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Abstract This contribution deals with fluid flow-particle interactions in fluid dom-
inated two phase flows. Spherical as well as non-spherical particles in form of pro-
late ellipsoids are considered. In the case of ellipsoids, the hydrodynamic drag force
model based on the Brenner-type resistance tensor is applied. As high shear flow
regions are frequently encountered in complex flow patterns, special attention is
devoted to the extension of established shear lift models, that are only valid for spe-
cial cases of shear flows, to a general shear lift model based on permutations of
the lift tensor, originally derived by Harper and Chang. A generalized lift vector,
valid for ellipsoidal particles, is derived and implemented for the computation of
the lift force in general shear flows. The derived generalized shear lift force model
is validated against other numerical models for ellipsoids in Couette flow, and its
influence on the translational motion of ellipsoidal particles in a three-dimensional
lid-driven cavity flow is studied. The computational results confirm the correctness
of the proposed generalized shear lift model.
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1 Introduction

Fluid flows with dispersed solid particles are increasingly important in several fields
of sciences, e.g. life sciences, natural sciences, medical sciences and engineering
sciences. Processing of suspensions with fibres in the pulp industry [18], regulating
heat transfer by use of particles with favorable thermal properties [15], magnetic
separation of particles from the matrix fluid [21], [31], and waste water treatment
[14] are only a few of many applications. Dispersed flows consist of particles (drops,
bubbles, solids) that move in a continuous phase (air, water). Particles interact with
the fluid flow, i.e. in general, they exchange mass, linear and angular momentum,
and energy. Among the interactions that predominantly influence a particle trajec-
tory, the linear momentum exchange is typically the most important one. However,
in cases of high shear flow fields and/or rotating particles, angular momentum can
also play an important role and can in general not be neglected.

The influence of the particles on the fluid flow and the collisions between parti-
cles cannot be ignored. However, in the case of dilute suspensions we may reason-
ably ignore particle-particle interactions and limit our considerations to the particle-
fluid system. This leads to the fundamental theory of non-colloidal suspensions,
which aims to provide reduced scale models for the two-way coupling between par-
ticles and the fluid flows [4]. Also, in cases of small particles (micro and nano sized)
modelling of particle-fluid interactions is unavoidable, as one can not afford to fully
resolve flow structures in the vicinity of the particles. In order to develop accurate
computational tools for the particle-fluid interaction, one needs to implement the
appropriate constitutive models for the interaction of the two phases.

2 Particle-fluid interaction in fluid dominated flows

In the case of solid particles or micro sized bubbles and drops the shape of a particle
is not affected by the flow field, therefore the particles can be considered to be rigid
particles, immersed in the fluid phase. As the flow field is typically described in the
Eulerian frame of reference, the relative motion of the particulate phase with respect
to the fluid phase favours the implementation of the Lagrangian frame of reference
for the computation of the particle dynamics. In this case, the action of the fluid
flow on the dispersed phase can be accounted for by the well established Lagrangian
particle tracking method. Here the particle position is obtained by solving additional
equations for the particle kinematics (relation between the configurational variables
and their velocities) and the particle dynamics (balances of momenta) [20].

In the case of dilute suspensions, the effect of the dispersed phase on the fluid
phase is weak, establishing conditions where only the influence of the fluid flow on
the dispersed particles needs to be accounted for, i.e. the one-way coupling interac-
tion is governing the motion of particles. In this case, the computational framework
for the particle-fluid interaction can be split subsequently into the computation of
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the viscous fluid flow field, and the computation of the fluid flow’s momentum ex-
change with the particles.

2.1 Viscous fluid flow

The computation of the numerical solution is predominantly performed in the Eu-
lerian framework, where the flow field is typically described in terms of velocity
and pressure fields. For fluid flow, the total change of a flow quantity in the control
volume is due to the interaction with the surroundings of the control volume, i.e.
due to surface and volumetric effects. Considering the net mass balance in a control
volume leads to the continuity equation

∂ρ f

∂ t
+∇ · [ρ f u] = 0, (1)

where ρ f is the fluid density and u is the fluid velocity. The continuity equation
simplifies to ∇ ·u = 0 for incompressible fluids.

Considering transport of momentum in a incompressible Newtonian fluid leads
to the following momentum conservation equation

∂u
∂ t

+[u ·∇]u = f f −
1

ρ f
∇p+ν∇

2u, (2)

where ν is the fluid kinematic viscosity, p is the fluid pressure and f f are volumetric
source terms and fluid-particle interaction momentum exchange terms.

The evaluation of the translational momentum exchange between particles and
fluid depends mainly on the data of the velocity field, whereas in the case of rota-
tional momentum exchange (angular momentum, moment of momentum) it is es-
sentially based on the vorticity field. As in the case of high shear flows there is also
a strong influence of the vorticity field on the translational momentum exchange,
the detailed information on the vorticity field,

w = ∇×u (3)

being the curl of the velocity field, is also needed. The accuracy of the particle track-
ing scheme thus depends on the accurate calculation of velocity and vorticity fields.
In the case of fluid dominated two-phase flows the contribution of the momentum
exchange term f f due to particle-fluid interactions is zero.
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2.2 Particle dynamics

The trajectory of a particle is a result of its interaction with the fluid flow, which in
fluid dominated flows determines its translational and angular velocity. In the case
of small particles, typically in the micro and sub-micro range, the particles behave
like rigid bodies, i.e. the deformation of a particle can be neglected. In order to
determine the trajectory, particle transport is computed in the Lagrangian framework
by particle tracking. Local values of velocity, vorticity and pressure in the fluid
phase and their difference to the state of the particle determine transport phenomena
between the dispersed and the fluid phase.

The particle linear momentum conservation equation is

d
dt
(mpv) = mp

dv
dt

= mpg+F (4)

where mp is the mass of the particle, v is the particle velocity, g is the gravity acceler-
ation and F is the fluid force acting on the particle. The particle angular momentum
conservation is

d
dt
(Ip ·ω) = Ip ·

dω

dt
+ω× [Ip ·ω] = T (5)

where Ip is the particle moment of inertia tensor, ω is the particle angular velocity
and T is the torque acting on the particle. Equations (4) and (5) enable determination
of the change of velocities, which can then be applied to determine the new trans-
lational and angular positions of the particle by solving the kinematics equations.
Translational kinematics is expressed using the particle barycentre position vector r
as:

dr
dt

= v. (6)

In order to avoid singularity issues associated with the use of Euler angles rotational
kinematics is usually expressed in terms of the time evolution of the Euler param-
eters [e0, e1, e2, e3]. The time evolution of the Euler parameters is connected to
particle angular velocity expressed in the particle frame of reference.

2.3 Momentum transfer in particle-fluid interaction

The differences in velocity of the particle and the fluid velocity in the vicinity of
the particle give rise to linear momentum exchange and in the case of angular ve-
locity to angular momentum exchange. In fluid dominated flows,the fluid affects the
trajectory of the particle but the particle doesn’t influence the fluid flow, i.e. one-
way coupling. In the ideal case, the resolved stresses on the surface of the particle
are the only information needed to determine the impact of the flow on the particle
dynamics.
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2.3.1 Direct coupling

In fluid dominated flows, correct and accurate determination of the transfer of linear
and angular momentum from the fluid to the rigid body presents the main mod-
elling task. For direct coupling, one simultaneously integrates the Navier-Stokes
equations, governing the fluid motion, and the equations of the rigid body motion,
governing the motion of particles.

The linear momentum transfer from the fluid to the particle is encapsulated in the
fluid force F, acting on the particle. It is the integral over the particle surface of the
traction σ ·n exerted from the fluid onto the particle surface Γp

F =
∫

Γp

σ ·ndΓp =
∫

Γp

[
−pn+ρ f ν

[
∇u+∇uT ] ·n]dΓp (7)

with n the normal particle surface vector.
The angular momentum transfer from the fluid to the particle is encapsulated in

the torque T, acting on the particle. The torque is the integral of the moment of the
traction vector. As the particle is embedded in the fluid, at the surface of the particle
no-slip conditions are applied, i.e. the fluid velocity is the same as the velocity at
the particle surface,

u = v+ω× rp, (8)

where rp is a vector originating at the particle barycentre and pointing towards parti-
cle surface. In the above equations, the body can have an arbitrary shape, discretized
by a suitable surface mesh.

Although the direct coupling eliminates the need to introduce specific models
for different phenomena in momentum transfer, it is extremely expensive in terms
of computational cost, when particle sizes are very small or when there are large
numbers of particles to be tracked. The flow domain in the vicinity of the particle,
as well as the particle surface, need to be correctly discretized, and the movement of
the particles requires changes to the computational grid to be made during compu-
tations. In order to avoid this problem dedicated interaction models are developed
and predominantly used in numerical simulations.

2.3.2 Coupling by dedicated interaction models

As already stated, in the case of small particles (micro, nano-sized particles) a direct
computation of fluid-particle interaction is practically not feasible, as flow and par-
ticle surface resolution demands would be computationally extremely expensive.
In order to overcome this problem, simplified models for the computation of the
particle dynamics in fluid flow have to be implemented.

If particles are considered with diameters much smaller than the length scales of
the smallest flow structures, there is no need to directly resolve the particle surface,
and the point particle approximation can be implemented. In this case, the flow do-
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main does not include particles, the interaction with the particulate phase is merely
included in the source term f f in equation (2).

Since the particle is considered as a point particle, the physical models for the
evaluation of forces (and torques) on the particle rely on the velocity and vorticity
fields evaluated at the position of the particle. The overall action of the fluid flow
on the particle, in direct coupling evaluated by solving equation (7), is now decom-
posed into specific phenomena described by different models. In the translational
momentum balance for the dispersed phase this means that each specific phenom-
ena is described by a force model, and all the forces are assumed to be linearly
additive. In general, particles move due to the additive action of gravity, buoyancy,
drag, pressure gradient and added mass forces.

In a shear flow, an additional force, the so-called Saffman lift force [23, 24, 28, 5],
occurs, which acts perpendicular to the flow direction. Its magnitude and direction
are related directly to the local value of the vorticity of the fluid, and it acts on
both non-rotating and rotating particles. Moreover, particle rotation gives rise to
additional forces, most notably the Magnus lift force, influencing the translational
motion of a particle. When the particle is also rotating, the angular momentum equa-
tion must therefore additionally be solved in order to capture the effect of particle
orientation and particle rotation.

In order to track the particle’s translational and rotational motion the particle
position, the particle velocity, the particle orientation and the angular velocity of the
particle have to be advanced in time in each computational step.

Dynamics of translational motion

Maxey and Riley [19] considered the forces on a small rigid sphere in a nonuniform
flow and derived a consistent approximation for the equation of motion. They treated
forces in the undisturbed flow and the flow disturbance caused by the presence of the
sphere, separately. Brenner [1] developed the drag expression for arbitrary particles.
Neglecting the aerodynamic lift, time history effects, second-order terms and due to
the small particle size, we may write

mp
dv
dt

= [mp−m f ]g+m f
Du
Dt
− 1

2
m f

[
dv
dt
− du

dt

]
+πaρ f νK · [u−v]+F. (9)

where a is the semi-minor axis of ellipsoidal particles. The terms included in the
equation are gravity, buoyancy, pressure gradient term, added mass term and drag
(skin friction and form drag). Here, d/dt = ∂/∂ t + [v · ∇] stands for the time
derivative following the particle, i.e. the material time derivative of the particle and
D/Dt = ∂/∂ t +[u ·∇] denotes the time derivative following the fluid element, i.e.
the material time derivative of the fluid. K is the resistance tensor in direct notation,
its coefficient are typically expressed with respect to the Eulerian (inertial) frame
of reference, and F now stands for additional forces, acting on a particle (e.g. lift
force).



On Constitutive Models for the Momentum Transfer 7

Let us now consider prolate ellipsoidal particles with semi-minor axis a and semi-
major axis b. The aspect ratio of the ellipsoid is λ = b/a. The density of the particle
is ρp and the mass of fluid occupying the same volume as the particle is denoted by
m f . The volume of the particle is Vp =

4
3 πa2b = 4

3 πa3λ and its mass is related to its
density as mp =

4
3 πa3λρp.

Equation (9) is rewritten in non-dimensional form with u0 and L being the charac-
teristic fluid velocity scale and the characteristic problem length scale, respectively.
With u→ u/u0, v→ v/u0 and t→ tu0/L this eventually leads to

a =
dv
dt

=
A
St

[
vs +

1
6λ

K · [u−v]
]
+

3
2

R
∂u
∂ t

+R
[
[u+

1
2

v] ·∇
]

u+ f (10)

where a is the particle acceleration and the Stokes number St is defined as

St =
2
9

ρp

ρ f

a2u0

νL
, (11)

the sedimentation velocity is

vs =
2a2

9νu0

[
ρp

ρ f
−1
]

g, (12)

and the parameters R and A are

R =
ρ f

ρp +
1
2 ρ f

, A =
ρp

ρp +
1
2 ρ f

. (13)

The ellipsoidal particle response time was introduced by Shapiro and Goldenberg
[26] as

τp =
2
9

ρp

ρ f

a2

ν

λ ln(λ +
√

λ 2−1)√
λ 2−1

, (14)

Since the characteristic fluid time scale is τ f = L/u0, we may write the ellipsoid
particle Stokes number as

Ste = St
λ ln(λ +

√
λ 2−1)√

λ 2−1
. (15)

The hydrodynamic drag force, i.e. the term πaρ f νK · [u−v] in equation (9), act-
ing on an ellipsoidal particle under Stokes flow conditions was derived by Brenner
[2]. It introduces the resistance tensor, which may be evaluated in the particle frame
of reference [x′,y′,z′]. In the particle frame of reference, only diagonal components
of the resistance tensor K are non-zero. They are a function of the particle aspect
ratio and may be written as:

K′x′x′ = K′y′y′ =
16[λ 2−1]3/2

[2λ 2−3] ln(λ +
√

λ 2−1)+λ
√

λ 2−1
(16)
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K′z′z′ =
8[λ 2−1]3/2

[2λ 2−1] ln(λ +
√

λ 2−1)−λ
√

λ 2−1
(17)

In the spherical particle limit limλ→1[K]′, one has 6[I], where I is the identity tensor.
In order to express the coefficients of the resistance tensor in terms of the inertial

reference frame, they must be rotated with respect to the current orientation of the
particle. The rotation matrix, V, is used in the following way:

[K] = [VT ][K]′[V], (18)

where VT is the transpose (inverse) of the rotation matrix, and [K], [K]′ denote the
coefficients of K in the inertial and the particle rotational frame of reference.

Orientation in space may be parameterized by the Euler angles [ϕ,θ ,ψ]. How-
ever, when kinematic relations between the angles and angular velocity are set up,
we observe (Fantoni [7]) that a singularity exists for θ = 0 and θ = π . To avoid this
problem, we express the orientation and the kinematic relations in terms of the Euler
parameters instead. The Euler parameters (Goldstein [11]) are linked by a constraint

e2
0 + e2

1 + e2
2 + e2

3 = 1. (19)

In the inertia frame the rotation matrix written in terms of the Euler parameters reads

[V] =

 e2
0 + e2

1− e2
2− e2

3 2[e1e2 + e0e3] 2[e1e3− e0e2]
2[e1e2− e0e3] e2

0− e2
1 + e2

2− e2
3 2[e2e3 + e0e1]

2[e1e3 + e0e2] 2[e2e3− e0e1] e2
0− e2

1− e2
2 + e2

3

 (20)

Subjecting spherical particles to high shear velocity the transverse lift force has
to be accounted for [5, 23, 24, 28]

FSL = 6.46ρ f a2√
ν

1√
|w|

[[u−v]×w] (21)

Equation (21) is the well known Saffman lift force, and was further extended by
Harper and Chang [12], Hogg [13] and Fan and Ahmadi [6] for non-spherical parti-
cles.

In a general shear flow, there exist six shear flows in the non-diagonal com-
ponents of the velocity gradient tensor G with coefficients ∂ui/∂ j (i, j ∈ {x,y,z},
i 6= j):

[G] =


∂ux

∂x
∂ux

∂y
∂ux

∂ z
∂uy

∂x
∂uy

∂y
∂uy

∂ z
∂uz

∂x
∂uz

∂y
∂uz

∂ z

 (22)

In the case of linear shear flow, only one non-diagonal component of the velocity
gradient tensor has a non-zero value. Harper and Chang [12] derived a lift force for
arbitrary three-dimensional rigid bodies moving in a linear shear flow ∂ux/∂ z at low
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Reynolds numbers as:

FSL =
1

ρ f ν3/2

∂ux/∂ z

|∂ux/∂ z|1/2 D ·Lxz ·D · [uL−v] (23)

where uL = [ux, 0, 0] is the reference flow for the lift, and the Stokes drag FD,Stokes =
D · [uL−v]. The lift tensor, calculated by asymptotic methods, in a linear shear flow
∂ux/∂ z is found to be [12]

[Lxz] =

0.0501 0 0.0329
0 0.0373 0

0.0182 0 0.0173

 (24)

In the case of spherical particles D = 6πρ f νaI, equation (23) can be written as:

FSL = 36π
2
ρ f a2√

ν
∂ux/∂ z

|∂ux/∂ z|1/2 Lxz · [uL−v] (25)

In the case of ellipsoidal particles D = πaρ f νK, one can then write the shear lift
force found by Harper and Chang [12] for an ellipsoidal particle in the linear shear
flow ∂ux/∂ z as

FSL = π
2
ρ f a2√

ν
∂ux/∂ z

|∂ux/∂ z|1/2 K ·Lxz ·K · [uL−v] (26)

Fan and Ahmadi [6] proposed an expression for the lift force acting on an ellip-
soid in a different linear shear flow ∂ux/∂y, which can be expressed as:

FSL = π
2
ρ f a2√

ν
∂ux/∂y

|∂ux/∂y|1/2 K ·Lxy ·K · [uL−v] (27)

where the lift tensor Lxy, is a permuted version of Lxz, is given by

[Lxy] =

0.0501 0.0329 0
0.0182 0.0173 0

0 0 0.0373

 (28)

However, the above models of shear lift force of non-spherical particles are only
applicable to linear shear flows. In the following, we propose a new lift force model
for arbitrary shear flow. This model was originally developed by Ravnik et al. [22]
and is further extended on by the present study. A similar model has been presented
by Feng and Kleinstreuer [8]. In case of arbitrary shear flow, six equations like (26)
and (27) are needed to describe a general shear flow and six permutations of lift
tensors exist as well,
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[Lxy] =

 A B 0
D E 0
0 0 C

 [Lxz] =

 A 0 B
0 C 0
D 0 E

 (29)

[Lyx] =

E D 0
B A 0
0 0 C

 [Lyz] =

C 0 0
0 A B
0 D E

 (30)

[Lzx] =

E 0 D
0 C 0
B 0 A

 [Lzy] =

C 0 0
0 E D
0 B A

 (31)

where

A = 0.0501, B = 0.0329,C = 0.0373, D = 0.0182, E = 0.0173. (32)

In the following we propose a generalized lift vector l, defined as

[l] =
[

∂ux/∂y
|∂ux/∂y|1/2 K ·Lxy ·K+

∂ux/∂ z
|∂ux/∂ z|1/2 K ·Lxz ·K

]
·

ux− vx
− vy
− vz

+
[

∂uy/∂x
|∂uy/∂x|1/2 K ·Lyx ·K+

∂uy/∂ z
|∂uy/∂ z|1/2 K ·Lyz ·K

]
·

 − vx
uy− vy
− vz

+
[

∂uz/∂x
|∂uz/∂x|1/2 K ·Lzx ·K+

∂uz/∂y
|∂uz/∂y|1/2 K ·Lzy ·K

]
·

 − vx
− vy

uz− vz

 (33)

The lift force on a particle in a general shear flow can then be expressed by

FSL = π
2
ρ f a2√

ν l (34)

The underlying idea is quite simple, i.e. sum of six shear lift forces. For the
limiting case of a spherical particle with λ → 1 one can obtain K ·Lij ·K = 36Lij.
It should be noted that the j-component lift force induced by the velocity difference
in the i-direction as evaluated from equations (33) and (34) agrees with the result
of Saffman (Eq. 21), i.e. 36π2D = 6.46, which corresponds to the finding of Harper
and Chang [12] and Fan and Ahmadi [6]. In order to prevent numerical errors under
the condition that ∂ui/∂ j = 0, it is suggested adding a small value, i.e. 1.0e−18, to
the root of the equation (33).

The lift tensor Lij is applicable for any arbitrarily shaped 3D body [12] and is
used to determine the shear lift force for an ellipsoidal particle by applying K ·Lij ·K.
The orientation of the ellipsoid is taken into account by equation (18). Therefore,
the generalized shear lift force is applicable for particles with ellipsoidal and fibre
shapes at low Reynolds numbers.
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Dynamics of rotational motion

The rotational motion of a nonspherical particle moving in a flow field is governed
by

Ix′
dωx′

dt
−ωy′ωz′ [Iy′ − Iz′ ] = Tx′ (35)

Iy′
dωy′

dt
−ωz′ωx′ [Iz′ − Ix′ ] = Ty′ (36)

Iz′
dωz′

dt
−ωx′ωy′ [Ix′ − Iy′ ] = Tz′ (37)

where ωx′ , ωy′ , ωz′ are the particle angular velocities with respect to the principal
axes, Ix′ , Iy′ , Iz′ are the particle moments of inertia about the principal axes [x′, y′,
z′], i.e. the principal components of the particle’s inertia tensor, and Tx′ , Ty′ , Tz′ are
the hydrodynamic torques acting on the particle with respect to the principal axes.
The rotational motion of the particle in equations (35) - (37) is stated in the particle
reference frame.

The moments of inertia for an ellipsoid are

Ix′ = Iy′ =
[1+λ 2]a2

5
mp =

4π

15
λ [λ 2 +1]a5

ρp (38)

Iz′ =
2a2

5
mp =

8π

15
λa5

ρp (39)

The flow near a small particle may be approximated as a linear shear flow. The
hydrodynamic torque acting on an ellipsoidal particle suspended in a linear shear
flow was derived by Jeffery [16]. In the particle reference frame, we have

Tx′ =
16πρ f νa3λ

3[β0 +λ 2γ0]

[
[1−λ

2] f ′+[1+λ
2][ξ ′−ωx′ ]

]
(40)

Ty′ =
16πρ f νa3λ

3[α0 +λ 2γ0]

[
[λ 2−1]g′+[1+λ

2][η ′−ωy′ ]
]

(41)

Tz′ =
32πρ f νa3λ

3[α0 +β0]
[χ ′−ωz′ ] (42)

where f ′, g′ are elements of the deformation rate tensor D := Gsym and ξ ′, η ′ and
χ ′ are elements of the spin tensor W := Gskw with w the axial vector of W, defined
as

f ′ =
1
2

[
∂uz′

∂y′
+

∂uy′

∂ z′

]
, g′ =

1
2

[
∂ux′

∂ z′
+

∂uz′

∂x′

]
(43)

ξ
′ =

1
2

[
∂uz′

∂y′
−

∂uy′

∂ z′

]
, η

′ =
1
2

[
∂ux′

∂ z′
− ∂uz′

∂x′

]
, χ

′ =
1
2

[
∂ux′

∂y′
−

∂uy′

∂x′

]
(44)
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In order to evaluate these terms, the velocity gradient tensor G must be rotated into
the particle frame of reference using the rotation matrix as

[G]′ = [V] [G] [VT ] (45)

The nondimensional coefficients α0, β0 and γ0 were defined by Gallily and Cohen
[10] as

α0 = β0 =
λ 2

λ 2−1
+

λ

2[λ 2−1]3/2 ln

(
λ −
√

λ 2−1
λ +
√

λ 2−1

)
(46)

λ
2
γ0 =−

2λ 2

λ 2−1
− λ 3

[λ 2−1]3/2 ln

(
λ −
√

λ 2−1
λ +
√

λ 2−1

)
(47)

Inserting moments of inertia (38) - (39) and torques (40) - (42) into the equations
of motion (35) - (37) and nondimensionalizing we obtain the governing equations
for the rotational motion of ellipsoidal particles:

dωx′

dt
= ωy′ωz′

λ 2−1
1+λ 2 +

20ν

a2[β0 +λ 2γ0]

ρ f

ρp

L
u0

[
1−λ 2

1+λ 2 f ′+[ξ ′−ωx′ ]

]
(48)

dωy′

dt
= ωz′ωx′

1−λ 2

1+λ 2 +
20ν

a2[α0 +λ 2γ0]

ρ f

ρp

L
u0

[
λ 2−1
1+λ 2 g′+[η ′−ωy′ ]

]
(49)

dωz′

dt
=

20ν

a2[α0 +β0]

ρ f

ρp

L
u0

[χ ′−ωz′ ] (50)

Kinematics

The translational displacement of the particle is linked to its velocity,

dr
dt

= v. (51)

In the rotational part of the kinematics, the time evolution of the Euler parameters is
related to the angular velocity of the particle in the particle frame of reference, ωi′ ,
and is given by

de0

dt
=

1
2
[−e1ωx′ − e2ωy′ − e3ωz′ ] (52)

de1

dt
=

1
2
[ e0ωx′ − e3ωy′ + e2ωz′ ] (53)

de2

dt
=

1
2
[ e3ωx′ + e0ωy′ − e1ωz′ ] (54)

de3

dt
=

1
2
[−e2ωx′ + e1ωy′ + e0ωz′ ] (55)
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Numerical solution of the momentum equations (9), (34), (48) - (50) and kine-
matics equations (51)-(55) is needed in order to obtain the time evolution of the
particle trajectories, and the backward Euler method is applied for numerical inte-
gration of equations.

3 Validation - particle transport in Couette and lid-driven cavity
flows

The developed Lagrangian particle tracking model is validated for two well-known
fluid benchmark test cases in order to understand the reliability and accuracy of the
above models for ellipsoidal particles. The first numerical validation is performed
for the case of Couette flow by comparing the present model results with results for
spheres as well as Harper and Chang’s lift model [12] results. Moreover, in order
to validate the developed models for the case of a complex fluid flow, the results
are compared to the experimental results by Tsorng et al. [29], who studied particle
motion in a lid-driven cavity flow.

3.1 Simulation setup

All fluid flows in this numerical simulations are assumed to be stationary, and the
particle influence on the fluid flow is neglected, leading to a one-way coupling of
the fluid and particles. Due to low Reynolds number values the flow is considered
laminar. The models considered for the kinematics and dynamics of the motion of
ellipsoidal particles as summarized in section 2.3.2 are also used for the case of a
spherical particle by setting the aspect ratio to one. Additional numerical models
for spherical particles used for the numerical validation are introduced later in this
section.

As the fluid-particle coupling is considered as a one-way coupling, prior to the
Lagrangian particle tracking, numerical computation of the stationary flow fields
(see Figure 1), i.e. Couette and lid-driven cavity flow, is conducted using the open-
source code OpenFOAMr [30]. The cubic domain for both flow conditions is iden-
tical with the same edge length: L = 0.1m. For the lid-driven cavity case, the flow
conditions are the same as used in the experimental study of Tsorng et al. [29]. The
upper wall is moving with a constant velocity of U0 = 0.0813m/s in order to in-
duce the shear flow in the cavity, with the resulting value of the Reynolds number
Re = µU0/L = 470. For lid-driven cavity flow at all other faces the non-slip bound-
ary conditions are applied; for the Couette flow case, the zero gradient boundary
conditions are assigned at the inlet and outlet boundaries whereas at the front and
the back faces the symmetry boundary conditions are prescribed. For convenience,
all boundary conditions are summarized in Table 1. The domain discretization con-
sists of 40×40×40 cells as shown in Figure 2, and several prism layers are adapted
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in the near wall regions. The fluid flow regime in both cases is laminar, so no turbu-
lence model is included in the computation. The specific fluid flow solver within the
OpenFOAMr distribution used is the icoFoam, which solves the incompressible
laminar Navier-Stokes equations using the PISO (pressure implicit with splitting of
the operator) algorithm (Ferziger and Peric [9]). The particle Stokes number con-
sidered in the present study is 0.023, and the kinematic viscosity of the fluid is
17.3mm2/s.

Boundaries Left & Right Top & Bottom Front & Back

Couette Flow Zero Gradient Non-slip Full-slip

Lid-driven Cavity Flow Non-slip Non-slip Non-slip

Table 1 Boundary conditions for Couette and lid-driven cavity flows.

(0
.1

L,
 0

.5
L,

 0
.5

L)

(0.467L, 0.4L, 0.983L)

Fig. 1 Lagrangian particle tracking in Couette flow (left) and lid-driven cavity flow (right). Only
one particle (black sphere) is placed in a predefined position: x = 0.1L, y = 0.5L, z = 0.5L for
Couette flow; x = 0.467L, y = 0.4L, z = 0.983L for lid-driven cavity flow. For all cases: Re = 470,
Dvolume = 3mm, [ρ f −ρp]/ρ f = 0.05% or −0.07%, St = 0.023.

The spherical macro-particles used in Tsorng et al. [29] were plastic beads of
diameter Dp = 3mm and density ρp = 1210kg/m3. For ellipsoidal particles, the
volume equivalent diameter Dvolume is considered. The relative density difference
between the fluid and the particle, i.e. [ρ f −ρp]/ρ f , is very small, i.e. about 0.05%
or −0.07%, indicating slightly positive or negative buoyancy conditions. The rela-
tive density difference cannot be set too large, otherwise, a particle does not pre-
dominantly follow the flow and can easily hit the wall, thus creating an additional
problem in specifying correct experimental data. In the numerical simulation, only
a single particle is placed in the fluid domain with applied rotation of the major axis
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Fig. 2 Computational grid for the fluid domain; resolution: 40×40×40 grid cells.

b in the direction perpendicular to the stream-wise direction (i.e. x-direction). As
illustrated in Figure 1, the initial position of the particle in lid-driven cavity flow is
at [0.467L,0.4L,0.983L], and at [0.1L,0.5L,0.5L] in the case of Couette flow.

The verification of drag and lift forces in linear shear flow and torques acting on
non-spherical particles by the developed models was already demonstrated by Bren-
ner [2], Fan and Ahmadi [6], Harper and Chang [12], Hogg [13] and Jeffery [16]. In
order to demonstrate the accuracy of the new model for the shear lift force (Eq. 34),
several models for spheres were chosen to compare with (Sommerfeld and Schmal-
fuss [27]). These models are widely used for Lagrangian particle tracking at higher
particle Reynolds numbers including the drag force, the transverse lift force due to
shear flow and particle rotation, as well as in particle rotation models, with more
details in Sommerfeld and Schmalfuss [27]. Finally, all developed particle models
are implemented into the Lagrangian solver icoUncoupledKinematicParcelFoam, a
transient solver for the passive transport of a single kinematic particle cloud, in-
cluded in the OpenFOAMr, which is finally used for Lagrangian particle tracking
computations.

3.2 Couette flow

The numerical accuracy of the proposed model for ellipsoidal particles is studied in
this section by comparing them with other numerical models for spherical particles
[27] as well as ellipsoidal particles [12]. In Couette flow a particle moves due to
the drag force in the stream-wise direction, and is lifted by the linear shear ∂ux/∂ z.
In the following results, we use Sommerfeld et al. to denote numerical models for
spherical particles [27]. The effect of gravity was neglected in the simulation, while
drag and shear lift force were calculated either jointly or separately.

The time evolution of a sphere, with its initial relative velocity between the fluid
and the particle equal to zero, i.e. u0−v0 = 0m/s, under the action of different drag
forces, is indicated by black and red lines and is plotted in Figure 3. It should be
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noted that the initial relative velocity in the stream-wise direction is not exactly zero
due to numerical errors. Therefore a small drag force, about 2.66nN, is observed
at the beginning and is reduced afterwards as the particle approaches the veloc-
ity of the flow. After 0.2 seconds a quasi-steady state is reached since the particle
is accelerated and decelerated by the flow due to the small density difference, i.e.
[ρ f −ρp]/ρ f =−0.07%. The overlapping of the results shows that our drag model
demonstrates good agreement with the results of Sommerfeld et al. for the case of
spherical particles. When the initial relative velocity is increased to match the ve-
locity of the fluid (i.e. v0 = 0m/s), the difference in the results between the present
work and Sommerfeld et al. (i.e. blue and magenta lines in Figure 3) becomes evi-
dent. The reason for the difference in the results is due to the fact that in the case of
larger relative velocities the Stokes flow conditions in the vicinity of the particle (i.e.
creeping flow, relative velocity close to zero) are no longer satisfied. Sommerfeld et
al. [27] accounted for this effect by implementing an additional term solving the
drag problem at high relative velocities and high Stokes numbers, where particles
do not predominantly follow the fluid streamlines. Therefore, the simulations con-
sidering the influence of the drag force on ellipsoidal particles are performed only
with small relative velocity.

1 E - 4 0 . 0 0 1 0 . 0 1 0 . 1 11 0 - 4
1 0 - 3
1 0 - 2
1 0 - 1
1 0 0
1 0 1
1 0 2
1 0 3
1 0 4
1 0 5
1 0 6

 P r e s e n t  W o r k ,  u 0 - v 0 = 0
 S o m m e r f e l d  e t  a l . ,  u 0 - v 0 = 0
 P r e s e n t  W o r k ,  v 0 = 0
 S o m m e r f e l d  e t  a l . ,  v 0 = 0

F D [n
N]

T i m e  [ s ]

Fig. 3 Time evolution of the drag force on a spherical particle in Couette flow in comparison
to alternative drag force models and initial relative velocities (Time = 1s, λ = 1, Dp = 3mm,
Re = 470, L = 0.1m, [ρ f −ρp]/ρ f =−0.07%).

The Couette flow considered here (i.e. linear shear flow, Figure 1) with shear rate
∂ux/∂ z shares the same characteristics of the shear lift force of Harper and Chang
(Eq. 26), so the new shear lift force (Eq. 34) can be compared to the results of Harper
and Chang for different aspect ratios, as shown in Figure 4. These simulations are
only performed for test purposes by switching on the shear lift force and turning off
the drag force, in order to eliminate the influence of the drag on the translational
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movement of the particle. Moreover, the initial velocity of the particle is set to zero
for the purpose of increasing the shear lift force in the vertical direction. The el-
lipsoid is initially placed with its major axis b perpendicular to the flow direction.
The new model results are in good agreement with the results of Harper and Chang
for all aspect ratios. This is obvious since the new model is identical to Harper and
Chang’s model in a linear shear flow (Eq. 26 and 34). Furthermore, the particle trav-
els a shorter distance in the vertical direction (z-direction) at larger aspect ratios,
since the cross-sectional area of the minor axis a is reduced at the same volume
equivalent diameter Dvolume, which leads to a decrease of the shear lift force in the
vertical direction.

0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5

0 . 0 5 0

0 . 0 5 2

0 . 0 5 4

0 . 0 5 6

0 . 0 5 8

 P r e s e n t  W o r k ,  F S L ,  λ  =  2
 H a p e r  &  C h a n g ,  F S L ,  λ  =  2
 P r e s e n t  W o r k ,  F S L ,  λ  =  5
 H a p e r  &  C h a n g ,  F S L ,  λ  =  5

z [
m]

x  [ m ]

Fig. 4 Translational motion of an ellipsoidal particle in Couette flow for different aspect ratios; a
comparison of various shear lift forces; the initial velocity of the particle is set to zero (v0 = 0m/s,
Time = 1s, λ = 1, Dp = 3mm, Re = 470, L = 0.1m, [ρ f −ρp]/ρ f =−0.07%).

After the validation of the new lift force, a parameter study is performed. In this
study, both the drag and the generalized shear lift forces are incorporated in the sim-
ulation. The initial velocity of the particle relative to the fluid is set to zero. Figure
5a plots the time evolution of the drag force in the stream-line and vertical direc-
tions (i.e. x and z-directions) for different aspect ratio values. The component of the
drag force in the stream-line direction is largest at the beginning of the simulation,
about 2.9nN to 4.7nN, and increases with increasing the aspect ratio λ from 2 to 10.
Although the initial condition of zero relative velocity between the particle and the
fluid (Eq. 33) was chosen, due to numerical errors in computing the x-component
of the relative velocity, a non-zero drag force is computed. As a consequence of
the decrease in relative velocity and the rotation of the particle, the drag force de-
creases significantly after only 0.1s. The ellipsoidal particle tends to align its major
axis b with the direction in which it is subject to a minimum torque, i.e. the mean
flow direction in the linear shear flow, resulting in a decrease of the exposed cross-
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sectional area and hence reduction of the drag. Figure 5b shows a close-up of the
drag force components in the time period from 0.2s to 1.0s. The vertical component
of the drag force assumes negative values, as the particle moves in the upward di-
rection due to the shear lift, resulting in negative relative velocity in the z-direction
and hence negative drag force. When the flow resistance stabilizes i.e. after 0.6s,
the x-component of the drag force fluctuates only slightly due to the creeping flow
condition. The magnitude of the z-component of the drag increases with increasing
aspect ratios since the exposed cross-sectional area of the ellipsoidal particle in the
z direction becomes larger, which is a consequence of the geometry of the particle.
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Fig. 5 Time evolution of x and z-components of the drag force acting on an ellipsoidal particle
in Couette flow for different aspect ratios; simulation with drag and shear lift force for ellipsoidal
particles; the initial velocity of the particle relative to the fluid is set to zero; a) whole time period;
b) time period between 0.2s and 1s (u0 − v0 = 0m/s, Time = 1s, Dvolume = 3mm, Re = 470,
L = 0.1m, [ρ f −ρp]/ρ f =−0.07%).

The corresponding generalized shear lift force in the stream-line and vertical di-
rections are presented in Figure 6. The largest shear lift force of the ellipsoid in the
range of 1.0nN to 2.7nN is observed at the beginning of the simulation. Afterwards,
the shear lift force decreases as the particle is accelerated or decelerated by the drag
and more closely follows the flow. This leads to a decrease in relative velocity be-
tween the particle and the fluid. After 0.2s, the x-components of the shear lift force
for different aspect ratios become very small, in the range 0.038nN − 0.04nN at
1.0s, whereas the z-components are relatively large, in the range 0.13nN−0.21nN
at 1.0s, and increase with increasing aspect ratios. The difference between the x
and z-components of the drag and shear lift forces are mainly a consequence of the
difference in relative velocity between the particle and the fluid. When the particle
becomes more or less stable, i.e. after 0.6s, the magnitude of the relative velocity in
the stream-line direction becomes very small as the velocities in the flow direction
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Fig. 6 Time evolution of x and z-components of the shear lift force on an ellipsoidal particle in
Couette flow for different aspect ratios; simulation with drag and shear lift force for ellipsoidal
particles; the initial velocity of the particle relative to the fluid is set to zero; a) whole time period;
b) time period between 0.2s and 1s (u0 − v0 = 0m/s, Time = 1s, Dvolume = 3mm, Re = 470,
L = 0.1m, [ρ f −ρp]/ρ f =−0.07%).

are constant, while in the vertical direction it is much larger due to the existence of
the shear rate ∂ux/∂ z. Therefore, both the drag and the shear lift forces in the flow
direction are smaller than force magnitudes observed in the vertical direction.

3.3 Lid-driven cavity flow

The lid-driven cavity is a well-known benchmark problem for viscous incom-
pressible fluid flows and has been studied extensively using analytical approaches
(Shankar and Deshpande [25]), in laboratory experiments (Koseff and Street [17],
Tsorng et al. [29]) and through numerical investigations (Chiang and Sheu [3]).
However, research on the motion of particles in lid-driven cavity flows is relatively
sparse. Tsorng et al. [29] investigated the behaviour of macroscopic rigid parti-
cles suspended in a fully three-dimensional viscous flow in a closed cubic cavity.
The motion of macro sized spherical particles in the approximate plane y/L ≈ 0.4
near the upper downstream corner of the cavity was determined based on data from
video images. The fluid streamlines computed from the numerical simulation are
presented in Figure 7. At Re = 470, the flow pattern is driven by the moving top lid,
generating a large primary eddy which occupies most of the cavity (Figure 7a), and
two secondary eddies form at the lower downstream corner in the transverse plane
(Figure 7b). The longitudinal plane y/L ≈ 0.4 (red line in Figure 7b) was chosen
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for the particle tracking because it features at its upper downstream corner an open
pathway linking the primary eddy to the downstream secondary eddy [29].

Primary Eddy

Secondary Eddy

Fig. 7 Numerically calculated fluid streamlines in a lid-driven cavity flow; a) the central longitu-
dinal plane y/L = 0.4; b) the central transverse plane x/L = 0.5; the red line indicate the plane of
particle tracking y/L = 0.4; U is the magnitude of the fluid velocity (u0−v0 = 0m/s, Time = 5s,
λ = 1, Dp = 3mm, Re = 470, L = 0.1m, [ρ f −ρp]/ρ f = 0.05%).

The trajectories of the tracked spherical particle from experimental measure-
ments (square symbols) and numerical calculations (colour lines) are presented in
Figure 8. The forces considered in the simulations are drag, gravity, lift force due to
the shear flow and due to relative rotation. The Brenner’s drag force is applicable to
both spheres and ellipsoids whereas the generalized shear lift force is used for the
calculation of ellipsoidal particles. Hence only the Brenner’s drag is compared to
other models for spheres [27]. As shown in Figure 8, the results of different combi-
nations of forces are nearly the same, which implies that the influence of the drag
force is much larger than the lift force and dominates the translational motion of
spherical particles. When the relative density difference increases, the sphere travels
a shorter distance due to the change from negative to positive buoyancy conditions.
Moreover, a slight difference is found between the present work and Sommerfeld
et al. under the condition of FD +G. The reason is that the Stokes flow condition is
not satisfied in the upper downstream corner of the cavity since the particle changes
its direction and moves downward. Additionally, the numerical results also show a
good agreement with experimental data of Tsorng et al. [29], with a minor difference
arising from the finite size effect of the macro-sized particles, i.e. 3mm, whereas in
our Lagrangian particle tracking the point particle assumption was adopted.

Figure 9a plots the trajectories of the tracked ellipsoidal particles over a time
period of 5s under the condition of FD +G. With increasing aspect ratios, the ellip-
soidal particle tends to move away from the right side wall. This can be explained
by Figure 9b, which shows the drag force as a function of time for a period of 5s at
different aspect ratios. The drag forces initially decrease since the particle tends to
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Fig. 8 Translational motion of a spherical particle in a lid-driven cavity flow obtained from both
numerical and experimental studies (u0−v0 = 0m/s, Time = 5s, Dp = 3mm, Re = 470, L = 0.1m,
[ρ f −ρp]/ρ f = 0.05% or −0.07%).

align its major axis b with the direction which subjects the particle to the minimum
torque (i.e. mean flow direction before entering the upper downstream corner). Sub-
sequently, the drag force increases significantly as the particle approaches the upper
downstream corner where the ellipsoidal particle rotates and the relative velocity
increases. After that, the particle aligns its major axis with the mean flow direction
again, and hence the drag force is drastically reduced. At higher aspect ratio, i.e.
λ = 5, the particle experiences smaller drag force after escaping from the upper
downstream corner (see Figure 9b time period 3.5s to 5.0s), therefore the direction
of the particle is slightly changed and as a result the particle moves away from the
right side wall.

The existence of the shear lift force has a significant influence on the translational
motion of ellipsoidal particles in cavity flows as illustrated in Figure 10a. The lid is
the moving wall and the fluid nearby has the highest velocity. Therefore, the particle
is lifted by the shear and moves closer to the top wall. Eventually, the particle enters
the upper downstream region where the fluid vorticity is very large. The particle
picks up spin due to higher vorticity of the fluid flow and becomes almost stationary.
It remains in the upper right corner of the cavity for an extended duration of time.
This phenomenon is also captured by the time evolution of the drag and lift forces
as shown in Figure 10b. In the beginning, i.e. 0s to 0.7s, the drag force rises due to
the increase in fluid velocity, as the particle is moving upwards due to the lift force.
The lift force decreases because the cross-sectional area exposed to the fluid flow
is smaller. After some time in the downstream region, due to the particle rotation,
the particle eventually becomes increasingly unstable which results in higher drag
and lift forces. After having found a new stable position at 3.9s, the reorientation
dynamics of the particle are reduced leading to a decrease in drag and shear lift
forces. This is followed by a subsequent increase in drag and shear lift force due
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Fig. 9 The influence of the drag force on the translational motion of an ellipsoidal particle in
a lid-driven cavity flow for different aspect ratios; a) translational motion of the ellipsoid in the
cavity; b) time evolution of the drag force on the ellipsoid; for all cases only the drag force and the
gravity were take into account (u0−v0 = 0m/s, Time = 5s, Dvolume = 3mm, Re = 470, L = 0.1m,
[ρ f −ρp]/ρ f = 0.05%).

to the particle changing the spin direction from clock-wise to counter clock-wise.
Eventually, the ellipsoidal particle moves out of the top right corner and aligns its
major axis b with the mean flow direction, hence reducing the drag force.

4 Conclusions

Numerical simulation of non-spherical particle transport in complex fluid dominated
flows still presents a research challenge, as the established models of fluid-particle
interaction are predominantly valid only for spherical particles. In the case of mo-
mentum transport from fluid flow to non-spherical solid particles, the effect of the
orientation of a particle must not be neglected. An ellipsoidal particle is a good
example of a non-spherical particle, that is frequently encountered in technical or
biological systems.

In the present paper, a Lagrangian particle tracking algorithm for simulating
the motion of particles of ellipsoid shape was developed within the open-source
code OpenFOAMr. The main objective of the present study is the evaluation of
the drag and the lift forces with respect to the orientation of ellipsoidal particles.
Instead of the Euler angles parametrization of the rotation tensor in Euler param-
eters/quaternions is used in order to avoid singularity issues. The rotation tensor
provides the essential connection between the inertial frame and the particle rota-
tional frame of reference. The time evolution of the Euler parameters is related to
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Fig. 10 The influence of the generalized shear lift force on the translational motion of an ellip-
soidal particle in a lid-driven cavity flow; a) translational motion of the ellipsoid in the cavity in
comparison to two different force combinations, i.e. FD +G and FD +FSL +G; b) time evolution of
the drag force and generalized shear lift forces on the ellipsoid under the condition of FD+FSL+G;
(u0−v0 = 0m/s, Time = 5s, λ = 2, Dvolume = 3mm, Re = 470, L = 0.1m, [ρ f −ρp]/ρ f = 0.05%).

the orientation angular velocity of ellipsoidal particles, resulting from rotational dy-
namics, whereas for the resistance to rotational motion the linear Jeffery torque [16]
was adopted. In order to account for the effect of the particle shape, in modeling the
drag force and the shear lift force exerted on an ellipsoidal particle the resistance
tensor and the lift tensor, had to be implemented. The resistance tensor was used
in the form developed by Brenner [1], who introduced a resistance tensor based on
the aspect ratio of the ellipsoid and implemented it for computation of the hydrody-
namic drag force acting on an ellipsoidal particle under Stokes flow conditions. The
main achievement of the present paper is the derivation of a general lift vector, based
on permutations of the linear shear lift tensor, that can be used in the computation
of the shear lift force for a general shear flow.

In order to understand the accuracy and reliability of the overall model for La-
grangian tracking of ellipsoidal particles, numerical and experimental validations
were performed for Couette and lid-driven cavity flows. First, the drag force was
validated with numerical models for spheres (Sommerfeld et al. [27]) and the new
shear lift forces was validated with a numerical model for ellipsoids (Harper and
Chang [12]) in Couette flow, showing good agreement of the results under Stokes
flow conditions. Secondly, the influence of drag and shear lift forces with respect
to the particle orientation was studied for various ellipsoid aspect ratio values. With
the main axis perpendicular to the incoming flow direction, the ellipsoidal particle
starts to rotate due to the shear and tends to align its major axis with the mean flow
direction, resulting in a decrease of the drag and shear lift forces in the mean flow di-
rection and an increase of both forces in the vertical direction. As a second test case,
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results of numerical models were compared with experimental investigations of par-
ticle transport in a lid-driven cavity flow (Tsorng et al. [29]). In general, the present
model for ellipsoidal particles shows good agreement with the numerical and ex-
perimental results. In the case of an ellipsoidal particle, the shear lift force plays an
important role in the translational motion of the particle. The ellipsoid moves closer
to the lid and enters the upper downstream corner of the cavity, where its residence
time is larger than in the case of the spherical particle.

The presented contribution to the further development of the classical Lagrangian
particle tracking model was focused on the generalization of the shear lift force
model for ellipsoids to a general shear flow. The model gives accurate results under
the conditions of Stokes flow around the particle and can, therefore, be used in the
numerical computation of fluid dominated particle transport problems. In order to
extend the applicability of the derived model, the future work will focus on the
dynamics of particle rotation by developing models taking into account the finite-
size effect of the particles.
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15. A Jafari, T Tynjälä, S M Mousavi, and P Sarkomaa. Simulation of heat transfer in a ferrofluid
using computational fluid dynamics technique. International Journal of Heat and Fluid Flow,
29:1197–1202, 2008.

16. G B Jeffery. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. A,
102:161–179, 1922.

17. J R Koseff and R L Street. The lid-driven cavity flow: a synthesis of qualitative and quantitative
observations. J. Fluids Eng., 106:385–389, 1984.

18. C Marchioli, M Fantoni, and A Soldati. Orientation, distribution and deposition of elongated,
inertial fibers in turbulent channel flow. Phys. Fluids, 49:33301, 2010.

19. Martin R Maxey. Equation of motion for a small rigid sphere in a nonuniform flow. Physics
of Fluids, 26(4):883, 1983.

20. M.Sommerfeld. Modellierung und numerische Berechnung von partikelbeladenen turbulenten
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