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a b s t r a c t

Micro particle separation from solid–liquid suspension under the influence of hydrodynamic and
magnetic forces in a channel with bifurcation is studied numerically by applying the Boundary Element
Method based fluid flow solver. The particle trajectories are computed using the Lagrangian particle
tracking, where the forces on particles are computed based on the point particle representation. In the
separator due to the bifurcation channel geometry the magnetic particles experience varying Kelvin
force as they travel along the channel, although in the same direction the high gradient magnetic field
does not change. In this way, the interplay of hydrodynamic and magnetic forces leads to changes in
collection efficiency of the separator. A comparison with magnetic separation in the narrow channel
design is done and recommendation for optimal choice of fluid flow rate and magnitude of external
magnetic field is discussed.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Separation devices are an important part of the majority of
process chains. In case of dispersed solid–fluid flow, separation
devices frequently exploit particular properties of the solid parti-
cles in order to make separations fast and efficient. In general,
the gravity force and hydrodynamic forces are used in order to
separate solid particles from the fluid phase. A classical Stokes
sedimentation velocity suggests that problems arise when very
small particles with densities close to the fluid density are
encountered, as the sedimentation velocity decreases significantly.
In higher Reynolds number flow regimes the situation changes,
but not significantly, since hydrodynamic forces scale with the
magnitude of the relative velocity between a particle and the fluid.
In such cases, novel separation concepts have to be implemented.
One of them is to take advantage of differences in magnetic
characteristics between the particulate phase and the fluid phase.
If we consider water as the fluid phase, particles with magnetic
properties can be separated by means of an additional body force,
acting on them in a nonuniform magnetic field [1]. The Kelvin
body force, describing this effect, becomes important in case of the
existence of a high gradient magnetic field, and if the gradient is
aligned in a suitable way it is possible to promote separation

efficiency (collection efficiency) of such separation devices. The
other possibility is to have a fixed magnetic field and to design
the flow field in such a way that the solid particles would be
transported into regions of a high gradient of the magnetic field
and hence would be subjected to stronger Kelvin forces, promoting
separation.

Several high gradient magnetic separation (HGMS) devices
have been proposed [2–6] where the magnetic field gradient is
achieved by submerging the magnetizable wires in the fluid.
The usage of such systems is present in several fields of science,
like life sciences, natural sciences, medicine or engineering
sciences. In biomedicine, for example, they are used for magnetic
separation of labelled cells and other biological entities [7–9].
Furthermore magnetic field gradients in combination with parti-
cles with magnetic properties are used for therapeutic drug, gene,
radionuclide delivery [10], in radio frequency methods for the
catabolism of tumours via hyperthermia or for contrast enhance-
ment agents for magnetic resonance imaging applications. Synth-
esis of particles with favourable magnetic properties and biological
compatibility has also been studied [11–13], finding iron oxides to
be suitable.

In this paper we perform a numerical simulation of magnetic
particle laden flow in a high gradient magnetic separation devices
with bifurcation. We make use of the in-house 3D boundary
element method based fluid flow and Lagrangian particle tracking
computational algorithm developed by Ravnik et al. [14]. The
computational algorithm was developed and tested for a tracking
of particles under the influence of hydrodynamic and magnetic
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forces. It was used to study a HGMS device in a form of a
separation channel with a square cross-section and a high aspect
ratio, where magnetic field gradient was caused by two magne-
tized wires placed on the top and the bottom of the channel.
The results showed that the derived numerical algorithm for the
solution of a dilute suspension flow is capable of accurate solu-
tions of particle motion in a magneto static field problem and
consequently suitable to study advanced particle separation
devices. A design drawback of such configuration is a stagnation
of collection efficiency that can be observed downstream the
channel. This is a result of the symmetric distribution of the
magnetic forces as well as a symmetric flow field in the cross-
section of the channel. After some entry length the particles which
are in the central part of the channel are not affected by any
magnetic force and are only following the fluid flow.

This paper presents further developments of the computational
algorithm and an in-depth study of a modified separation channel
with periodic bifurcations. The main goal of the proposed design
of the high gradient magnetic separation device was to increase
the collection efficiency of particles with the introduction of some
perturbations to the flow. The form of bifurcation microfluidic
channel with square cross-section geometry was selected. The
channel geometry has recently gained attention in studies of blood
flow in bifurcating microfluidic tubes and channels [15]. The
magnetic field gradient originates from two magnetized wires
placed on the top and the bottom of the channel (Fig. 1), the same
configuration used in [14], which allowed comparison of the
collection efficiency of both channel designs.

2. Problem description

To increase the separation of particles from the bulk fluid flow
(collection efficiency of magnetized particles on walls) the geo-
metry of a high gradient magnetic separator in the form of a
narrow channel presented in the previous work of Ravnik and
Hriberšek [14] was changed to the form of a bifurcation micro-
fluidic channel with a square cross-section geometry. The separa-
tion unit consists of a 101.25 mm long square cross section channel
(0.75 mm�0.75 mm) with converging-diverging barriers inside
the channel (Fig. 1). Two different barrier heights are chosen:
larger hbif ¼ h=2¼ 0:37 mm and smaller hbif ¼ h=8¼ 0:09375 mm.
The length of the barrier is equal to the channel height lbif ¼
h¼ 0:75 mm. The distance between the barriers is Δlbif ¼
4h¼ 3 mm. The magnetic field is generated by two stainless steel
430 wires of diameter 0.5 mm, which are placed at the top and
bottom of the channel and disposed to the homogenous external
magnetic field produced by parallel rectangular NdFeB magnets.
The considered suspension in this study consisted of dispersed
polystyrene magnetic spheres (produced by Micromond Inc.-
Germany) with hydrodynamic diameter of dp ¼ 1:7 μm and water

as a fluid at temperature of 20 1C (kinematic viscosity ν¼
1:01 mm2=s and density ρf ¼ 998 kg=m3). The composition of the
magnetic spherical particles was taken from [16], where dynamic
laser scattering in a zeta potential analyser and thermogravimetry
analysis was utilized. The spheres contain 12.45% magnetite
(ρm ¼ 5000 kg=m3) and 87.55% polystyrene (ρps ¼ 1047 kg=m3).

The general geometry parameter values of the square cross section
channel, water flow rates, magnetic flux densities, and magnetic
particle properties are selected in order to replicate a real applicable
separation device of a straight channel [16,14], so that a comparison
between experimental and numerical analyses can be made. The flow
of the water is laminar and its value varies from 27ml/h to 162ml/h.
These flow rates correspond to average water velocities from u0 ¼
1:35 cm=s to u0 ¼ 8 cm=s and Reynolds number values from Re¼
u0h=ν¼ 10 to Re¼59.36. In total 10,000 polystyrene magnetic spheres
are randomly inserted at the inlet and tracked in the bifurcating
channel with different magnetic flux densities varying from
B0 ¼ 0:04 T to B0 ¼ 0:62 T. Due to the small flow rates and corre-
spondingly small values of the Reynolds number the flow is laminar
and steady state. The suspension is considered as dilute and therefore
the assumption of neglecting interaction between the particles is
considered. Also the fluid flow and particles are one-way coupled,
meaning that the particles are affected by the flow, but the flow is not
affected by the particles. The flow is fully developed at the inlet and
the particles are randomly distributed across the inlet surface. Due to a
high aspect ratio (1:135) the simulation may require large computa-
tional times to resolve the fluid field, thus it was divided into 27
shorter segments (Fig. 1). The segments were joined by the means of
the periodic boundary condition at the inlet and the outlet of each
segment. Values of velocity and vorticity at the outlet are copied back
to the inlet plane. Mass flux comparison between inlet and outlet
planes is performed. The flow field prescribed on the inlet plane is
corrected for small differences in mass fluxes in order to maintain a
constant mass flux thought the whole channel. Periodic boundary
conditions for the particles are implemented as follows. Particle
positions at the outlet are used as inlet positions for simulation of
the next segment of the channel. Since there is a bifurcation inside the
channel the length of a segment could not be chosen arbitrarily. The
length of the segment is chosen in accordance with the demand that
after the barrier the flow must regain its fully developed state. For the
selected Reynolds number values the 1:5 aspect ratio of the segment is
selected and verified regarding the fully developed state of the fluid
flow after the barrier.

3. Governing equations

To successfully accomplish the simulation of magnetic particle
laden flow in a high gradient magnetic separation device with
bifurcation in the channel the first step is the flow computation,

Fig. 1. Geometry of one segment and the whole channel with bifurcating barriers.
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followed by the flow and magnetic field affected computation of
particle trajectories inside the separation device.

3.1. Fluid flow

To solve the fluid flow in the framework of the velocity–
vorticity formulation of the Navier–Stokes equations and to apply
the BEM approximation method, we must first split the dynamics
of the flow into its kinematic and kinetic parts. This is done by the
use of the derived vector vorticity field function ω!, obtained as the
curl of the compatibility velocity field ω!¼ ∇

!� u!. By applying
the curl operator to the vorticity and using the mass conservation
equation for incompressible fluid flow we obtain an elliptic
Poisson equation for the velocity vector:

∇2 u!þ ∇
!� ω!¼ 0: ð1Þ

Eq. (1) represents the kinematic part of the fluid flow where for a
known vorticity field ω!, the corresponding velocity field u! can be
determined. To compute the kinetic part of the flow we apply the
curl operator to the momentum conservation equation resulting in
the steady vorticity transport equation in the following form:

½ u!� ∇!�ω!¼ ½ω!� ∇!� u!þν∇2 ω!: ð2Þ
The boundary conditions for the selected channel flow consist

of the known velocities at the inlet, zero velocity flux at the outlet,
no-slip velocity boundary condition on channel and barrier walls.
Dirichlet type vorticity boundary conditions are applied on all
walls, with vorticity values calculated within the flow kinematics
part of the BEM computational algorithm.

The Boundary Element Method based computational code
[17,18] was used to simulate the flow. The system of Eqs. (1)
and (2) is solved in a nonlinear loop consisting of three steps:
computation of boundary vorticity values by solving the kine-
matics equation using the single-domain BEM approach is fol-
lowed by solving the flow kinematics equation for domain
velocities by applying the sub-domain BEM taking into account
the newly calculated boundary vorticity values. In the third step,
the domain vorticity values are obtained by solving the vorticity
transport equation using the sub-domain BEM.

3.1.1. Sub-domain BEM algorithm
To solve kinematic equation (1) by the subdomain BEM

approach the whole domain Ω has to be divided into subdomains
Ωi. The boundary of each subdomain is denoted by ∂Ωi. The
integral form of the kinematics equation without derivatives of
the velocity and vorticity fields takes the following form:

cð ϑ!Þ u!ð ϑ!Þþ
Z
∂Ωi

u!∇
!

u⋆ � n! dΓ ¼
Z
∂Ωi

u!

� ½ n!� ∇
!�u⋆ dΓþ

Z
Ωi

½ω!� ∇
!

u⋆� dΩ; ð3Þ

where r! is the field point, ϑ
!

is the source point, n! is the unit
normal to the boundary and u⋆ ¼ 1=4πj ϑ!� r!j is the fundamental
solution of the Laplace operator. The solution of this equation is
used in the second step of the BEM algorithm to obtain velocity
values inside the computational domain.

The integral form of vorticity transport equation (2) may be
written for the jth component of the vorticity vector as [19]

cð ϑ!Þωjð ϑ
!Þþ

Z
∂Ωi

ωj∇
!

un � n! dΓ ¼
Z
∂Ωi

unqj dΓ

þ1
ν

Z
∂Ωi

n!� un½ v!ωj� ω!uj�
n o

dΓ�1
ν

Z
Ωi

½ u!ωj� ω!uj� � ∇
!

un dΩ;

ð4Þ

where ωj is the jth component of the velocity vector and q! is the
vorticity flux vector qj ¼ n!� ∇!ωj. Solution of the vorticity trans-
port equations yields domain vorticity values in the final step of
the BEM algorithm.

The mesh in the problem of the channel with bifurcation
barrier is composed of hexahedral elements. Quadratic interpola-
tion within the hexahedra is employed using standard 27 node
Lagrangian domain elements, used for all the field functions as
well as for the products of velocity and vorticity field components.
On each face of the hexahedrons, discontinuous linear interpola-
tions for the flux are used. All flux nodes are located within the
boundary elements, none are located at corners and edges – thus
the unit normal and the flux value are unambiguously defined in
each flux node. In order to calculate the integrals, a Gaussian
quadrature algorithm is used.

In order to set up a system of equations the source point is set
to all function and flux nodes of all mesh elements. Each element
is treated as an individual subdomain, thus a sparse system
of equations is obtained. Compatibility boundary conditions are
employed between subdomains. The sparse system of equations is
solved using a least squares based iterative solver [17].

3.1.2. Single domain BEM
Computation of the boundary vorticity values from flow kine-

matics equation by applying the single domain BEM is crucial for
obtaining divergence free computational results [19]. In order to
obtain boundary vorticity values, we rewrite kinematics equation
(3) into a tangential form by multiplying the system with a normal
in the source point:

cð ϑ!Þnð ϑ!Þ
���!

� u!ð ϑ!Þþnð ϑ!Þ
���!

�
Z
∂Ωi

u!∇
!

u⋆ � n! dΓ

¼ nð ϑ!Þ
���!

�
Z
∂Ωi

u!� ½ n!� ∇
!�u⋆ dΓþnð ϑ!Þ

���!
�

Z
Ωi

½ω!� ∇
!

u⋆� dΩ:

ð5Þ
The source point is set to all nodes on the exterior boundary of the
domain, leading to a system of linear equations for the boundary
vorticity values. The solution of this system is computed in each
iteration of the nonlinear solution process until convergence is
achieved. Since the system matrix remains unchanged through the
whole nonlinear solution procedure, i.e. it does not depend on the
flow variables, we perform the LU decomposition on the system
matrix before the start of the nonlinear loop. Then, in each
iteration of the nonlinear loop, the stored LU decomposition is
used to obtain the boundary vorticity values.

3.2. Magnetic field computation

The magnetic field strength H0 is varied by adjusting the
distance between the magnets. The external magnetic field mag-
netizes the stainless steel 430 wires producing an inhomogeneous
magnetic field in the bifurcating channel. Magnetization of the
wires and magnetic spheres exhibits a nonlinear behaviour, thus
H–M curves for wires and magnetic spheres are used (see [14] for
details). According to the H–M curves the saturation magnetiza-
tion of stainless steel wires is 1.38�106 A/m and that of magnetic
spheres is 1.6�104 A/m.

Considering the cylindrical shape of the wires, the magnetic
field strength H

!
outside of the wires can be written as [20]

H
!¼

0
0
H0

0
B@

1
CA�MwR

2

2
∑
2

i ¼ 1

1
r4i

0
2½y�yi�½z�zi�

½z�zi�2�½y�yi�2

0
B@

1
CA; ð6Þ

where Mw is the magnetization of the wires, R the radius of the
wires, ri the distance from the centres of the wires and (yi; zi) the
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location of the centres of the wires. Analytical expression (6) for
the magnetic field strength H

!
is used in the computation of the

Kelvin force acting on particles (Fig. 2), resulting in the following
expression for the Kelvin force:

F
!

m ¼ ξmμ0Vp χf �
Mp

H

� �
½H!� ∇!�H! ð7Þ

where ξm is the volumetric fraction of ferromagnetic material in
the particle, in this case ξm ¼ 0:1245. With known H

!
, the magnetic

flux density B
!

can be computed, which is equal to the magnetic
field strength H

!
times the magnetic permeability μ0 in the region

in which the field exists, B
!¼ H

!
μ0. In the present study the

magnetic flux density value has been varied in order to establish
its effect on the magnetic particle behaviour i.e. the collection
efficiency.

3.3. Particle tracking

A Lagrange based particle tracking model [14] was implemen-
ted in order to determine particle trajectories. The particles are
considered as spherical with diameter dp, mass mp and density ρp.
The mass of fluid encompassing the same volume as the particle is
denoted by mf. The equation of motion for small rigid spheres,
adopted in the particle tracking algorithm, was proposed by
Maxey and Riley [21]. Considering gravity, buoyancy, pressure
gradient term, added mass term, drag (skin friction and form
drag) and the magnetic force term, we may write this equation in
the following form:

mp
d v!
dt

¼ ½mp�mf � g!þmf
D u!
Dt

�1
2
mf

d v!
dt

�d u!
dt

" #

�3πdpρf ν½ v!� u!��ξmμ0Vp χf �
Mp

H

� �
½H!� ∇!�H!; ð8Þ

where v! is the velocity of the particle and u! is the fluid velocity.
Here, d=dt ¼ ∂=∂tþ½ v!� ∇!� represents the time derivative follow-
ing the particle and D=Dt ¼ ∂=∂tþ½ u!� ∇!� is the time derivative
following the fluid element. The magnetic force term applies to the
volumetric fraction of ferromagnetic material (ξm) and magnetic
sphere magnetization Mp. The magnetic susceptibility of water is
set to χf ¼ �9� 10�6.

Eq. (8) is rewritten in non-dimensional form with H0, u0 and L
being the characteristic magnetic field strength, the characteristic
fluid velocity scale and characteristic problem length scale, respecti-
vely. With H

!
-H

!
=H0 u!- u!=u0, v!- v!=u0 and t-tu0=L this

results eventually in

a!¼ d v!
dt

¼ A
St

v!sþ½ u!� v!�
n o

þ3
2
R
∂ u!
∂t

þR u!þ1
2
v!

� �
� ∇!

� �
u!�ξmA

μ0H
2
0

u2
0ρp

χf �
Mp

H

� �
½H!� ∇!�H!; ð9Þ

where the Stokes number is defined as

St¼ ρpd
2
pu0

ρf 18νL
; ð10Þ

the settling velocity is

v!s ¼
d2p

18νu0

ρp
ρf

�1

" #
g!; ð11Þ

and the parameters R and A are set to

R¼ ρf
ρpþ1

2 ρf
¼ 0:4897; A¼ ρp

ρpþ1
2 ρf

¼ 0:7552: ð12Þ

In order to better understand the interaction of hydrodynamic and
magnetic forces they act on a particle, we can define the magnetic
pressure coefficient [22], which represents the importance of the
magnetic pressure with respect to the dynamic pressure of the fluid
phase as

Cpm ¼ μ0H
2
0

u2
0ρf

ð13Þ

Using the magnetic pressure coefficient, the final form of the
equation governing the acceleration of the particles is

a!¼ d v!
dt

¼ A
St

v!sþ½ u!� v!�
n o

þ3
2
R
∂ u!
∂t

þR u!þ1
2
v!

� �
� ∇!

� �
u!�ξmRCpm χf �

Mp

H

� �
½H!� ∇!�H!; ð14Þ

The non-dimensional magnetic force term is calculated based
on the magnetic field strength (6) as

½H!� ∇!�H!¼ �MwR
2

2H0
∑
2

i ¼ 1

1
r6i

0
2½y�yi� MwR2

H0
�2½y�yi�2þ6½z�zi�2

h i
2½z�zi� MwR2

H0
�6½y�yi�2þ2½z�zi�2

h i
0
BBB@

1
CCCA: ð15Þ

With the acceleration of the particle given in Eq. (9) we may
solve the particle equation of motion by employing the 4th order
Runge–Kutta method [23]. We integrate the following six equa-
tions simultaneously:

dx
dt

¼ vx;
dvx
dt

¼ ax;
dy
dt

¼ vy;
dvy
dt

¼ ay;
dz
dt

¼ vz;
dvz
dt

¼ az ð16Þ

The unknowns are the particle location ðx; y; zÞ and particle
velocity ðvx; vy; vzÞ. Thus the initial particle location and velocity
must be known. In order to calculate the acceleration contributions

Fig. 2. Magnetic force vectors in the cross section of the channel (left) and isometric view on force vectors for a larger bifurcation barrier.
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on the right-hand side, the velocity of the fluid, u!, has to be
calculated at the location of the particle. The solution algorithm
described in detail in Ravnik et al. [24] has been used.

3.4. Parallel computing

All the examples where calculated on the HPC CINECA IBM
PLX-GPU cluster consisting of 300 nodes of different types. The
system consists of 274 IBM X360M2 12-way compute nodes. Each
one contains 2 Intel(R) Xeon(R) Westmere six-core E5645 proces-
sors (2.40 GHz), each node has 48 GB of memory. The calculation
speedup and the efficiency test of the water flow with Re¼1 in
a bifurcating channel were performed for fluid flow solver. The
calculation mesh consists of 60�12�12 domain elements. For
particle tracking solver the corresponding fluid field was used and
10,000 particles tracked in magnetic field of B0 ¼ 0:62 T for a very
short time 2.5 ms. In Fig. 3 the computational time (CPU), the
speedup (SPD¼ CPUð1Þ=CPUðNPRÞ) and the efficiency (EFF¼SPD/
NPR) factor are presented for different numbers of processors
(NPR). In the first part of fluid flow simulation only the kinematic
equations are parallelized in the form that each processor handles
its own part from the system of equation. The main goal of
the parallelization of the kinematics fluid part is to resolve the
high computer memory demands of the BEM code, therefore the
moderate speedup is not a limiting factor. The second application
of parallelization was used in the particle tracking, where
the speed up of the parallel code is almost linear due to the
consideration of a dilute suspension. Since particle–particle inter-
actions are not considered, each processor handles its own share
of particles and communication between processors is necessary
only at the end of the simulation for writing the result file and not
during the iterative time stepping.

4. Results and discussion

The flow field was computed for the 3.75 mm�0.75 mm�
0.75 mm square cross sectional channel with bifurcation in the
middle of the channel. The computational mesh consisted of
60�12�12 domain elements having in total 186,792 nodes. On
the solid walls the elastic particle bouncing boundary condition
was prescribed except on the walls on the upper and lower parts
of the channel where particles that hit the wall were considered as
collected and removed from further tracking. The magnetic parti-
cle separation was solved for two different geometrical setups
of the bifurcating barrier inside the straight channel: the larger
hbif ¼ h=2¼ 0:375 mm and the smaller hbif ¼ h=8¼ 0:09375 mm
(Fig. 1). The specific flow rates for each geometrical setup were

varied from u0 ¼ 1:35 cm=s to u0 ¼ 8 cm=s (Table 1). The third step
in the numerical experiments was a variation of the magnetic flux
density from B0 ¼ 0:04 T to B0 ¼ 0:62 T. For all three series of
numerical experiments the collection efficiency ζ was determined
in order to asses the influence of different parameters on the
efficiency of the HGMS separation unit with bifurcating barrier.
The collection efficiency defines the fraction of magnetic particles
that enter the separation unit and become attached to the top and
bottom channel walls.

It is important to note that with rising values of the Re number
the recirculation zone after the barrier is increasing, therefore it
needs to be checked if the flow at the outlet regains its fully
developed state from the inlet of the channel, facilitating the use
of periodic boundary conditions. A comparison of different flow
fields for geometrically different HGMS devices with the highest
prescribed velocity u0 ¼ 1:35 cm=s on the inlet is presented in
Fig. 4. From these results we can see that the flow accelerates in
the region above and below the barrier, and that the flow at the
outlet of the segment (3.75 mm) is again fully developed. This
allowed us to use the periodic boundary conditions in the next
step where magnetic particle tracking was performed. In the case
of periodic boundary conditions values of velocity and vorticity at
the outlet were copied back to the inlet plane. In the same manner,
particle positions at the outlet were used as inlet positions for the
simulation of the next segment of the channel. In order to record
the particles position history it is important to set the length of the
segment prior to beginning of computations, since when a particle
is tracked and reaches the outlet plane of the segment, its y–z
position in the flow as well as its velocity direction are stored and
used as the boundary condition at the inlet (Fig. 5). The x position
coordinate is computed according to the segment's number and
relative position inside the segment. The advantage of the periodic
boundary conditions is its capability to simulate particle tracking
in a much longer channel, consisting of several in-line positioned
bifurcating barriers.

Several electric currents were selected, which result in mag-
netic flux densities ranging between B0 ¼ 0:04 T and B0 ¼ 0:62 T.
The corresponding magnetic pressure coefficients (Table 2),

Fig. 3. Computational time (CPU), speedup and efficiency factor for different numbers of processors in the fluid flow solver (left) and particle tracking solver (right).

Table 1
Mean flow velocities used in simulations with corresponding Reynolds and Stokes
number values.

u0 ðcm=sÞ Re St ð�10�6Þ

8 59.36 26.1
5 37.1 16.3
2.5 18.55 8.15
1.35 10.0 4.4
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computed for the system as a whole (13), clearly indicate the
predominance of the magnetic force over hydrodynamic forces,
although the local values of this coefficient do vary significantly. In
all computed cases a total of 10,000 polystyrene magnetic spheres
were tracked using the Lagrangian particle tracking algorithm.
This number of particles was chosen in order to obtain represen-
tative statistics of collection efficiency without violating the dilute
suspension assumption.

The final particles distribution in the case of larger and smaller
bifurcations is shown in Fig. 6, from which we can see that the
collection efficiency on the top and bottom walls is much higher
for the case of the smaller bifurcation. From these results we can
also observe the final particle positions at the outlet of the channel
indicating that in the case of a larger bifurcation the particles
distribution is wider than in the case of the smaller barrier size,
where they are positioned mostly in the middle of the channel.
This observation could be explained by the fact that in the case
of the larger barrier the flow perturbation is larger, leading to
stronger hydrodynamic forces. Improvement of the collection
efficiency for the smaller bifurcation barrier size can be attributed
to a prolonged exposure of the magnetic particles to the higher
magnetic force field, obtained by redirecting the flow with
particles towards the upper/lower walls, which are in the vicinity
of the magnets. For lower flow rates, this effect is not decreased by

redirection of the flow field towards the center of the channel,
which occurs in the divergent part of the channel, as the flow
quickly regains its developed state. For higher flow rates, the
formation of a weak jet could be observed in the divergent part of
the channel, which increases the distance until the flow attains
the developed state. Combined with the increase in strength of
the hydrodynamic forces when increasing the flow rate this leads
to a decrease of the collection efficiency of the channel with
bifurcations.

Results for larger and smaller bifurcations, shown in Fig. 6, are
also presented in terms of particle collection efficiency per
distance ζ=x versus the separation channel length, Fig. 7. Particle
collection efficiency is defined as the fraction of the number of
magnetic particles that entered the separation unit and become
attached to the top and bottom channel walls. From these results it
is evident that the collection efficiency along the channel is much
higher in the case of a smaller bifurcating barrier, whereas in
the case of the larger bifurcation the efficiency is similar to the
channel without bifurcation.

A comparison of different geometrical cases of HGMS units,
presented in Figs. 8 and 9, shows particle collection efficiency ζ
versus magnetic field flux B0 for both geometrical cases of the
bifurcation and for two different flow rates u0 ¼ 1:35 m=s (Re¼10)
and u0 ¼ 5:0 m=s (Re¼37.1). In the case of the lower flow rate
u0 ¼ 1:35 m=s (Re¼10) the collection efficiency is the largest in the
case of the smaller barrier size, while in the case of the higher
flow rate u0 ¼ 5:0 m=s (Re¼37.1) the largest collection efficiency is
observed with the case of no bifurcation barrier [14]. This can be
attributed to the fact that there is no redirection of the flow field in
the narrow channel, which in the case of higher flow rates and
the bifurcating channel decreases the collection efficiency. The
decrease of the collection efficiency for larger bifurcation com-
pared to the other two channel configurations is also attributed to
the fact that in the channels above and under the bifurcation
barrier flow velocities locally increase, and although particles
approach the area of higher magnitude of Kelvin force, the time
interval within which particles are exposed to these forces is not
long enough to significantly alter the particle trajectories. Also, the

Fig. 4. Flow field in segment (3:75 mm) of the channel for larger (hbif ¼ h=2) and
smaller (hbif ¼ h=8) size of bifurcating barrier for the case Re¼10 (u0 ¼ 1:35 cm=s).

Fig. 5. Periodic boundary conditions for magnetic particle tracking.

Table 2
Magnetic pressure coefficients Cpm for different magnetic flux densities B0 used in
simulations and corresponding Reynolds number values.

Re B0

0.04 T 0.12 T 0.32 T 0.62 T

10 6.75Eþ03 6.07Eþ04 4.32Eþ05 1.73Eþ06
18.55 1.97Eþ03 1.77Eþ04 1.26Eþ05 5.04Eþ05
37.1 4.92Eþ02 4.42Eþ03 3.15Eþ04 1.26Eþ05
59.36 1.92Eþ02 1.73Eþ03 1.23Eþ04 4.92Eþ04
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particle Stokes number values in the selected cases are very small,
this means that the particles tend to follow the flow field, the
effect which is amplified in the regions of high velocities and low
magnetic field flux.

The collection efficiency is in all simulations higher with
increasing magnetic field flux and is limited with the saturation
point of the particle magnetization characteristics [14], which
occurs for the stainless steel 430 wire and the magnetic spheres

for B040:3 T. An opposite behaviour occurs for the case of
increasing flow rates presented in Fig. 10 for the case with smaller
bifurcating barrier size. This relation is also exhibited for the case
of larger bifurcating barrier size and also for the case without
barrier [14]. With higher flow rates the collection efficiency is
decreased, because of the larger inertial forces compared to the
magnetic force acting on particles. These relations are also evident
from Fig. 11 where collection efficiency versus flow rate for case
with smaller bifurcating barrier is presented for different magnetic
field fluxes. Fig. 12 presents also collection efficiency versus flow
rate but for all geometrical cases of channel with and without [14]
bifurcation for magnetic field flux B0 ¼ 0:62 T. Increasing the flow
rate leads to a deterioration of the collection efficiency, as
presented in Fig. 10 for the case with smaller bifurcating barrier
size, although increasing the magnetic field flux up to the satura-
tion point does improve separation to a certain extent. This
relation can be also observed with the other two geometrical
cases, including the channel with no bifurcation [14]. In Fig. 11
where the collection efficiency versus the flow rate for the case
with smaller bifurcating barrier is presented, we can again observe
the effect of saturation on the collection efficiency, as increasing
the magnetic field flux from 0.32 T to 0.62 T does not lead to
noticeable collection efficiency improvement. In Fig. 12, where the
highest magnetic field flux was used, a clear advantage of the
proposed channel design can be observed to exist in the range of
flow rates up to 2 m/s, where the smaller bifurcation outperforms
the original separation design.

Fig. 6. Final particle positions for both geometrical cases of the channel with bifurcation (left – larger bifurcation (hbif ¼ h=2) and right – smaller bifurcation (hbif ¼ h=8)) for
flow rate u0 ¼ 1:35 m=s (Re¼10) and magnetic field flux B0 ¼ 0:62 T.

Fig. 7. Particle collection efficiency per distance ζ=x versus the separation channel
length for the case u0 ¼ 1:35 m=s (Re¼10) and B0 ¼ 0:62 T for both geometrical
cases of the channel with bifurcation.

Fig. 8. Particle collection efficiency ζ versus magnetic field flux B0 for u0 ¼ 1:35 m=s
(Re¼10) for geometrical cases of the channel with and without [14] bifurcation.

Fig. 9. Particle collection efficiency ζ versus magnetic field flux B0 for u0 ¼ 5:0 m=s
(Re¼37.1) for geometrical cases of the channel with and without [14] bifurcation.
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5. Conclusions

The Boundary Element Method based 3D fluid flow simulation
inside a high gradient magnetic separation channel with bifurca-
tion was applied in order to study the collection efficiency
of different channel designs. Due to the large aspect ratio of the

separation channel, the segmentation based computational
approach was developed. Within the Lagrangian particle tracking
the Kelvin body force was included in order to be able to study
the collection efficiency of the device. Starting from the original
channel design, where a collection efficiency was negatively
influenced by the existence of low magnetic forces in the middle
of the channel, a new design with periodically positioned sym-
metric bifurcations was studied. Simulation results showed that
increasing the size of the bifurcating barrier does not improve
collection efficiency, as the efficiency was lower than in the case of
the narrow channel without the bifurcation. On the other side,
with a moderate size of the bifurcating barrier the collection
efficiency can be improved, although the improvement is partly
limited by the flow rate and magnetization saturation effects.
The performed study shows that collection efficiency of a
HGMS device can be improved by a careful design of the flow
field, and shows potential for further improvements, especially in
the case of viscous media such as blood under lower flow rates
Reo10 [16].
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