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Abstract

A numerical method for the solution of the incompressible Navier–Stokes equations was developed using an integral representation of

the conservation equations. The velocity–vorticity formulation is employed, where the kinematics is given with the Poisson equation for

the velocity vector, while the kinetics is represented with the vorticity transport equation. Based on computational aspects, resulting from

CPU time and memory requirements of the boundary domain integral method, a combined approach to the solution of the set of

governing equations is proposed. Kinematics is solved using boundary element method (BEM), while kinetics is solved using finite

element method (FEM). Lid driven flow in a cubic cavity was considered to show the robustness and versatility of this formulation.

Results of Re ¼ 100; 400; 1000 show a good agreement with benchmark results.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: 3-D incompressible viscous fluid flow; Velocity–vorticity formulation; Boundary element method; Finite element method; Lid driven cavity
1. Introduction

The research in the field of numerical algorithms for
computation of viscous fluid flow mainly focuses on the
development of approximation methods for the solution of
the Navier–Stokes equations. The majority of approaches
use only one type of approximation method, like finite
difference (FDM), finite volume (FVM), finite element
(FEM) or boundary element methods (BEMs). Since each
of those methods has some favorable and some unfavor-
able properties, a lot of research was also done in the
development of mixed approximation methods.

Velocity–vorticity approach attracted several researchers
to make their contributions to the field, among others Liu
[1] used finite differences to solve ~v� ~o formulation and
Guevremont et al. [2,3] and Wong and Baker [4] used finite
element approach.

In the context of BEM-based velocity–vorticity formula-
tion, work of Žagar and Škerget [5] was one of the first
attempts to solve three-dimensional viscous laminar flow
e front matter r 2006 Elsevier Ltd. All rights reserved.
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by BEM. Hriberšek and Škerget [6] and Škerget et al. [7]
later indicated that the solution of flow kinematics
equation is of main importance for assuring mass
conservation property of the numerical algorithm. The
solution of Poisson velocity equation for flow kinematics
by BEM leads to a better numerical scheme with the
respect of mass conservation, regardless of the discretisa-
tion approach in flow kinetics.
Several researchers also worked on combination of

boundary element and finite element methods. In the field
of viscous fluid flow numerical simulation, an important
work was done by Young et al. [8] using primitive variable
formulation of Navier–Stokes equations. They computed
pressure field with BEM and momentum equation with
three step FEM. In the field of viscous fluid flow numerical
simulation with velocity–vorticity formulation of Navier–
Stokes equations the contributions were made by Young
et al. [9], where BEM was used to obtain boundary
velocities and normal velocity fluxes implicitly and then
explicitly the internal velocities and boundary vorticities
were computed by derivation of kinematic integral
equations. Slightly different approach was used by Brown
and Ingber [10] and Brown et al. [11] where internal
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velocities were computed using regular form of generalised
Helmholtz decomposition and boundary conditions for
vorticity transport equation were applied using vortex sheet
strengths. Vorticity transport equation was solved with
Galerkin FEM. Combined algorithm was also used by Žunič
et al. [12], where the detailed comparison of different app-
roaches to computation of internal velocities was presented.

Present work is a combination of BEM-based solution of
vector Poisson velocity equation for computation of
boundary vorticities and FEM-based solution of Poisson
velocity equation for computation of internal velocities and
for solution flow kinetics. The former allows implicit
computation of vorticity values at the solid walls, and the
latter is chosen in order to avoid the use of macro element-
based subdomain technique in BEM, which is numerically
accurate and stable, but results in a larger system of linear
equations for flow kinetics due to use of discontinuous
elements, Škerget et al. [13] or due to use of mixed
boundary element types, Ramšak et al. [14]. The FEM
discretisation is computationally less demanding and is
therefore used in our numerical algorithm. Although the
solution of kinematics equation for internal velocities could
be obtained by an explicit BEM calculation, we were forced
at this stage of research to use FEM in order to meet the
computer memory requirements. However, the research in
the field of subdomain BEM for solving transport
equations is still continuing.

2. Velocity–vorticity formulation of Navier–Stokes

equations

The analytical description of the motion of a continuous
fluid is based on conservation of mass and momentum

~r �~v ¼ 0, (1)

q~v
qt
þ ð~v � ~rÞ~v ¼ �

1

r
~rpþ nr2~v, (2)

where r is fluid density and n is kinematic viscosity
of the fluid, which are both constant throughout the
domain.

The dynamics of a viscous incompressible fluid flow is
partitioned into its kinematic and kinetic aspect through
the use of derived vector vorticity field function, see
Škerget et al. [7] and Ravnik et al. [15].

Vorticity oiðrj ; tÞ is defined as a curl of the velocity field
viðrj ; tÞ

~o ¼ ~r �~v; ~r � ~o ¼ 0, (3)

resulting in the following elliptic Poisson equation for the
velocity vector

r2~vþ ~r � ~o ¼ 0. (4)

Vorticity kinetics is governed by vorticity transport
equation, which is obtained as a curl of momentum
Eq. (2) and may be, in the case of incompressible viscous
fluid flow, written as

q~o
qt
þ ð~v � ~rÞ~o ¼ ð~o � ~rÞ~vþ nr2~o. (5)

We seek a solution of Eqs. (4) and (5) in the domain O,
which satisfies the initial conditions

~v ¼ ~v0; ~o ¼ ~o0 ¼ ~r �~v0; at t ¼ 0 (6)

and the boundary conditions

~v ¼ ~vG; ~o ¼ ð~r �~vÞjG; at tX0 (7)

on the boundary G of the domain O.
As described in the introduction, the paper deals with

numerical solution of flow kinematics by means of BEM
and computation of internal velocities in flow kinematics
and vorticities in flow kinetics by means of FEM.

3. Integral form of the governing equations

In this section, we will describe the integral representa-
tion of governing equations written in previous section in
the form of partial differential equations. We will start with
collocation integral equation of kinematics followed by
Galerkin weak formulation of kinematics and finally
Galerkin weak formulation of kinetics.

3.1. Boundary element integral representation of kinematics

The singular boundary integral representation for the
velocity vector can be formulated by using the Green
theorems for scalar functions, or weighting residuals
technique. The integral form of Poisson-type equation
[16,17] is used on the kinematic Eq. (4), yielding

cðxÞ~vðxÞ þ
Z
G
~vð~n � ~rÞu% dG ¼

Z
G

u%ð~n � ~rÞ~vdG

þ

Z
O
ð~r � ~oÞu% dO, ð8Þ

with u% ¼ u%ðx;SÞ denoting the elliptic Laplace funda-
mental solution, x is the source point on boundary G, S

integration point in domain O (including G), cðxÞ geometry
coefficient and ~n outward pointing normal to the bound-
ary. Geometry coefficient can be generally computed as
Y=4p, where Y is the internal solid angle at point x in
steradians. Laplace fundamental solution is

u%ðx;SÞ ¼
1

4prðx;SÞ
, (9)

where x 2 G is source point, S 2 O is integration point and
r distance between the source and the integration point.
In order to avoid the derivatives of the velocity and

vorticity fields in Eq. (8) the derivatives in the integral
kinematics equation are transferred to the fundamental
solution. The Gauss divergence clause and the solenoidality
constraint are used. The derivation is described in detail in
Škerget et al. [7] and Ravnik et al. [15]. The final integral
form of the kinematics equation, employing the derivatives
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of the fundamental solution, reads:

cðxÞ~vðxÞ þ
Z
G
ð~ru% �~nÞ~v dG ¼

Z
G
ð~ru% �~nÞ �~vdG

þ

Z
O
~o� ~ru% dO. ð10Þ

3.2. Finite element integral representation of kinematics

Following the Galerkin weighted residual method [18,19]
we multiply Eq. (4) by the weighting function N and
integrate it over the domain, to obtainZ
O

Nr2~vdOþ
Z
O

Nð~r � ~oÞdO ¼ 0. (11)

Next we apply Green’s first theorem to the diffusion term
to obtain a weak formulation of kinematic Poisson
equation asZ
O

~rN � r~vdO�
Z
G

Nð~n � ~r~vÞdG�
Z
O

Nð~r � ~oÞdO ¼ 0.

(12)

3.3. Finite element integral representation of vorticity

transport equation

Equivalent procedure can be performed to obtain weak
formulation of vorticity transport equation. We multiply
Eq. (5) by the weighting function N and integrate it over
the domain O, to obtainZ
O

N
q~o
qt

dOþ
Z
O

Nð~v � ~rÞ~odO ¼
Z
O

Nð~o � ~rÞ~vdO

þ n
Z
O

Nr2~odO. ð13Þ

Replacing time derivative with first-order backward finite
differences approximation

q~o
qt
¼
~o� ~ot�1

Dt
(14)

and applying Green’s first theorem to the diffusion term,
one can obtain a weak formulation of kinetic equation

1

Dt

Z
O

N~odOþ
Z
O

Nð~v � ~rÞ~odO ¼
Z
O

Nð~o � ~rÞ~vdO

� n
Z
O

~rN � ~r~odOþ n
Z
G

Nð~n � ~r~oÞdG

þ
1

Dt

Z
O

N~ot�1 dO, ð15Þ

where Dt is the size of time step and subscript t� 1 denotes
vorticity value in previous time step.

4. Discrete form of equations

To obtain discrete form of integral equations we
divide computational domain O into elements Oe

and the field function variation within the element e is
described with

ueðSÞ ¼
Xnp

n¼1

Ne
nðSÞU

e
n, (16)

where S is point inside the element Oe, np is the number of
nodal points of the element, Ne

n are interpolation functions,
Ue

n are nodal values of variable u for the element Oe and u

stands for components of velocity vi or vorticity oi.
Final interpolation function for node jn is

Njn ¼
XNce

e¼1

Ne
n, (17)

where n is the local node number of node jn in element e

and Nce is the number of elements which contain node jn.
For interpolation of domain values we use eight-point

hexahedrons with trilinear interpolation functions and for
interpolation of boundary values four-point quadrilateral
elements with bilinear interpolation functions.

4.1. Discrete form of BEM kinematics

The use of interpolation functions N (17) for geometry
and field functions representation in Eq. (10), leads us to

½H�fV xg ¼ ½Hz;x�fVzg � ½Hx;y�fV yg þ ½Dz�fW yg � ½Dy�fW zg,

½H�fVyg ¼ ½Hx;y�fV xg � ½Hy;z�fVzg þ ½Dx�fW zg � ½Dz�fW xg,

½H�fVzg ¼ ½Hy;z�fVyg � ½Hz;x�fV xg þ ½Dy�fW xg � ½Dx�fW yg,

ð18Þ

where matrices of integrals are defined as

Hin;jn ¼
Xbe

e¼1

Z
Ge

qu%ðxin;SGe
Þ

qxi

ni

� �
Njn dG þ dðin; jnÞcðxinÞ,

ð19Þ

H
in;jn
i;j ¼

Xbe

e¼1

Z
Ge

qu%ðxin;SGe
Þ

qxi

nj �
qu%ðxin;SGe

Þ

qxj

ni

� �
Njn dG,

ð20Þ

D
in;jn
i ¼

Xne

e¼1

Z
Oe

qu%ðxin;SGe
Þ

qxi

Njn dO ð21Þ

and u%ðxin;SGe
Þ is the elliptic Laplace fundamental solu-

tion, function dðin; jnÞ has value 1 for in ¼ jn and value 0
for inajn, indices in and jn denote the row and column
position of integral in matrix (node numbers of the source
and destination node in discretised domain), ½H� is matrix
of boundary integrals of normal derivatives of fundamental
solution, ½Hi;j� are matrices of boundary integrals of
tangential derivatives of fundamental solution and ½Di�

are matrices of domain integrals of gradient of funda-
mental solution. Indices i and j denote the x, y and z

coordinates.
The number of rows in all matrices is equal to the

number of boundary nodes (in 2 ½1;NG�). The number of
columns in boundary matrices (Eqs. (19) and (20)) and the
size of velocity vector fV ig is also equal to the number of
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boundary nodes (jn 2 ½1;NG�), while the number of
columns in the domain matrices (21) and the size of
vorticity vector fW ig is equal to the number of domain
nodes (jn 2 ½1;NO�).

In order to obtain better conditioned system matrix for
computation of boundary vorticities we transform the
discretised equations (18) into tangential form. We perform
a vector product of (18) by normal vector
½nx�

½ny�

½nz�

8><
>:

9>=
>;�

½H�fV xg � ½Hzx�fVzg þ ½Hxy�fV yg � ½Dz�fW yg þ ½Dy�fW zg

½H�fV yg � ½Hxy�fVxg þ ½Hyz�fV zg � ½Dx�fW zg þ ½Dz�fW xg

½H�fV zg � ½Hyz�fV yg þ ½Hzx�fV xg � ½Dy�fW xg þ ½Dx�fW yg

8><
>:

9>=
>; ¼ 0, (22)
where ½nx�, ½ny� and ½nz� are diagonal matrices of unit
normal vector components ~n ¼ fnx; ny; nzg for each bound-
ary source point.

Next, we decompose the vorticity vector into two parts.
In vector fW igG only boundary vorticity values are non-
zero and in vector fW igO0 only domain vorticity values are
non-zero

fW ig ¼ fW igG þ fW igO0 . (23)

We include Eqs. (23) into (22) and reorder the result in
such manner, that only boundary vorticity values are
unknown on the left-hand side of the equation

ð½nx�½Dx� þ ½ny�½Dy� þ ½nz�½Dz�ÞfW xgG

¼ ð½ny�½Hzx� þ ½nz�½Hxy�ÞfV xg � ð½nz�½H� þ ½ny�½Hyz�ÞfV yg

þ ð½ny�½H� � ½nz�½Hyz�ÞfVzgÞ þ ½nx�½Dx�fW xgG

þ ½ny�½Dx�fW ygG þ ½nz�½Dx�fW zgG

� ð½ny�½Dy� þ ½nz�½Dz�ÞfW xgO0

þ ½ny�½Dx�fW ygO0 þ ½nz�½Dx�fW zgO0 ,

ð½nx�½Dx� þ ½ny�½Dy� þ ½nz�½Dz�ÞfW ygG

¼ ð½nz�½Hxy� þ ½nx�½Hyz�ÞfV yg � ð½nx�½H� þ ½nz�½Hzx�ÞfVzg

þ ð½nz�½H� � ½nx�½Hzx�ÞfVxgÞ

þ ½nx�½Dy�fW xgG þ ½ny�½Dy�fW ygG

þ ½nz�½Dy�fW zgG � ð½nz�½Dz� þ ½nx�½Dx�ÞfW ygO0

þ ½nz�½Dy�fW zgO0 þ ½nx�½Dy�fW xgO0 ,

ð½nx�½Dx� þ ½ny�½Dy� þ ½nz�½Dz�ÞfW zgG

¼ ð½nx�½Hyz� þ ½ny�½Hzx�ÞfV zg

� ð½ny�½H� þ ½nx�½Hxy�ÞfV xg þ ð½nx�½H� � ½ny�½Hxy�ÞfV ygÞ

þ ½nx�½Dz�fW xgG þ ½ny�½Dz�fW ygG

þ ½nz�½Dz�fW zgG � ð½nx�½Dx� þ ½ny�½Dy�ÞfW zgO0

þ ½nx�½Dz�fW xgO0 þ ½ny�½Dz�fW ygO0 , ð24Þ

where subscript G stands for boundary nodes only and O0

stands for interior nodes only (without boundary nodes).
Eq. (24) gives three systems of linear equations, each of size
NG �NG.
4.2. Discrete form of FEM kinematics

We use Eq. (24) only for computation of boundary
vorticities. To obtain internal velocities we use the same
kinematic Eq. (4) but this time we use finite element
method to discretise it, using ~o obtained by BEM as
boundary condition.
The use of interpolation functions N as weighting
functions and replacement of continuous functions with
discrete ones (17) in Eq. (12), leads us to

ð½D� � ½B�ÞfVxg ¼ ½Gy�fW zg � ½Gz�fW yg,

ð½D� � ½B�ÞfVyg ¼ ½Gz�fW xg � ½Gx�fW zg,

ð½D� � ½B�ÞfVzg ¼ ½Gx�fW yg � ½Gy�fW xg, ð25Þ

with

Din;jn ¼
Xne

e¼1

Z
Oe

qNin

qxi

qNjn

qxi

dO, ð26Þ

Bin;jn ¼
Xne

e¼1

Z
Ge

Nin

qNjn

qxi

ni

� �
dG, ð27Þ

G
in;jn
i ¼

Xne

e¼1

Z
Oe

Nin

qNjn

qxi

dO, ð28Þ

where i is coordinate axis index, fV ig and fW ig are nodal
velocity and vorticity vector in domain O, ½D� is diffusion
matrix, ½B� is boundary flux matrix and ½Gi� is gradient
matrix. Indices in and jn are the row and column position
of integral in matrix (node numbers of the source and
destination node in discretised domain) and ni is outward
pointing unit normal vector.
4.3. Discrete form of FEM vorticity transport equation

Similarly, the discrete form of kinetic vorticity transport
equation is obtained by using Eq. (17) in Eq. (15) leading to
the next vector equation

1

Dt
½M� þ ½C� þ n½D� � n½B�

� �
fW ig

¼ ½V i;j �fW jg þ
1

Dt
½M�fW igt�1, ð29Þ

with

Min;jn ¼
Xne

e¼1

Z
Oe

NinNjn dO, ð30Þ
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Cin;jn ¼
Xne

e¼1

Z
Oe

Nin vi

qNjn

qxi

� �
dO, ð31Þ

V
in;jn
i;j ¼

Xne

e¼1

Z
Oe

Nin

qvi

qxj

Njn

� �
dO, ð32Þ

where fW ig is nodal vorticities vector in domain O, fW igt�1
are nodal values of vorticity in previous time step and ½M�,
½C� and ½V i;j� are mass, convection and vortex twisting and
stretching matrix. ½D� and ½B� are diffusion and boundary
flux matrices defined in previous section.

With application of boundary conditions in Eqs. (25)
and (29) the final systems of linear equations can be
obtained.

5. Computational algorithm

The solution algorithm can be described as follows:
(1)
 Choose initial velocity (~v0) field, compute initial
vorticity (~o0) field using Eq. (3), set initial time level
t ¼ 0, set initial nonlinear iteration level i ¼ 0.
(2)
 Time loop, t :¼ tþ 1.

(3)
 Nonlinear iteration loop, i :¼ i þ 1.

(4)
 Flow kinematics:

(a) Solve Eqs. (24) by BEM for boundary vorticities,
using internal vorticities from previous nonlinear
iteration step.

(b) Solve Eqs. (25) by FEM for domain velocities,
using new boundary vorticities to form right-hand
side vector. It is also possible to use explicit BEM
calculation, however this requires calculation and
storage of a large number of integrals. Due to
limited computer memory, we used FEM instead.
(5)
 Flow kinetics, vorticity transport:
(a) Solve Eqs. (29) by FEM for domain vorticities,

using the new velocity field to obtain the convection
matrix (31) and use boundary vorticities from
kinematics as boundary conditions.

(b) Use underrelaxation 0ofp1 for computing new
domain vorticity values ~oiþ1 :¼f~oiþ1 þ ð1� fÞ~oi.
(6)
 Check convergence:
(a) Compute error ¼ k~oiþ1 � ~oik2=k~oiþ1k2.
(b) If error is greater then predefined � go to step 3.
(7)
 Finish time loop:
(a) Store time step values ~ot ¼ ~oiþ1, ~vt ¼ ~viþ1.
(b) If time step t is less than maximum number of time

steps NT go to step 2.

(8)
 End of computation.
Fig. 1. Velocity vectors, stream traces and vorticity contours in different

planes of the cavity, Re ¼ 400.
Different types of system of linear equations (SLE) solvers
were used in the computation, depending on the SLE
structure (full or sparse). For the full systems, the direct
solver with lower–upper (LU) decomposition or the
iterative solver with diagonal preconditioning were used,
depending on whether the computation was performed in
serial or parallel. Sparse systems were solved using iterative
solver with incomplete LU decomposition. Iterative solver
used was BiCGSTAB(L), see Sleijpen and Fokkema [20],
with prescribed tolerance slveps ¼ 10�6.
Computer code was compiled using Intel fortran 90

compiler 8.1 with �O3 optimisation. Computation was done
on IBM Linux Cluster 1350 with 512 dual Xeon 3.0GHz
processors with 2GB of memory per node and SuSE SLES 8
Linux operating system with smp kernel 2.4.21.

6. Lid driven cavity

Lid driven cavity flow is one of the standard benchmark
test cases for laminar viscous fluid flow. It possesses some
very favorable properties, namely very unambiguous
boundary conditions, unchanged flow domain when
Reynolds number value is increased and last but not least
it exhibits almost all phenomena that can possibly occur in
incompressible flows: eddies, secondary flows, complex
three-dimensional patterns, chaotic particle motions, in-
stabilities, transition and turbulence [21].
Hardly any work existed on the topic until the

pioneering experimental work of Koseff and Street
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Fig. 2. Isosurface of magnitude of velocity j~vj ¼ 0:13 for different Reynolds number values, Re ¼ 100 left, Re ¼ 400 middle and Re ¼ 1000 right.

Fig. 3. Velocity vectors on center-planes for different Reynolds number values.
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[22–24]. Their studies, however, changed the whole picture
because they clearly showed that cavity flows were
inherently 3-D in nature. Not only are 2-D models
inadequate, they can be seriously misleading as stressed
out by Shankar and Deshpande [21].

In our computation we used a cubic cavity with the edge
size L ¼ 1. The Reynolds number, the only dimensionless
number in this case, is based on the cavity’s edge size and
the top lid velocity, Re ¼ vxL=n, and was selected to be
Re ¼ 100, 400 and 1000.

The mesh size used were 8� 8� 8, 16� 16� 16 and
32� 32� 32 elements (9� 9� 9, 17� 17� 17 and 33�
33� 33 expressed with nodes), all with maximum to
minimum element length ratio of 8, with elements clustered
near the walls.

Velocity boundary conditions were:

0 0.2 0.4 0.6 0.8 1

x

V
�

x

z ¼ 1: moving wall (vx ¼ 1, vy ¼ vz ¼ 0),
-1 -0.5 0 0.5 1
�

1 1

Re=400 Yang
x ¼ 0, x ¼ 1, y ¼ 0, y ¼ 1, z ¼ 0: no slip
(vx ¼ vy ¼ vz ¼ 0).
0
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Fig. 4. Velocity profiles along centerlines for different mesh sizes,

Re ¼ 100 top left, Re ¼ 400 top right and Re ¼ 1000 bottom.
Prescribed convergence criterium for nonlinear iterations
was � ¼ 1� 10�6. Test cases with Re ¼ 100 and 400 were
computed with time step Dt ¼ 2 s and underrelaxation
factor f ¼ 0:2, test case with Re ¼ 1000 was computed
with time step Dt ¼ 0:2 s and underrelaxation factor
f ¼ 0:2.

All test cases were computed with initial conditions of
vx ¼ vy ¼ vz ¼ 0. Prescribed tolerance for iterative solver
was �slv ¼ 10�6. Results were compared to the results of
Yang et al. [25].

For the prescribed time step size the test case on the
finest mesh for Re ¼ 100 needed 15 time steps to reach
steady state, for Re ¼ 400, 28 time steps and Re ¼ 1000,
375 time steps.

Fig. 1 shows 3-D sectional perspective views for the
computed velocity vector and vorticity fields for Re ¼ 400.
The vorticity plots at x-mid-plane for ox, y-mid-plane for
oy and z-mid-plane for oz fully illustrate the developed
vorticity field.

Fig. 2 shows isosurfaces of absolute velocity j~vj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x þ v2y þ v2z

q
¼ 0:13 for different Reynolds number values.

It can be seen, that the high speed core of the fluid becomes
narrower with the increasing of the Reynolds number
value.

Fig. 3 shows comparison of velocity vectors on center-
planes for different Reynolds number values.

It can be seen that in the z–y planes a pair of vortices
appear near the centerline of the cavity and move out
towards the lower corners as the Reynolds number
increases. Additional two vortices appear in the top corners
at Re ¼ 1000. In the x–y plane, fluid at first flows
uniformly backwards and with the increasing of the
Reynolds number value two vertical vortices appear.
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Similar behavior of the velocity field was reported also by
Wong and Baker [4].

The quantitative evaluation of the results is shown in
Fig. 4, where we compare the vx velocity along x ¼ y ¼ 0:5
centerline and vz velocity along y ¼ z ¼ 0:5 centerline for
different mesh sizes and different Reynolds number values.
The mesh refinement shows that the coarsest mesh is too
coarse, although it gives qualitatively reasonable results.
The finest two meshes are in close agreement with the
benchmark solution of Yang et al. [25].

7. Conclusions

A new approach to the numerical solution of Navier–
Stokes equations in velocity–vorticity formulation was
presented. It consists of implicit calculation of boundary
vorticities by means of boundary element method and
calculation of vorticity transport by means of finite element
method. For the computation of internal velocities the
approach of solving the implicit system of equations,
resulting from the finite element method discretisation of
elliptic Poisson velocity equation was used. Well known lid
driven cubic cavity test case was used to test the accuracy
of the proposed method. Numerical testings showed, that
the proposed combination of BEM and FEM is a
promising computational tool for the numerical solution
of 3-D incompressible Navier–Stokes equations.
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