
equations of motion for the shape dynamics of a pseudo-rigid body to the equations of motion for the rotational dynamics of a rigid 
body can consistently be demonstrated for the rigidity limit 𝑭 →𝑹.

Appendix B. Jeffery traction

The constant 𝑝 contributing to the Jeffery traction (fluctuation) 𝒕̃𝑡, [6], expands in terms of the constant fluid pressure 𝑝 at a 
distance to the ellipsoid (reaction pressure to the incompressibility constraint for the fluid) and further parameters detailed below as

𝑝̃ = 𝑝+ 4𝜇f [𝛼0𝐴+ 𝛽0𝐵 + 𝛾0𝐶] . (B.1)

For ellipsoidal half axes 𝑎 ≡ 𝑟1, 𝑏 ≡ 𝑟2, 𝑐 ≡ 𝑟3 > 0 the parameters 𝛼0, 𝛽0, and 𝛾0 read as

𝛼0 =

∞

∫
0

1
[𝑎2 +𝛬]Δ

d𝛬, 𝛽0 =

∞

∫
0

1
[𝑏2 +𝛬]Δ

d𝛬 and 𝛾0 =

∞

∫
0

1
[𝑐2 +𝛬]Δ

d𝛬, (B.2)

with Δ2 ∶= [𝑎2 +𝛬] [𝑏2 +𝛬] [𝑐2 +𝛬]. Furthermore, the parameters 𝐴, 𝐵, 𝐶 read as

𝐴 = 1
6
2𝛼∙0 𝑑

′
11 − 𝛽

∙
0 𝑑

′
22 − 𝛾

∙
0 𝑑

′
33

𝛼∙0 𝛽
∙
0 + 𝛽

∙
0 𝛾

∙
0 + 𝛾

∙
0 𝛼

∙
0

,

𝐵 = 1
6
2𝛽∙0 𝑑

′
22 − 𝛾

∙
0 𝑑

′
33 − 𝛼

∙
0 𝑑

′
11

𝛼∙0 𝛽
∙
0 + 𝛽

∙
0 𝛾

∙
0 + 𝛾

∙
0 𝛼

∙
0

,

𝐶 = 1
6
2 𝛾 ∙0 𝑑

′
33 − 𝛼

∙
0 𝑑

′
11 − 𝛽

∙
0 𝑑

′
22

𝛼∙0 𝛽
∙
0 + 𝛽

∙
0 𝛾

∙
0 + 𝛾

∙
0 𝛼

∙
0

.

(B.3)

Note that 𝐴, 𝐵, 𝐶 depend on the coefficients 𝑑′𝑚𝑛 = 𝑑
′
𝑛𝑚, 𝑚, 𝑛 = 1, 2, 3 of the (modified) rate of deformation tensor 𝒅 ∶= 𝒅f −𝒅s (with 

𝒅s ≡ 0 for a rigid ellipsoid) in the pFoR that is oriented along the ellipsoidal half axes as well as on the ellipsoidal half axes 𝑎, 𝑏, 𝑐 > 0
as highlighted by the definition of the parameters 𝛼∙0 , 𝛽∙0, and 𝛾 ∙0

𝛼∙0 =

∞

∫
0

𝛬

[𝑏2 +𝛬] [𝑐2 +𝛬]Δ
d𝛬, 𝛽∙0 =

∞

∫
0

𝛬

[𝑐2 +𝛬] [𝑎2 +𝛬]Δ
d𝛬 and 𝛾 ∙0 =

∞

∫
0

𝛬

[𝑎2 +𝛬] [𝑏2 +𝛬]Δ
d𝛬. (B.4)

The coefficients of 𝒔̃ contributing to the Jeffery traction (fluctuation) 𝒕̃𝑡 expand in the pFoR that is oriented along the ellipsoidal half 
axes as

𝑠̃′ = 8
𝑎𝑏 𝑐

⎡⎢⎢⎣
𝐴 𝐻 𝐺◦

𝐻◦ 𝐵 𝐹

𝐺 𝐹 ◦ 𝐶

⎤⎥⎥⎦ . (B.5)

Here, the parameters 𝐹 , 𝐺, 𝐻 and 𝐹 ◦, 𝐺◦, 𝐻◦ read as

𝐹 =
𝛽0 𝑑

′
32 − 𝑐

2 𝛼◦0 𝑤
′
32

2𝛼◦0 [𝑏
2 𝛽0 + 𝑐2 𝛾0]

𝐹 ◦ =
𝛾0 𝑑

′
32 + 𝑏

2 𝛼◦0 𝑤
′
32

2𝛼◦0 [𝑏
2 𝛽0 + 𝑐2 𝛾0]

(B.6)

𝐺 =
𝛾0 𝑑

′
13 − 𝑎

2 𝛽◦0 𝑤
′
13

2𝛽◦0 [𝑐
2 𝛾0 + 𝑎2 𝛼0]

𝐺◦ =
𝛼0 𝑑

′
13 + 𝑐

2 𝛽◦0 𝑤
′
13

2𝛽◦0 [𝑐
2 𝛾0 + 𝑎2 𝛼0]

(B.7)

𝐻 =
𝛼0 𝑑

′
21 − 𝑏

2 𝛾◦0 𝑤
′
21

2 𝛾◦0 [𝑎
2 𝛼0 + 𝑏2 𝛽0]

𝐻◦ =
𝛽0 𝑑

′
21 + 𝑎

2 𝛾◦0 𝑤
′
21

2 𝛾◦0 [𝑎
2 𝛼0 + 𝑏2 𝛽0]

. (B.8)

Note that 𝐹 , 𝐺, 𝐻 and 𝐹 ◦, 𝐺◦, 𝐻◦ depend on the coefficients 𝑑′𝑚𝑛 = 𝑑
′
𝑛𝑚 and 𝑤′

𝑚𝑛 = −𝑤′
𝑛𝑚, 𝑚, 𝑛 = 1, 2, 3 of the (modified) rate of 

deformation tensor 𝒅 ∶= 𝒅f −𝒅s (again with 𝒅s ≡ 0 for a rigid ellipsoid) and the modified spin (vorticity) tensor 𝒘 ∶=𝒘f −𝒘s (with 
𝒘s related to the solid angular velocity vector 𝝎s ∶= axl(𝒘s) for a rigid ellipsoid), respectively, all in the pFoR that is oriented along 
the ellipsoidal half axes, as well as on the ellipsoidal half axes 𝑎, 𝑏, 𝑐 > 0 as highlighted by the definition of the parameters 𝛼◦0 , 𝛽◦0 , 
and 𝛾◦0

𝛼◦ =

∞
1 d𝛬, 𝛽◦ =

∞
1 d𝛬 and 𝛾◦ =

∞
1 d𝛬. (B.9)
20

0 ∫
0

[𝑏2 +𝛬] [𝑐2 +𝛬]Δ 0 ∫
0

[𝑐2 +𝛬] [𝑎2 +𝛬]Δ 0 ∫
0

[𝑎2 +𝛬] [𝑏2 +𝛬]Δ



Journal of Computational Physics 519 (2024) 113377J. Wedel, M. Hriberšek, J. Ravnik et al.

Finally, it is noted that the integrals for 𝛼0 , 𝛽0, 𝛾0 are evaluated by a symbol manipulation code. Then 𝛼◦0 , 𝛽◦0 , 𝛾◦0 and 𝛼∙0, 𝛽∙0, 𝛾 ∙0 follow 
from [65]

𝛼◦0 =
𝛾0 − 𝛽0
𝑏2 − 𝑐2

, 𝛽◦0 =
𝛼0 − 𝛾0
𝑐2 − 𝑎2

and 𝛾◦0 =
𝛽0 − 𝛼0
𝑎2 − 𝑏2

,

𝛼∙0 =
𝑏2 𝛽0 − 𝑐2 𝛾0
𝑏2 − 𝑐2

, 𝛽∙0 =
𝑐2 𝛾0 − 𝑎2 𝛼0
𝑐2 − 𝑎2

and 𝛾 ∙0 =
𝑎2 𝛼0 − 𝑏2 𝛽0
𝑎2 − 𝑏2

.

(B.10)

Remark (Closed Form Expressions for Prolate Ellipsoids and Spheres). For prolate ellipsoids with 𝑎 > 𝑏 ≡ 𝑐 we obtain the closed form 
expressions:

𝛼0 = − 2
𝑎 [𝑎2 − 𝑏2]

+ 2
cosh−1(𝑎∕𝑏)
[𝑎2 − 𝑏2]3∕2

, 𝛽0 ≡ 𝛾0 = 𝑎

𝑏2 [𝑎2 − 𝑏2]
−

cosh−1(𝑎∕𝑏)
[𝑎2 − 𝑏2]3∕2

, (B.11)

and consequently

𝛼◦0 =
2𝑎3 − 5𝑎𝑏2

4𝑏4 [𝑎2 − 𝑏2]2
+

3cosh−1(𝑎∕𝑏)
4 [𝑎2 − 𝑏2]5∕2

, 𝛽◦0 ≡ 𝛾◦0 = 𝑎2 + 2𝑏2

𝑎𝑏2 [𝑎2 − 𝑏2]2
−

3cosh−1(𝑎∕𝑏)
[𝑎2 − 𝑏2]5∕2

, (B.12)

as well as

𝛼∙0 =
−2𝑎5 + 𝑎3 𝑏2 − 𝑏2

√
𝑎2 − 𝑏2 [𝑏2 − 4𝑎2] cosh−1(𝑎∕𝑏) + 𝑎𝑏4

4𝑏2 [𝑏2 − 𝑎2]3
,

𝛽∙0 ≡ 𝛾 ∙0 = −3𝑎
[𝑎2 − 𝑏2]2

+
[2𝑎2 + 𝑏2] cosh−1(𝑎∕𝑏)

[𝑎2 − 𝑏2]5∕2
.

(B.13)

For spheres with 𝑎 ≡ 𝑏 ≡ 𝑐 these degenerate to the closed form expressions:

𝛼0 ≡ 𝛽0 ≡ 𝛾0 = 2
3𝑎3

, 𝛼◦0 ≡ 𝛽◦0 ≡ 𝛾◦0 = 2
5𝑎5

and 𝛼∙0 ≡ 𝛽∙0 ≡ 𝛾 ∙0 = 4
15𝑎3

. (B.14)

Appendix C. Roscoe traction

With the aim to extend the traction (fluctuation) 𝒕̃𝑡 exerted by Stokes flow on an ellipsoidal rigid body, as derived by Jeffery [6], 
to an ellipsoidal and affinely deforming body, Roscoe [34], first rewrote Jeffery’s expression for 𝒕̃𝑡 as

𝒕̃𝑡 =
[
− 𝑝̃(𝒅f ) 𝒊+ 𝜇f [𝒔̃(𝒅f ,𝒘) − 2𝒅f ]

]
⋅ 𝒏

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
perturbed near-field flow

+ 2𝜇f 𝒅f ⋅ 𝒏
⏟⏞⏞⏟⏞⏞⏟

undisturbed far-field flow

, (C.1)

where 𝒅f denotes the rate of deformation tensor of the far-field flow, that, commensurate with the here assumed point-particle 
approach, is undisturbed by the presence of the ellipsoidal rigid body (recall also the definition of the modified spin (vorticity) 
tensor 𝒘 ∶=𝒘f −𝒘s). The first two terms 

[
− 𝑝̃ 𝒊+ 𝜇f [𝒔̃− 2 𝒅f ]

]
then capture the contribution by the perturbed near-field flow, i.e. 

perturbed due to the presence of an ellipsoidal rigid body, whereas the last term 2 𝜇f 𝒅f is merely due to the undisturbed far-field 
flow. Then Roscoe [34] argued that the perturbed near-field flow due to an ellipsoidal deformable body is the same as that due to 
an ellipsoidal rigid body in a modified far-field flow, whereas the undisturbed far-field flow is unchanged. Concretely, he found that 
in order to capture the additional contribution to 𝒕̃𝑡 due to the deforming surface of an affinely deformable ellipsoidal body, 𝒅f in 
the Jeffery expression for the perturbed near-field flow need to be replaced by 𝒅 ∶= 𝒅f − 𝒅s, whereas it remains unchanged in the 
undisturbed far-field flow. Taken together, this rationale renders eventually the remarkably simple final expression for the Roscoe 
traction (fluctuation) as

𝒕̃𝑡 =
[
− 𝑝̃(𝒅) 𝒊+ 𝜇f [𝒔̃(𝒅,𝒘) + 2𝒅s]

]
⋅ 𝒏 . (C.2)

Here, 𝑝̃(𝒅) and 𝒔̃(𝒅) are as given by Jeffery [6], see Appendix B, when evaluated in terms of the modified far-field flow with rate of 
deformation tensor 𝒅 ∶= 𝒅f − 𝒅s (and spin (vorticity) tensor 𝒘 ∶=𝒘f −𝒘s) in the pFoR that is oriented along the half axes of the 
deformed ellipsoid.

Appendix D. Brenner drag translational resistance tensor

For prolate spheroidal ellipsoids the coefficients of the translational resistance tensor 𝒌 in the pFoR can be determined analytically 
and result in terms of their aspect ratio 𝜆 ∶= 𝑟max∕𝑟min with 𝑟max = 𝑟1 = 𝑎 and 𝑟min = 𝑟2 = 𝑏 ≡ 𝑟3 = 𝑐 as

𝑘′11 =
8 [𝜆2 − 1]3∕2( √ ) √ , (D.1)
21

[2𝜆2 − 1] ln 𝜆+ 𝜆2 − 1 − 𝜆 𝜆2 − 1



Journal of Computational Physics 519 (2024) 113377J. Wedel, M. Hriberšek, J. Ravnik et al.

𝑘′22 ≡ 𝑘′33 = 16 [𝜆2 − 1]3∕2

[2𝜆2 − 3] ln
(
𝜆+

√
𝜆2 − 1

)
+ 𝜆

√
𝜆2 − 1

. (D.2)

For spheres 𝒌 degenerates to a spherical tensor with 𝑘′11 = 𝑘
′
22 = 𝑘

′
33 = 6. For arbitrary superellipsoids (including general ellipsoids 

but also cube and diamond-like shapes) one can obtain the translational resistance coefficient matrix 𝑘′ in the pFoR using the 
superellipsoid surrogate approach by Štrakl et al., [66,67]. The coefficient matrix 𝑘′ of the translational resistance tensor 𝒌 in the 
pFoR is related to its counterpart 𝑘 in the iFoR via the rotation matrix 𝑄 ∶= [𝑄𝑎𝐵] = [𝒏𝑎 ⋅𝑬𝐵] as

𝑘′ =𝑄𝑘𝑄𝑇 . (D.3)

Appendix E. Algorithm: implicit-explicit time integrator

Initialize First Increment:

• Set 𝒙0c = 0, 𝒗0c = 0 and 𝑭 0 = 1, 𝑨0 = 0 and 𝒏0𝑎 =𝑬𝐴, 𝑄0
𝑎𝐵

= 𝛿𝑎𝐵 , 𝑟0𝑎 =𝑅, 𝑎, 𝐴, 𝐵 = 1, 2, 3
Increment Loop 𝑛 = 0, ⋯ , 𝑁 − 1
Pre-Process Increment:

• Read given fluid velocity and its spatial gradient from flow simulator 𝒖𝑛+1 and 𝒍𝑛+1f
• Compute coefficients in pFoR 𝑙′f

⋆
𝑎𝑏
= 𝒏𝑛𝑎 ⋅ 𝒍

𝑛+1
f ⋅ 𝒏𝑛

𝑏
, 𝑎, 𝑏 = 1, 2, 3

• Compute spatial solid velocity gradient 𝒍𝑛s =𝑨
𝑛 ⋅ [𝑭 𝑛]−1

• Compute coefficients in pFoR 𝑙′s
𝑛
𝑎𝑏
= 𝒏𝑛𝑎 ⋅ 𝒍

𝑛
s ⋅ 𝒏

𝑛
𝑏
, 𝑎, 𝑏 = 1, 2, 3

• Compute Cauchy-type stress 𝝈̃⋆ = 𝝈̃(𝑟𝑛𝑎, 𝑙
′
s
𝑛
𝑎𝑏
, 𝑄𝑛

𝑎𝐵
; 𝑙′f
⋆
𝑎𝑏
) with 𝜎̃⋆

𝐴𝐵
= 𝜎̃′⋆𝑚𝑛 𝑄

𝑛
𝑚𝐴
𝑄𝑛
𝑛𝐵

, 𝑎, 𝐴, 𝐵, 𝑚, 𝑛 = 1, 2, 3
Process Increment:

• Update distortion 𝑭 𝑛+1 = arg
{
𝑭 𝑛+1 − 𝑭 𝑛 −Δ𝑡 𝑨𝑛 −Δ𝑡2 vol(0) 

[
𝑷̃ ⋆(𝑭 𝑛+1; 𝝈̃⋆) − 𝑷 (𝑭 𝑛+1)

]
⋅𝜣−1 ≐ 0

}
• Update mass-specific reduced gravity force 𝒂𝑛+1G = 𝛽𝑡(𝑭 𝑛+1) 𝒈

• Update Eulerian principal directions 𝒏𝑛+1𝑎 = eigenvec
{
𝑭 𝑛+1 ⋅ [𝑭 𝑛+1]𝑡

}
, 𝑎 = 1, 2, 3

• Update rotation matrix from iFoR to pFor 𝑄𝑛+1
𝑎𝐵

= 𝒏𝑛+1𝑎 ⋅𝑬𝐵 , 𝑎, 𝐵 = 1, 2, 3

• Update principal values 𝜆𝑛+1𝑎 = eigenval
{
𝑭 𝑛+1 ⋅ [𝑭 𝑛+1]𝑡

}
, 𝑎 = 1, 2, 3

• Update half axes 𝑟𝑛+1𝑎 = 𝜆𝑛+1𝑎 𝑅, 𝑎 = 1, 2, 3
• Update drag resistance tensor 𝒌𝑛+1 = 𝒌(𝑟𝑛+1𝑎 , 𝑄𝑛+1

𝑎𝐵
) with 𝑘𝑛+1

𝐴𝐵
= 𝑘′𝑛+1𝑚𝑛 𝑄

𝑛+1
𝑚𝐴
𝑄𝑛+1
𝑛𝐵

, 𝑎, 𝐴, 𝐵, 𝑚, 𝑛 = 1, 2, 3

• Update barycenter position 𝒙𝑛+1c = [𝒊+Δ𝑡∕𝜏D 𝒌𝑛+1]−1 ⋅
[
𝒙𝑛c + Δ𝑡 𝒗𝑛c + Δ𝑡2 𝒂𝑛+1G +Δ𝑡∕𝜏D 𝒌𝑛+1 ⋅ [Δ𝑡 𝒖𝑛+1 + 𝒙𝑛c]

]
Post-Process Increment:

• Update 𝒗𝑛+1c = [𝒙𝑛+1c − 𝒙𝑛c]∕Δ𝑡
• Update 𝑨𝑛+1 = [𝑭 𝑛+1 − 𝑭 𝑛]∕Δ𝑡

Initialize Next Increment:

• Set 𝒙𝑛c ← 𝒙𝑛+1c , 𝒗𝑛c ← 𝒗𝑛+1c and 𝑭 𝑛 ← 𝑭 𝑛+1, 𝑨𝑛←𝑨𝑛+1 and 𝒏𝑛𝑎 ← 𝒏𝑛+1𝑎 , 𝑄𝑛
𝑎𝐵

←𝑄𝑛+1
𝑎𝐵

, 𝑟𝑛𝑎 ← 𝑟𝑛+1𝑎 , 𝑎, 𝐵 = 1, 2, 3
End Increment Loop

Note that the employed Newton Raphson converges quadratically and typically in 3 iterations to take the residual below 1e-12.

Appendix F. Discussion on the efficiency of the novel pseudo-rigid particle approach

In order to assess the efficiency of the novel pseudo-rigid approach to soft particles, we here compare the computational effort 
to more standard discretization approaches such as for example the boundary element method (boundary only discretization) or the 
finite element method (volume discretization).

We would like to point out that, based on our own experience with discretizing (rigid) particles (see [18]), we have found that a 
surface mesh for a boundary element discretization with about 3000 elements is required for a reasonable shape approximation. If 
we combine this with a volume discretization, the computational effort increases even more drastically. Table F.1 presents selected 
particles employed in [18] alongside the corresponding required mesh resolution and computational time. As highlighted, for a 
spherical particle, i.e. a particle with aspect ratios 𝜆1 = 𝜆2 = 1, we required 3206 elements, and the computation time to determine 

Table F.1

Computation time for specific particles em-
ployed in our previous work, see [18].

Particles 𝜆1 𝜆2 n1 𝑡 [s]

1 1 1 3206 56
2 3 1 3254 70
3 4 2 3998 120
22

1 Number of mesh elements.
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the surface tractions in our boundary element code was 56 seconds. For a prolate ellipsoid with 𝜆1 = 3, 𝜆2 = 1, we required a mesh 
element count of 3254 and a simulation time of 70 s. For a triaxial ellipsoid with 𝜆1 = 4, 𝜆2 = 2, we require 3998 mesh elements 
and a simulation time of 120 s to obtain the forces exerted on the particle surface. Furthermore, if the particle shape changes and 
the particle elongates due to the surface tractions an adaptive algorithm would be required to adjust the particle mesh during the 
simulation, which would further increase the computational effort. To conclude, we estimated that a particle resolved simulation 
would require an additional computational time of the order of 102 seconds per particle per time step. This makes such an approach 
infeasible for large number of particles. In contrast, our point particle approach, requires approximately 0.00030 s per particle per 
time step making it possible to run simulations with millions of particles.

To summarize, compared to the computational burden when the particle is discretized, our novel pseudo-rigid body approach 
comes at negligible costs.
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