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G R A P H I C A L A B S T R A C T

H I G H L I G H T S

Tangential restitution coefficient 𝜖t model for arbitrary shaped particles was presented.
The novel 𝜖t model is in agreement with literature results for sperical shapes.
The impact of relative normal and relative tangential collision velocity on 𝜖t was analyzed.
The impact of superellipsoidal shape factors on 𝜖t was investigated.
Cylinder filling process using various superellipsoidal shapes were computed.
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A B S T R A C T

In various industrial and naturally occurring multiphase flows, whether dilute or dense, particle interaction
plays a crucial role. In most cases, the particles are non-spherical, which poses a computational challenge
in terms of particle motion and particle interaction, i.e. both particle–particle and particle–wall collisions.
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Superellipsoids In this study, we present a novel frictional particle collision model to be used in general fluid flows. The
model is derived for superellipsoidal particle shapes and thus allows consideration of frictional collisions of
a wide variety of particle geometries. In this context, we derive an expression for the tangential coefficient
of restitution applicable to arbitrarily shaped particles. Furthermore, we present the performance of the novel
model by applying it to demonstrative examples ranging from two- to multi-particle systems.
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1. Introduction

Accurate modeling of the physics of complex particulate systems
is of key interest to various industries such as pharmaceuticals, petro-
chemicals, and wastewater treatment, [1,2], as a better understanding
can help increase the efficiency of such applications. In targeted drug
delivery, for example, better knowledge of particle behavior can be
used to reduce side effects as well as increase the drug efficacy, [3].
It should be noted that naturally occurring and man-made particles
are rarely perfectly spherical, such as blood cells, dust particles, or
fibers, which contributes to the increased complexity of particle mo-
tion. In addition, the description of particle–particle and particle–wall
collisions becomes more complex when the particle shapes deviate
from spherical. Another complication is the consideration of friction in
particle–particle and particle–wall collisions, which is often neglected,
although it can significantly impact the post-collisional movement of
particles.

In the literature, there are a variety of approaches that target non-
spherical particles in collision problems, such as the polygon formu-
lation, [4,5], discrete function representation (DFR), [6,7], continuous
function representation (CFR), [7–9], and composite particles. Hogue
and Newland, [4] investigated falling dominoes using the polygon
formulation. The authors obtained good agreement with experimental
results. In addition, Feng and Owen, [5], investigated 2D polygon
collisions and proposed a contact model for corner contacts. Another
method to account for non-sphericity is the CFR method, in which
the particle surface is expressed in a continuous fashion by employing
a surface equation such as the superellipsoidal surface equation, [9].
Mustoe and Miyata, [10] used the CFR method in combination with
the superellipsoid surface equation to study cube-shaped particles in a
horizontal, rotating 2D cylinder, focusing on the relationship between
the particle squareness and the dynamic angle of response. It is well
known that the CFR method has significant convergence problems as
the squareness of the particles increases, [1]. In contrast to CFR, the
DFR method, [6], models the particle surface with a chosen number
of discrete points and is a reasonable alternative to CFR due to its
lower computational cost and applicability to a large variability of
particle shapes, [11]. Note that a suitable number of points must
be chosen for accurate shape representation and collision resolution,
with the computational cost of the DRF method increasing with the
number of surface nodes 𝑁 as (𝑁). Another commonly used modeling
technique is the multi-sphere composite approach, [12,13], in which a
set of prime spheres is combined to approximate arbitrary shapes, [7].
Abbaspour-Fard [14], describes the efficiency of contact detection, as
it is reduced to sphere-sphere contact detection, and the comparatively
simple implementation as the main advantages of the multi-sphere ap-
proximation. A disadvantage of the multi-sphere approach is the strong
dependence on the number of prime spheres used to represent the
surface. Thus, for complex particle shapes, a high number of spheres is
usually required to obtain a sufficiently smooth surface representation,
which leads to high computational costs, [7]. Moreover, approximating
a convex shape such as ellipsoids or superellipsoids by a set of spheres
leads to a non-convex shape and consequently to the occurrence of
multiple contact points, [7].

In our previous work, [9], we discussed various techniques to
account for nonsphericity of particles, such as polygon-shaped particles,
multisphere composites, discrete function representation (DFR), and
2

continuous function representation (CFR), where the last one proved
to be superior in the scope of our work. In this context our previous
work, [9], presented a novel frictional particle–wall and particle–
particle collision model, applicable to any superellipsoidal particle
collisions occurring in flows. The method proved to be efficient and
robust even in the case where non-binary particle contacts occur, for
example in filling processes, where a particle can be in contact with
various other particles as well as the container wall. The method is
based on a Lagrangian multiplier optimization technique in combina-
tion with the Newton–Raphson method, [9]. As no discretization of the
particle surface is required, the approach is able to consider multitude
of particles ( > 105) during thousands of time steps, [9].

To evaluate the loss of mechanical energy in particle systems due
to particle–particle as well as particle–wall collisions, the normal and
tangential coefficients are commonly used, [15,16]. The normal and
tangential restitution coefficients relate the normal and tangential post-
and pre-collisional relative velocities, respectively, [17]. Most expres-
sions for 𝜖n and 𝜖t are derived only for sphere-sphere and sphere-wall
interactions since the particle shape simplifies the collision problem
considerably. Therefore, various experiments and models targeting the
restitution coefficients for spherical particles can be found in the litera-
ture, [16–18]. Bridges et al. experimentally investigated 𝜖n for spherical
ice particles in plane wall collisions, [19–21]. The authors observed
the dependence of 𝜖n on a variety of parameters such as particle
diameter, surface roughness, and temperature. In addition, Schwager
and Pöschel, [15], proposed an analytical expression for 𝜖n by studying
viscous spherical particles, improving Bridger’s model where the 𝜖n can
ecome infinite with decreasing impact velocities. The derivation of
odels for restitution coefficients for arbitrary particle shapes has long

een studied, [22], and remains a challenge as they are influenced
ot only by particle material, size, and relative impact velocity but
lso by particle shape and contact inclination angle due to their non-
phericity, [16]. Hu et al. [16], experimentally investigated 𝜖n for

spheres and simple non-spherical particles, i.e. prolate ellipsoids, in
wall collisions and provided experimental measurements. The authors
showed that 𝜖n has both translational and rotational contributions. The
authors also found that near a pole the translational contribution is
dominant, while near the particle equator, the rotational contribution
is major, indicating that the contributions depend significantly on the
position of the contact point. Huang et al. [23], proposed a simplified
2D collision model to describe 𝜖n for prolate ellipsoids in wall collisions.
The authors based their model on experiments as well as on momentum
and angular momentum laws, [23]. Note that for the frictional colli-
sion of particles, the tangential restitution coefficient 𝜖t is additionally
required. Becker et al. [18] investigated several 𝜖t models that apply
to spheres. However, to capture the frictional particle collision for ar-
bitrarily shaped particles, a more complex expression for 𝜖t is required
which accounts for the nonspherical shape. Gui et al. [24] proposed
a particle–wall collision model for non-spherical rigid particles in wall
collisions assuming Coulomb friction.

In this work, we derive an expression for the tangential restitution
coefficient assuming Coulomb friction for arbitrarily shaped particles.
This work serves as an extension to our previously presented superel-
lipsoid particle interaction model based on a hard-sphere collision
technique, [9,25]. Combining our previously presented superellipsoid
force models (see [25]) and our novel frictional particle–particle as well
as particle–wall collisions approach, we are able to simulate the motion
of suspended non-spherical particles, i.e. trajectories and rotations as
well as frictional collisions.

This work is organized as follows: In Section 2, the particle col-

lision approach, the collision frame, and the restitution coefficients
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Fig. 1. Two superellipsoidal particles undergoing collision. Without loss of generality, we assume in the following that 𝒆n points in the direction of the change of normal momentum.
Furthermore, 𝒆t is chosen to point in the direction of the relative tangential velocity of the contact point 𝒗𝑡P,21 = 𝒗

t
P,2 − 𝒗

t
P,1.
are described. In Section 3, we discuss the conservation equations in
superellipsoid–superellipsoid as well as superellipsoid–wall collisions.
In Section 4, we derive an expression for the tangential restitution co-
efficient for arbitrary particle shapes. Furthermore, Section 5 contains
the validation and demonstrative examples of superellipsoid–wall and
superellipsoid–superellipsoid collisions based on the proposed method,
followed by the main conclusions drawn from the study in Section 6.

2. Particle collision model

The particle collision model including contact point detection is
based on our previous work, see Wedel et al. [9]. Here, we present a
novel expression for the tangential restitution coefficient 𝜖t applicable
to arbitrary particle shapes.
Notation: The notation employed in the scope of this study is in agree-
ment with our preceding work, see Wedel et al. [9]. For convenience
the notation can be found in Appendix A.

2.1. The collision frame of reference

We choose a collision frame of reference (cFoR) to simplify the
consideration as much as possible. The collision frame originates at
the contact point 𝑃 and its unit basis vector 𝒆𝑥′′ is aligned with the
direction of the collision normal 𝒆n, i.e. the identified surface normal at
that contact point. The orthogonal unit basis vector 𝒆𝑦′′ can be further
aligned with 𝒆t , the tangential unit vector pointing in the direction
of the relative tangential velocity at the collision point. The third
orthogonal unit basis vector can be obtained by 𝒆′′𝑧 = 𝒆′′𝑥 × 𝒆′′𝑦 . The
collision frame is depicted in Fig. 1.

Since we are considering a binary collision, we determine for the
two colliding particles their position vectors relative to the collision
point 𝒓∗𝜑 = 𝒓𝜑 − 𝒓P , 𝜑 = 1, 2, (where 𝒓𝜑 denotes the position vector
of particle 𝜑 and 𝒓P labels the position vector of the contact point
𝑃 ). Their angular velocities are denoted as 𝝎𝜑 and the particle ori-
entations are captured in terms of their Euler parameters collected
in 𝑒. All physical quantities defined in the global frame [𝑟∗𝜑, 𝑣𝜑] and
the body reference frame [𝜔′

𝜑, 𝐼𝜑
′] must first be represented in the

chosen collision frame [𝑥′′, 𝑦′′, 𝑧′′]. We transform the parameters of
the global frame 𝒆𝑖 to the cFoR 𝒆′′𝑖 by employing the global rotation
matrix 𝑅0. Furthermore, we transform the parameters of the body frame
to the collision frame by using the body rotation matrices 𝑅𝜑, which
transforms from the fixed body reference frame 𝒆′𝑖,𝜑 of the 𝜑-th particle
to the cFoR 𝒆′′𝑖 . Thus, we obtain the following relations:

𝑟′′ = 𝑅 𝑟∗ , 𝑣′′ = 𝑅 𝑣 , 𝜔′′ = 𝑅 𝜔′ , 𝐼 ′′ = 𝑅 𝐼 ′ 𝑅T . (1)
3

𝜑 0 𝜑 𝜑 0 𝜑 𝜑 𝜑 𝜑 𝜑 𝜑 𝜑 𝜑
2.2. Coefficients of restitution

The frictional particle–particle and particle–wall interactions not
only change the normal relative velocity, but also influence the tan-
gential relative velocity, [18]. The relative velocity of particle ‘‘1’’ and
‘‘2’’ in the contact point is obtained using

𝒗P,21 = 𝒗P,2 − 𝒗P,1 . (2)

The relative velocity in the collision normal direction can be written
as: [17]

𝒗nP,21 =
[

𝒆n ⋅ 𝒗P,21
]

𝒆n = 𝑣nP,21𝒆n , (3)

where 𝒆n denotes the collision normal. Without loss of generality, we
assume in the following that 𝒆n points in the direction of the change
of normal momentum 𝛥𝒑n, see below. The projection to the tangential
plane results in:

𝒗tP,21 = 𝒆n ×
[

𝒆n × 𝒗P,21
]

= 𝒗P,21 − 𝒗nP,21 =
[

𝒆t ⋅ 𝒗P,21
]

𝒆t = 𝑣tP,21𝒆t , (4)

where the direction of the tangential relative velocity is defined by the
unit vector 𝒆t . The (signed) length of the tangential relative velocity
𝑣tP,21 and the normal relative velocity 𝑣nP,21 are respectively obtained as
follows:

𝑣tP,21 = 𝒗P,21 ⋅ 𝒆t , 𝑣nP,21 = 𝒗P,21 ⋅ 𝒆n . (5)

Note that by definition, 𝑣tP,21 is non-negative (𝑣tP,21 ≥ 0) as 𝒆t =
𝒗tP,21∕‖𝒗

t
P,21‖, [17].

A collision may be described by the coefficients of restitution,
i.e. the normal restitution coefficient 𝜖n and the tangential restitu-
tion coefficient 𝜖t . The restitution coefficients relate the post- and
pre-collisional values of the normal and tangential relative velocity,
respectively.

The normal restitution coefficient 𝜖n relates the post- (𝑐n𝑝,21) and
pre-collisional (𝑣n𝑝,21) values of the normal relative velocity as

𝜖n ≡ −
𝑐np,21
𝑣np,21

. (6)

As indicated by Eq. (6), we identify that the normal restitution coef-
ficient is defined in the range 0 ≤ 𝜖n ≤ 1, where 𝜖n = 0 denotes a
fully plastic collision and 𝜖n = 1 a fully elastic collision wherein the
normal velocity is conserved (with reversed sign), [18]. In general, 𝜖n
can depend on the particle material parameters, the mass, the particle
size as well as the relative impact velocity, [18]. As stated by Becker
et al. [18], the assumption of a constant 𝜖n is commonly employed
in molecular dynamics simulations, especially in the fields of granular
systems. The author further concludes that the linear dashpot model is a
force model leading to 𝜖n = constant. Consequently, 𝜖n depends only on
material parameters and is independent of the relative impact velocity.
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The linear dashpot force model is frequently employed in molecular
dynamics simulations, see [26–36]. Nevertheless, we want to note that
there are various force models available in the literature, which can
lead to 𝜖n depending on the impact velocity, see for example [15,26,37–
44], however, increasing the complexity of the collision description.

Becker et al. [18], stated that the assumption of a constant 𝜖n neither
grees in 2D nor in 3D perfectly with physical reality, yet it is justified
s it simplifies the analysis of kinetic and hydrodynamic equations
ignificantly, [18]. As the assumption of a constant 𝜖n is accepted for
arious applications, [18], we employ this limitation in the following.

Note that for the collision of frictional particles, we additionally
eed to account for the change of relative tangential velocity. The
angential restitution coefficient 𝜖t relates the post- (𝑐tP,21) and pre-
ollisional (𝑣tP,21) values of the tangential relative velocity as

t ≡ +
𝑐tP,21
𝑣tP,21

. (7)

The tangential restitution coefficient 𝜖t is in general defined in the
range −1 ≤ 𝜖t ≤ 1, whereby the case 𝜖t = 0 denotes the total loss
of tangential relative velocity after the impact, while 𝜖t ∈ [+1, − 1]
describe two elastic limits, i.e smooth and rough particles, respec-
tively, [17]. Smooth particles are represented by 𝜖t = 1 as the tangential
relative velocity and thus the angular relative velocity of the interacting
particles is not changed during the collision, [18]. Rough particles are
represented by 𝜖t = −1, which leads to a reversal of the tangential
relative velocities at impact, [18]. Becker et al. [18], described this
case as (in 2D) very elastic gear wheels. In the following, we base
our derivation of the tangential restitution coefficient on the Coulomb
friction model, effectively reducing the range of 𝜖t to 0 ≤ 𝜖t ≤ 1. Note
hat there are various alternative contact force laws available in the
iterature, see [45–47].

. Conservation equations during collision

In the following, we will present the momentum conservation equa-
ions during collision of particles. The conservation of linear momen-
um is given by:

1𝒗1 + 𝑚2𝒗2 = 𝑚1𝒄1 + 𝑚2𝒄2 , (8)

here the particle velocity before and after the impact are denoted as
𝜑 and 𝒄𝜑 (𝜑 = 1, 2), respectively. The particle velocity at the contact
oint is obtained as follows

P,𝜑 = 𝒗𝜑 − 𝝎𝜑 × 𝒓∗𝜑, 𝒄P,𝜑 = 𝒄𝜑 − 𝝍𝜑 × 𝒓∗𝜑 , (9)

here the pre- and post-collisional angular velocities are labeled as
𝜑 and 𝝍𝜑, respectively. Recall that 𝒓∗𝜑 denotes the distance vector
ointing from the collision point to the respective particle center, see
ig. 1, thus explaining the negative sign of the terms 𝝎𝜑 × 𝒓∗𝜑. From

Eq. (6) the pre- and post-collision point normal relative velocities
𝒗nP,21 and 𝒄nP,21, respectively, are related through the normal restitution
coefficient as follows:
𝒆n ⋅

[

𝒄P,2 − 𝒄P,1
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑐nP,21

= − 𝜖n 𝒆n ⋅
[

𝒗P,2 − 𝒗P,1
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑣nP,21

.
(10)

Likewise from Eq. (7), the pre- and post-collision tangential relative
velocities are related by:

𝒆t ⋅
[

𝒄P,2 − 𝒄P,1
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑐tP,21

= + 𝜖t 𝒆t ⋅
[

𝒗P,2 − 𝒗P,1
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑣tP,21

.
(11)

The cFoR 𝒆′′𝑥 unit vector is aligned with the collision normal 𝒆n with
corresponding coefficient matrix 𝑒′′n = [1, 0, 0]T. Likewise the unit
ector 𝒆′′ is aligned with the tangential relative velocity in the contact
4

𝑦 c
point and thus with 𝒆t with corresponding coefficient matrix 𝑒′′t =
[0, 1, 0]T. Thus, we can simplify Eqs. (10)–(11) to:

𝑐′′𝑥,2 + 𝑟
′′
𝑦,2𝜓

′′
𝑧,2 − 𝑟

′′
𝑧,2𝜓

′′
𝑦,2 − 𝑐

′′
𝑥,1 − 𝑟

′′
1𝑦𝜓

′′
𝑧,1 + 𝑟

′′
𝑧,1𝜓

′′
1𝑦 =

𝜖n
[

𝑣′′𝑥,2 +𝑟′′𝑦,2𝜔
′′
𝑧,2 − 𝑟

′′
𝑧,2𝜔

′′
𝑦,2 − 𝑣

′′
𝑥,1 − 𝑟

′′
𝑦,1𝜔

′′
𝑧,1 + 𝑟

′′
𝑧,1𝜔

′′
𝑦,1

] (12)

nd
𝑐′′𝑦,2 − 𝑟

′′
𝑥,2𝜓

′′
𝑧,2 + 𝑟

′′
𝑧,2𝜓

′′
𝑥,2 − 𝑐

′′
𝑦,1 + 𝑟

′′
𝑥,1𝜓

′′
𝑧,1 − 𝑟

′′
𝑧,1𝜓

′′
𝑥,1 =

𝜖t
[

𝑣′′𝑦,2 −𝑟′′𝑥,2𝜔
′′
𝑧,2 + 𝑟

′′
𝑧,2𝜔

′′
𝑥,2 − 𝑣

′′
𝑦,1 + 𝑟

′′
𝑥,1𝜔

′′
𝑧,1 − 𝑟

′′
𝑧,1𝜔

′′
𝑥,1

]

.
(13)

ith respect to the collision point, the conservation of angular momen-
um can be expressed for each particle separately as

𝜑 ⋅ 𝝎𝜑 + 𝒓∗𝜑 × 𝑚𝜑𝒗𝜑 = 𝑰𝜑 ⋅ 𝝍𝜑 + 𝒓∗𝜑 × 𝑚𝜑𝒄𝜑 , (14)

endering the expression for the post-collision angular velocities

𝜑 = 𝝎𝜑 + 𝑰−1𝜑 ⋅
[

𝒓∗𝜑 × 𝑚𝜑
[

𝒗𝜑 − 𝒄𝜑
]

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛥𝝎𝜑

. (15)

This representation is valid since here the reference point for the
balance of angular momentum is chosen as the contact point, thus the
contact force does not contribute to the angular momentum.1

Eventually, combining the results of linear and angular momentum,
we can set up a linear system of equations in the format 𝐴𝑥 = 𝑏 and
solve for the ten unknowns:

𝑥 =
[

𝑐′′𝑥,1, 𝑐′′𝑦,1, 𝑐′′𝑥,2, 𝑐′′𝑦,2, 𝜓 ′′
𝑥,1, 𝜓 ′′

𝑦,1, 𝜓 ′′
𝑧,1, 𝜓 ′′

𝑥,2, 𝜓 ′′
𝑦,2, 𝜓 ′′

𝑧,2

]T
.

(16)

(Note that 𝑐′′𝑧,𝜑 = 𝑣′′𝑧,𝜑 are known beforehand). To this end, we use
Eq. (8), which gives us two non-zero equations in the collision frame,
together with Eqs. (12) and (13), which give us two further equations,
and finally Eq. (14) gives us the missing six equations as it can be
written for each particle separately.

4. Derivation of an expression for the tangential restitution coef-
ficient 𝝐𝐭

4.1. Change of linear momentum

From the conservation of linear momentum in Eq. (8), we define the
change of linear momentum 𝛥𝒑 as

𝛥𝒑 = 𝑚1
[

𝒄1 − 𝒗1
]

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝛥𝒑1

= −𝑚2
[

𝒄2 − 𝒗2
]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
−𝛥𝒑2

, (17)

which allows the representations

𝒄1 = +
𝛥𝒑
𝑚1

+ 𝒗1 , 𝒄2 = −
𝛥𝒑
𝑚2

+ 𝒗2 . (18)

The change of linear momentum can be decomposed into normal
and tangential contributions:

𝛥𝒑 = 𝛥𝒑n + 𝛥𝒑t =
[

𝛥𝒑n ⋅ 𝒆n
]

⏟⏞⏞⏟⏞⏞⏟
𝛥𝑝n

𝒆n +
[

𝛥𝒑t ⋅ 𝒆t
]

⏟⏞⏞⏟⏞⏞⏟
𝛥𝑝t

𝒆t . (19)

Observe, that due to the definition of 𝒆n and 𝒆t , see Fig. 1, 𝛥𝑝n ≥ 0,
whereas 𝛥𝑝t can take arbitrary values.

1 The conservation of angular momentum for a particle 𝜑 with respect to
an arbitrary reference point A can be written as follows: 𝑰𝜑 ⋅

[

𝝎𝜑 − 𝝍𝜑
]

+
𝑚𝜑𝒓𝜑 ×

[

𝒗𝜑 − 𝒄𝜑
]

= 𝒓P,𝜑 × 𝑭 , 𝜑 = 1, 2. The impulse moment is expanded as
𝒓P,𝜑 × 𝑭 =

[

𝒓𝜑 − 𝒓∗𝜑
]

× 𝑭 . Note that 𝒓P points from the reference point A to the
ontact point P, 𝒓𝜑 points from the reference point A to the particle center,
hile 𝒓∗𝜑 points from P to the particle center, see Fig. 1. If the contact point
is identical to the reference point A, we obtain 𝒓𝜑 = 𝒓∗𝜑, thus 𝒓P,𝜑 = 𝟎 and

onsequently 𝒓 × 𝑭 = 𝟎.
P,𝜑
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4.2. Change of linear momentum in normal direction

The change of normal linear momentum 𝛥𝒑n is expressed using the
espective normal velocities

𝒑n = 𝑚1
[

𝒄n1 − 𝒗
n
1
]

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝛥𝒑n1

= −𝑚2
[

𝒄n2 − 𝒗
n
2
]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
−𝛥𝒑n2

, (20)

hereby we detail corresponding to Eq. (18)

n
1 = +

𝛥𝒑n

𝑚1
+ 𝒗n1 , 𝒄n2 = −

𝛥𝒑n

𝑚2
+ 𝒗n2 . (21)

ext, the aim is to find an expression for the unknown post-collision
ormal velocities 𝒄nP,𝜑 in the contact point P. Note that using Eq. (9)
e write

n
P,2 =

[

𝒄P,2 ⋅ 𝒆n
]

𝒆n =
[[

𝒄2 − 𝝍2 × 𝒓∗2
]

⋅ 𝒆n
]

𝒆n = 𝒄n2 −
[[

𝝍2 × 𝒓∗2
]

⋅ 𝒆n
]

𝒆n .

(22)

ow we insert the expression for 𝒄n2 from Eq. (21) into Eq. (22),
hereby we identify that 𝒗n2 = 𝒗nP,2 +

[[

𝝎2 × 𝒓∗2
]

⋅ 𝒆n
]

𝒆n which renders

n
P,2 = −

𝛥𝒑n

𝑚2
+ 𝒗nP,2 +

[[

𝝎2 × 𝒓∗2 − 𝝍2 × 𝒓∗2
]

⋅ 𝒆n
]

𝒆n . (23)

urthermore, we can express 𝝍𝜑 by Eq. (15), where we recall the
efinition of 𝛥𝒑, see Eq. (17)

2 = 𝝎2 + 𝛥𝝎2 with 𝛥𝝎2 = +𝑰−12 ⋅
[

𝒓∗2 × 𝛥𝒑
]

, (24)

1 = 𝝎1 + 𝛥𝝎1 with 𝛥𝝎1 = −𝑰−11 ⋅
[

𝒓∗1 × 𝛥𝒑
]

. (25)

Inserting Eq. (24) into Eq. (23) thus renders

n
P,2 = −

𝛥𝒑n

𝑚2
+ 𝒗nP,2 −

[[

𝛥𝝎2 × 𝒓∗2
]

⋅ 𝒆n
]

𝒆n . (26)

n a similar fashion, we obtain the expression for 𝒄nP,1
n
P,1 = +

𝛥𝒑n

𝑚1
+ 𝒗nP,1 −

[[

𝛥𝝎1 × 𝒓∗1
]

⋅ 𝒆n
]

𝒆n . (27)

inally, we insert 𝒄nP,2 (Eq. (26)) and 𝒄nP,1 (Eq. (27)) into the vectorial
ersion of Eq. (6), which can be rewritten as

𝒑n =𝑚eff𝒗nP,21
[

1 + 𝜖n
]

− 𝑚eff
[[

𝛥𝝎2 × 𝒓∗2 − 𝛥𝝎1 × 𝒓∗1
]

⋅ 𝒆n
]

𝒆n , (28)

here the effective mass is abbreviated as 𝑚eff = 𝑚1𝑚2∕
[

𝑚1 + 𝑚2
]

.
q. (28) presents a useful relation between the change of normal linear
omentum and the normal restitution coefficient 𝜖n.

.3. Change of linear momentum in tangential direction

To derive an expression for the tangential restitution coefficient 𝜖t ,
e need to replace 𝒄tP,1 and 𝒄tP,2 in the vectorial version of Eq. (7).

Note that we can obtain the post-collisional tangential velocities in the
collision point from the collision point velocity 𝒄P,𝜑 (Eq. (9)) and the
ormal collision point velocity 𝒄nP,𝜑:

t
P,𝜑 = 𝒄P,𝜑 − 𝒄nP,𝜑 = 𝒄𝜑 − 𝝍𝜑 × 𝒓∗𝜑 − 𝒄nP,𝜑 . (29)

nserting Eq. (29) into the vectorial version of Eq. (7), we obtain:

2 − 𝝍2 × 𝒓∗2 − 𝒄
n
P,2−𝒄1 + 𝝍1 × 𝒓∗1 + 𝒄

n
P,1 = 𝜖t𝒗tP,21 . (30)

nserting the expressions for 𝒄𝜑 (Eq. (18)) and 𝒄nP,𝜑 (Eq. (22)), we write

𝛥𝒑t

𝑚eff
+ 𝒗2 − 𝒗n2 − 𝒗1 + 𝒗

n
1 −

[[

𝝍2 × 𝒓∗2
]

⋅ 𝒆t
]

𝒆t +
[[

𝝍1 × 𝒓∗1
]

⋅ 𝒆t
]

𝒆t , (31)

here we used
[[

𝝍𝜑 × 𝒓∗𝜑
]

⋅ 𝒆n
]

𝒆n − 𝝍𝜑 × 𝒓∗𝜑 = −
[[

𝝍𝜑 × 𝒓∗𝜑
]

⋅ 𝒆t
]

𝒆t .
urthermore, we use

2−𝒗n2−𝒗1+𝒗
n
1 = 𝒗

t
2−𝒗

t
1 = 𝒗

t
P,2+

[[

𝝎2 × 𝒓∗2
]

⋅ 𝒆t
]

𝒆t−
[

𝒗tP,1 +
[

𝝎1 × 𝒓∗1
]

⋅ 𝒆t
]

𝒆t
5

(32)
nd finally insert the expressions for 𝝍1 and 𝝍2 (Eq. (24)), to obtain

𝒑t =𝑚eff𝒗tP,21
[

1 − 𝜖t
]

− 𝑚eff
[[

𝛥𝝎2 × 𝒓∗2 − 𝛥𝝎1 × 𝒓∗1
]

⋅ 𝒆t
]

𝒆t . (33)

q. (33) presents a useful relation between the change of tangential
inear momentum and the tangential restitution coefficient 𝜖t .

Note the formal similarities of Eqs. (28) and (33) with a pertinent
hange of sign for the respective restitution coefficient.

.4. Constitutive law

To express the change of the normal and tangential linear momen-
um (𝛥𝒑n, 𝛥𝒑t), we employ a constitutive law. Note that the impulses
an be obtained in terms of the contact forces

𝒑n ≡ 𝛥𝒑n1 = +∫

𝑡2

𝑡1
𝑭 n

1𝑑𝑡, 𝛥𝒑n2 = −∫

𝑡2

𝑡1
𝑭 n

1𝑑𝑡 = −𝛥𝒑n, (34)

nd

𝒑t ≡ 𝛥𝒑t1 = +∫

𝑡2

𝑡1
𝑭 t

1𝑑𝑡 , 𝛥𝒑t2 = −∫

𝑡2

𝑡1
𝑭 t

1𝑑𝑡 = −𝛥𝒑t . (35)

In the following, we assume Coulomb friction. Thus, we assume that
uring the entire impact the particles slide, [17]:
t
1 = −sgn(𝑣tP,12)𝜇|𝑭

n
1|𝒆t = sgn(𝑣tP,21)𝜇|𝑭

n
1|𝒆t . (36)

ote that 𝒆t is defined to point in the direction of relative tangential
elocity of the collision point 𝑣tP,21, thus −sgn(𝑣tP,12) = sgn(𝑣tP,21) = 1.
onsequently, we can rewrite the tangential impulse as

𝒑t = ∫

𝑡2

𝑡1
𝜇|𝑭 n

1|𝒆t𝑑𝑡 = 𝜇 ∫

𝑡2

𝑡1
|𝑭 n

1| 𝑑𝑡 𝒆t = 𝜇|𝛥𝒑n|𝒆t = 𝜇𝛥𝑝n𝒆t . (37)

Recall that we assume that 𝒆n points in the direction of the change
f normal momentum and thus 𝛥𝒑n =

[

𝛥𝒑n ⋅ 𝒆n
]

𝒆n = 𝛥𝑝n𝒆n with 𝛥𝑝n ≥ 0
nd 𝛥𝒑 = 𝛥𝑝n𝒆n + 𝛥𝒑t .

Now we insert the constitutive expression for 𝛥𝒑t (Eq. (37)) into the
xpressions for 𝛥𝝎𝜑, see Eqs. (24)–(25) and obtain

𝝎2 = +𝛥𝑝𝑛𝑰−12 ⋅
[

𝒓∗2 ×
[

𝒆n + 𝜇𝒆t
]]

, (38)

𝝎1 = −𝛥𝑝𝑛𝑰−11 ⋅
[

𝒓∗1 ×
[

𝒆n + 𝜇𝒆t
]]

. (39)

ext, we use the above equations in Eq. (28), which is first rewritten
s

𝒑n =𝑚eff𝒗nP,21
[

𝜖n + 1
]

− 𝑚eff
[[

𝛥�̃�2 × 𝒓∗2 − 𝛥�̃�1 × 𝒓∗1
]

⋅ 𝒆n
]

𝛥𝒑n (40)

sing the normalization 𝛥�̃�𝜑 = 𝛥𝝎𝜑∕𝛥𝑝n. Note that 𝛥�̃�𝜑 are computable
rom Eqs. (38)–(39). Next, we can regroup terms in Eq. (40) as

𝒑n
⎡

⎢

⎢

⎢

⎣

1 + 𝑚eff
[

𝛥�̃�2 × 𝒓∗2 − 𝛥�̃�1 × 𝒓∗1
]

⋅ 𝒆n
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝛾

⎤

⎥

⎥

⎥

⎦

= 𝑚eff𝒗nP,21
[

𝜖n + 1
]

, (41)

hich, with the definition of 𝛾 as

= 𝑚eff
[

𝛥�̃�2 × 𝒓∗2 − 𝛥�̃�1 × 𝒓∗1
]

⋅ 𝒆n , (42)

can be further simplified to

𝛥𝒑n = 𝑚eff𝒗nP,21
[

𝜖n + 1
]

[1 + 𝛾]−1 . (43)

inally, to obtain the expression for 𝜖t we insert the law for 𝛥𝒑t
(Eq. (37)), into Eq. (33) and obtain

𝜇𝛥𝑝n𝒆t =𝑚eff𝒗tP,21
[

1 − 𝜖t
]

− 𝛽𝛥𝑝n𝒆t , (44)

ith 𝛽 defined as

= 𝑚eff
[

𝛥�̃�2 × 𝒓∗2 − 𝛥�̃�1 × 𝒓∗1
]

⋅ 𝒆t . (45)

y regrouping, Eq. (44) simplifies to

𝑝n [𝜇 + 𝛽] 𝒆 =𝑚 𝒗t
[

1 − 𝜖
]

.
t ef f P,21 t (46)
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Next we insert the normal projection of 𝛥𝒑n from Eq. (43) for 𝛥𝑝n and
obtain

𝜖t𝒗tP,21 = 𝒗
t
P,21 −

[

𝑣nP,21
[

𝜖n + 1
]

[1 + 𝛾]−1
]

[𝜇 + 𝛽] 𝒆t . (47)

Eventually, by projecting Eq. (47) to the tangential direction 𝒆t , we
obtain the final expression for the tangential restitution coefficient
𝜖t for arbitrarily shaped particles under the assumption of Coulomb
friction

𝜖t = 1 −
𝜖n + 1
1 + 𝛾

[𝜇 + 𝛽]
𝑣nP,21
𝑣tP,21

. (48)

As an important consequence, we find that the coefficient of tan-
gential restitution does significantly depend on both the normal and
the tangential relative velocities. In case of vanishing relative normal
velocity 𝑣nP,21 → 0, we observe that for all particle shapes 𝜖t → 1.
However, in the case of 𝑣nP,21 ≫ 𝑣tP,21, we obtain for all particle shapes
𝜖𝑡 → 0, if we set the minimum of the tangential restitution coefficient
to 𝜖t,min = 0, as employed by Schwager et al. [17].

4.5. Validation for spheres

We validate the expression Eq. (48) for the case of spherical parti-
cles. Note that for spherical particles 𝛾sph = 0 since

[

𝛥�̃�𝜑 × 𝒓∗𝜑
]

⋅ 𝒆n = 0.
Furthermore, we can obtain 𝛽sph using the following reduced expres-
sions for 𝛥�̃�𝜑

𝛥�̃�2 = +𝑰−12 ⋅
[

𝒓∗2 × 𝜇𝒆t
]

, (49)

𝛥�̃�1 = −𝑰−11 ⋅
[

𝒓∗1 × 𝜇𝒆t
]

, (50)

since 𝒓∗𝜑 × 𝒆n = 𝟎, the sphericity of 𝑰𝜑 ∝ 𝐼𝜑, and
[

𝒓∗𝜑 × 𝒆t
]

× 𝒓∗𝜑 = 𝑟∗2𝜑 𝒆t
(as 𝒓∗𝜑 ⋅ 𝒆t = 0) . Followingly, we can write

𝛽sph = 𝑚eff
[[

𝑰−12 ⋅
[

𝒓∗2 × 𝜇𝒆t
]

× 𝒓∗2 + 𝑰
−1
1 ⋅

[

𝒓∗1 × 𝜇𝒆t
]

× 𝒓∗1
]

⋅ 𝒆t
]

= 𝜇𝑚eff
[

𝐼−12 𝑟∗22 + 𝐼−11 𝑟∗21
]

.
(51)

Consequently, we obtain for Eq. (48)

𝜖t,sph =1 −
𝜇
[

𝜖n + 1
]

𝛼−1
𝑣nP,12
𝑣tP,12

, (52)

with 𝛼 defined as

𝛼 =
[

1 + 𝑚eff
[

𝐼−12 𝑟22 + 𝐼
−1
1 𝑟21

]]

, (53)

which is in agreement with the tangential restitution coefficient pre-
sented in [17,18].

5. Demonstrative examples

We investigate the dependency of the tangential restitution coeffi-
cient 𝜖t on the normal (𝑣nP,21) and tangential (𝑣tP,21) relative velocities,
the aspect ratios 𝜆1, 𝜆2 as well as the shape factors 𝑠1, 𝑠2 in the case of
Coulomb friction. In this context, we employ demonstrative examples of
particle-collisions of prolate, oblate as well as diamond and cubic-like
particles.

5.1. Collision configuration I

To study the novel tangential restitution model for arbitrary par-
ticles, we select specific collision configurations. As a first step, we
compare head-on particle collisions as displayed in Fig. 2 for spherical
as well as superellipsoidal particles. Note that in this example, normal
velocities are present in 𝒆1 direction, whereas 𝒆2 is aligned with the tan-
gential relative velocity 𝑣tP,21. Becker et al. [18] studied the coefficient
of tangential restitution for steel particles of perfect spherical shape
(𝛼 = 7∕2) as a function of the components of the normal and tangential
impact velocities in the case of Coulomb friction. To match the results
6

Fig. 2. Sketch of head-on particle collision of two prolate particles (𝑆1 , 𝑆2) with
half-axis 𝑎, 𝑏, 𝑏 (= 𝑐), including collision frame 𝒆1, 𝒆2 and contact point 𝑃𝑐𝑜𝑙𝑙 .

of Becker et al. [18], we employ identical material parameters: 𝜇 = 0.4,
𝑑𝑒𝑞 = 0.04m, 𝜌𝑝 = 7850 kg∕m3, 𝜖n = 1 in all the following simulations.

In case of the centric head-on collision of two identical particles and
𝑣nP,21 > 0, Eq. (48) simplifies to

𝜖t = 1 − 𝜇
[

𝜖n + 1
] [

1 + 𝑚eff
[

2𝐼−1𝑧𝑧 𝑟
2
𝑥
]]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛼

𝑣nP,21
𝑣tP,21

(54)

as for two identical particles in collision 𝐼𝑧𝑧 = 𝐼𝑧𝑧,1 = 𝐼𝑧𝑧,2 and 𝑟2𝑥 =
𝑟2𝑥,1 = 𝑟2𝑥,2.

5.1.1. Spherical particles
For spherical particles of equal mass and radius, the term 𝛼 in

Eq. (53) simplifies to 7∕2 since 𝐼𝑧𝑧 = 2∕5 𝑚𝑎2, 𝑟2𝑥 = 𝑎2, and 𝑚eff =
𝑚∕2 for all collision configurations. For spherical particles, we obtain
Fig. 3(a), which shows the dependence of the tangential restitution
coefficient 𝜖t on the normal and tangential relative particle velocities.
As shown, our novel model, as described in Eq. (47), gives identical
results to the model used by Schwager et al. [17] for Coulomb friction.
In Fig. 3 (a,b), the general trend is observed that 𝜖t increases with
increasing 𝑣tP,21 and 𝜖t decreases with increasing 𝑣nP,21. As indicated in
Eq. (48), we observe in Fig. 3 (a) that for 𝑣nP,21 = 0 we obtain 𝜖t = 1,
leading to a conservation of the tangential relative particle velocity
during the collision. Moreover, for 𝑣nP,21 > 0 we obtain 𝜖t ∈ [0, 1], see
Fig. 3 (a,b). For 𝑣nP,21 ≫ 𝑣tP,21, the tangential restitution coefficient is
obtained as 𝜖t = 0, since we use a lower limit of 𝜖t,min = 0 as proposed
in Schwager et al. [17]. Thus, the last case describes a collision in which
the total tangential relative velocity vanishes due to friction.

5.1.2. Prolate spheroids
Next, we investigate the influence of the normal and tangential

relative particle velocities as well as the aspect ratio 𝜆1 = 𝑎∕𝑐 on the
tangential restitution coefficient 𝜖t , for prolate ellipsoidal particles, see
Fig. 4. Note that for prolate spheroids in centric head-on collision, as
in Fig. 2, in Eq. (54) the term 𝛼 =

[

1 + 𝑚eff
[

2𝐼−1𝑧𝑧 𝑟
2
𝑥
]]

can be rewritten
in terms of the aspect ratios 𝜆1 = 𝑎∕𝑐 and 𝜆2 = 𝑏∕𝑐. Using that for
identical prolate particles in the studied collision configuration 𝐼𝑧𝑧 =
1
5𝑚

[

𝑎2 + 𝑏2
]

= 1
5 𝑚

[

𝜆21 + 𝜆
2
2
]

𝑐2 and 𝑟2𝑥 = 𝑎2 = 𝜆21𝑐
2, we can write 𝛼 as

𝛼 = 1+ 𝑚eff
⏟⏟⏟
𝑚∕2

⎡

⎢

⎢

⎢

⎢

⎣

2𝐼−1𝑧𝑧 𝑟2𝑥
⏟⏟⏟
𝜆21𝑐

2

⎤

⎥

⎥

⎥

⎥

⎦

= 1+𝑚

[

𝜆21𝑐
2

1
5
𝑚
[

𝜆21 + 𝜆
2
2

]

𝑐2

]

= 1+5

[

1
1 + 𝜆22∕𝜆

2
1

]

.

(55)

Note that for prolate spheroids 𝜆1 > 𝜆2. Thus, towards strongly
elongated particles (i.e. fibers), we obtain 𝜆22∕𝜆

2
1 → 0 and consequently

can write the upper limit as 𝛼max = 6. As shown in Fig. 4(a–d), a strong
dependence of the tangential restitution coefficient 𝜖t on the relative
normal (𝑣nP,21) and the relative tangential velocity (𝑣tP,21) as well as the
aspect ratio 𝜆1 can be seen in the case of the studied prolate-ellipsoid
particle collision. The general trend of decreasing 𝜖t with increasing
𝑣nP,21 and increasing 𝜖t with decreasing 𝑣nP,21 is prevalent similar to
the case of spherical particles. Fig. 4(a–d) shows the importance of
considering the influence of aspect ratio 𝜆 in computing the tangential
1
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(a) Comparison to Schwager et al., [17] (b) Influence of relative normal velocities 𝑣nP,21

Fig. 3. The coefficient of tangential restitution 𝜖t for spherical steel particles (𝛼 = 7∕2, 𝜇 = 0.4, 𝜌𝑝 = 7850 kg∕m3, 𝑑𝑒𝑞 = 0.04m) as a function of the relative normal (𝑣nP,21) and
tangential (𝑣tP,21) impact velocity under the assumption of pure Coulomb friction. Schwager et al. [17], present model (Eq. (47)), relative normal velocities 𝑣nP,21: 0.001,

0.1, 0.3, 0.5.
(a) 𝜆1 = [1, 2, 5, 10, 20] (b) 𝑣nP,21 = 0.01 m∕s

(c) 𝑣nP,21 = 0.1 m∕s (d) 𝑣nP,21 = 0.3 m∕s

Fig. 4. The dependency of the coefficient of tangential restitution 𝜖t for spheroidal steel particles (𝜆2 = 1, 𝑠1 = 𝑠2 = 1, 𝜇 = 0.4, 𝜌𝑝 = 7850 kg∕m3, 𝑑𝑒𝑞 = 0.04m) as a function of the
relative normal (𝑣nP,21), tangential (𝑣tP,21) impact velocity and aspect ratio (𝜆1) under the assumption of pure Coulomb friction. Aspect ratio 𝜆1: 1, 2, 5, 10, 20,

𝜆1 → ∞ (𝛼max = 6).
restitution coefficient 𝜖t , since an increase in 𝜆1 leads to a significant
decrease in 𝜖t . As presented in Fig. 4(a–d), we observe a convergence
of 𝜖t towards strongly elongated particles 𝜆1 ↑, where the coefficient
of restitution is bounded by a minimum 𝜖t,min = 𝑓 (𝛼max = 6,…). Thus,
for 𝜆1 > 5 the differences in 𝜖t vanish, while for 𝜆1 < 5 an accurate
consideration of the aspect ratio is required.
7

5.1.3. Oblate spheroids
In the following, we investigate the influence of the normal and

tangential relative particle velocities as well as the aspect ratio 𝜆1 =
𝜆2 on the tangential restitution coefficient 𝜖t , for oblate spheroidal
particles, see Fig. 5 for 𝜆1 = 𝜆2 = 5. When studying the centric head-on
collision of two identical oblate spheroids, as shown in Fig. 2, however,
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Fig. 5. The coefficient of tangential restitution 𝜖t for steel particles (𝜇 = 0.4, 𝜌𝑝 =
7850 kg∕m3, 𝑑𝑒𝑞 = 0.04m) of spherical (𝛼 = 7∕2) and oblate shape (𝑠1 = 𝑠2 = 1, 𝜆1 =
𝜆2 = 5) as a function of the relative normal (𝑣nP,21) and tangential (𝑣tP,21) impact velocity
under the assumption of pure Coulomb friction. spherical particles, oblate
particles.

we find that 𝛼 = 7∕2. This follows from Eq. (55), using 𝜆1 = 𝜆2 (oblate
spheroid). The factor 𝛼 is a constant and thus independent of the aspect
ratio 𝜆1 = 𝜆2. Consequently, we observe identical 𝜖t for all oblate
particles in the studied centrical head-on collision. Fig. 5 highlights
that for an oblate particle with arbitrary aspect ratio (𝜆1 = 𝜆2 = 5)
we observe identical behavior of the tangential restitution coefficient
𝜖t for varying 𝑣nP,21 and 𝑣tP,21 than for the spherical case. Thus, as in the
case of spherical particle collision, the tangential restitution coefficient
𝜖t depends on the relative normal velocity (𝑣nP,21) and the relative
tangential velocity (𝑣tP,21).

5.1.4. Cubical and diamond particles
In the next step, we investigate cubic and diamond particles in the

collision configuration depicted in Fig. 2. Note that in the case of cubic
and diamond-shaped particles we can additionally study the influence
of the shape factors 𝑠1, 𝑠2 on the tangential restitution coefficient, as
shown in Fig. 7 and Fig. 8, respectively. Using 𝐼𝑧𝑧 from Eq. (B.6) as well
as the expression for the mass of a superellipsoid particle, see Eq. (B.2),
we write:

𝛼 =1 + 𝑚eff
⏟⏟⏟
𝑚∕2

⎡

⎢

⎢

⎢

⎢

⎣

2𝐼−1𝑧𝑧 𝑟2𝑥
⏟⏟⏟
𝜆21𝑐

2

⎤

⎥

⎥

⎥

⎥

⎦

=1 +

⎡

⎢

⎢

⎢

⎣

𝑚𝜆21𝑐
2

1
2 𝜌𝑎 𝑏 𝑐 𝑠1 𝑠2

[

𝑎2 + 𝑏2
]

[

𝐵
(

1.5 𝑠2,
𝑠2
2

)

𝐵
(

𝑠1
2 , 2 𝑠1 + 1

)]

⎤

⎥

⎥

⎥

⎦

=1 +

⎡

⎢

⎢

⎢

⎣

2𝜌𝑎𝑏𝑐𝑠1𝑠2𝐵
(

𝑠1∕2 + 1, 𝑠1
)

𝐵
(

𝑠2∕2, 𝑠2∕2
)

𝜆21𝑐
2

1
2 𝜌𝑎 𝑏 𝑐 𝑠1 𝑠2

[

𝑎2 + 𝑏2
]

[

𝐵
(

1.5 𝑠2,
𝑠2
2

)

𝐵
(

𝑠1
2 , 2 𝑠1 + 1

)]

⎤

⎥

⎥

⎥

⎦

(56)

=1 + 4
𝐵
(

𝑠1∕2 + 1, 𝑠1
)

𝐵
(

𝑠2∕2, 𝑠2∕2
)

𝐵
(

1.5 𝑠2,
𝑠2
2

)

𝐵
(

𝑠1
2 , 2 𝑠1 + 1

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐵∗

[

𝜆21𝑐
2

[

𝑎2 + 𝑏2
]

]

=1 + 4𝐵∗

[

1
1 + 𝜆22∕𝜆

2
1

]

.

For strongly elongated particles in the studied collision arrangement
with 𝜆1 > 𝜆2 (prolate particles) we find that 𝛼 = 1 + 4𝐵∗, while for
oblate particles (𝜆1 = 𝜆2) we obtain 𝛼 = 1 + 2𝐵∗. Thus, in the range of
convex particles 0 ≤ 𝑠𝑖 ≤ 2.0, 𝑖 = 1, 2 we obtain 𝐵∗ values in the range
of 𝐵∗ = 0.75 − 2.5 , see Fig. 6. This results in a large variability of the
8

[ ]
Fig. 6. Dependency of 𝐵∗ on the squareness parameters 𝑠1 and 𝑠2. 𝑠1 = 𝑠2.
𝑠2 = [0.0001, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0].

parameter 𝛼, see Eq. (56) and consequently renders a strong influence
of the particle shape on 𝜖t , see Eq. (54).

Fig. 7 shows a strong dependence of the tangential restitution
coefficient 𝜖t on the relative normal (𝑣np,21) and the relative tangential
velocity (𝑣tP,21) as well as the shape factors 𝑠1 and 𝑠2 in the case of the
studied cubical–particle collision. In general, an increase in 𝑣tP,21 leads
still to an increase in 𝜖t . A further increase in 𝜖t can be achieved by
decreasing the shape factors 𝑠1 = 𝑠2, leading to more cubical particles.
For 𝑠1 = 𝑠2 = 0.001, i.e. towards sharp cubical shapes, we find that 𝜖t
is bounded by a maximum 𝜖t,max = 𝑓 (𝛼 = 1 + 4𝐵∗) with 𝐵∗ = 0.075, see
Eq. (56).

Fig. 8 depicts the dependence of the tangential restitution coeffi-
cient 𝜖t on the relative normal (𝑣nP,21) and tangential (𝑣tP,21) impact
velocities as well as the shape factors 𝑠1 = 𝑠2 in the case of the
diamond-particle collision studied. Similar to the cubical particles case,
an increase in 𝑣nP,21 leads to a decreasing 𝜖t , while an increase in 𝑣tP,21
leads to an increase in 𝜖t . Moreover, Fig. 8 presents a strong influence
of increasing shape factors 𝑠1 and 𝑠2 on 𝜖t , where an increase in
shape factors leads to a strong decrease in the tangential coefficient of
restitution 𝜖t . As shown in Eq. (56), the tangential restitution coefficient
𝜖t is bounded in the direction of sharp diamond-like convex particles
(𝑠1 ↑, 𝑠2 ↑) by a minimum 𝜖t,min = 𝑓 (𝛼 = 1 + 4𝐵∗) with 𝐵∗ = 2.5, see
Eq. (56). In the next step, we investigate the influence of the aspect
ratio 𝜆1 by comparing a regular cube and diamond particle (𝜆1 = 1)
with a strongly elongated particle version (𝜆1 = 20). In this context, we
find that increasing the aspect ratio significantly reduces the tangential
restitution coefficient, both for diamond, see Fig. 9(a), as well as for
cube-like particles, see Fig. 9(b) for all shape factors studied.

5.2. Collision configuration II

The second collision configuration is shown in Fig. 10, where the
particle 𝑆1 is rotated by 90 ◦ about the 𝑧-axis. The material param-
eters of the particles remain identical to the collision configuration
I, see Section 5.1. With this configuration, we study superellipsoidal
particle collisions ranging from oblate and prolate spheroids to cubic
and diamond-shaped particles. Note that in this example, the normal
velocities are in the 𝒆1 direction, while 𝒆2 is aligned with the tangential
relative velocity 𝑣tP,21.

5.2.1. Prolate and oblate spheroids
For prolate and oblate spheroids in centric head-on collision, as

depicted in Fig. 10, the term 𝛼 =
[

1 + 𝑚eff

[

𝐼−1𝑧𝑧,2𝑟
2
𝑥,2 + 𝐼

−1
𝑧𝑧,1𝑟

2
𝑥,1

]]

, see
[ 2 2] 2 2
Eq. (54), can be rewritten as 𝐼𝑧𝑧,2 = 1∕5 𝑚 𝑎 + 𝑏 = 𝐼𝑧𝑧,1, 𝑟𝑥,1 = 𝑏 ,
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(a) 𝑣nP,21 = 0 − 2 m∕s (b) 𝑣nP,21 = 0.01 m∕s

(c) 𝑣nP,21 = 0.1 m∕s (d) 𝑣nP,21 = 0.2 m∕s

Fig. 7. The coefficient of tangential restitution 𝜖t for a steel particle of cubical shape (𝜆1 = 5, 𝜆2 = 1.0, 𝜇 = 0.4, 𝜌𝑝 = 7850 kg∕m3, 𝑑𝑒𝑞 = 0.04m) as a function of the shape factors
𝑠1 (= 𝑠2), relative normal (𝑣nP,21) and tangential (𝑣tP,21) impact velocity under the assumption of pure Coulomb friction. Shape factors 𝑠1 = 𝑠2: 1, 0.8, 0.6, 0.4,

0.2, 0.001, 𝑠1 = 𝑠2 → 0 (𝐵∗ = 0.75).
𝑟2𝑥,2 = 𝑎2 for the collision configuration under study, and we obtain

𝛼 = 1 + 𝑚eff
⏟⏟⏟
𝑚∕2

[

𝐼−1𝑧𝑧,2𝑟
2
𝑥,2 + 𝐼

−1
𝑧𝑧,1𝑟

2
𝑥,1

]

= 1 + 𝑚
2

⎡

⎢

⎢

⎣

𝑎2 + 𝑏2
1
5 𝑚

[

𝑎2 + 𝑏2
]

⎤

⎥

⎥

⎦

= 3.5 . (57)

It follows that 𝜖t = 𝜖t,sphere holds for all aspect ratios for both prolate
and oblate particles. Consequently, 𝜖t in this collision configuration for
oblate and prolate particles depends exclusively on the relative normal
(𝑣nP,21) and relative tangential (𝑣tP,21) velocities.

5.2.2. Diamond and cubical particles
In the case of cubic and diamond-shaped particles in the considered

collision configuration, see Fig. 10, we find that 𝛼 =
[

1 + 𝑚eff

[

𝐼−1𝑧𝑧,2𝑟
2
𝑥,2 + 𝐼

−1
𝑧𝑧,1𝑟

2
𝑥,1

]]

, see Eq. (54), can be rewritten using
(𝐼𝑧𝑧 = 𝐼𝑧𝑧,2 = 𝐼𝑧𝑧,1, 𝑟2𝑥,1 = 𝑏2, 𝑟2𝑥,2 = 𝑎2) as well as Eqs. (B.6) and (B.2).
This results in:

𝛼 =1 + 𝑚eff
⏟⏟⏟
𝑚∕2

[

𝐼−1𝑧𝑧,2𝑟
2
𝑥,2 + 𝐼

−1
𝑧𝑧,1𝑟

2
𝑥,1

]

=1 +
𝑚
[

𝑎2 + 𝑏2
]

2𝐼𝑧𝑧
=1 + 2𝐵∗ .

(58)

As can be seen from Eq. (58), the tangential restitution 𝜖t in the
considered collision setup is similar to the oblate and prolate test case
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independent of the aspect ratio. However, since 𝐵∗ = 𝑓 (𝑠1, 𝑠2) prevails
in Eq. (58), an influence of the shape factors on 𝜖t is present for both
cubic and diamond-shaped particles. As described in Section 5.1.4,
convex particles (0 ≤ 𝑠𝑖 ≤ 2.0, 𝑖 = 1, 2) give 𝐵∗ = [0.75 − 2.5], see
Fig. 6, resulting in large variability of the 𝛼 parameter in the range of
𝛼 = [2.5 − 6], see Eq. (58) and consequently a strong influence of the
particle shape on 𝜖t , see Eq. (54).

In the first step, the influence of the shape factors for cubical
particles (0 < 𝑠𝑖 < 1, 𝑖 = 1, 2) on the tangential restitution coefficient 𝜖t
is investigated. As shown in Fig. 11, similar to collision configuration I
(Section 5.1), a decrease in 𝑠1 ↓, 𝑠2 ↓ (= towards more cubical shapes)
for cubic-shaped particles leads to a higher tangential restitution coef-
ficient, i.e. to a smaller loss of relative tangential velocity during the
collision. The upper limit of the tangential restitution coefficient 𝜖t for
cubical particles is given by 𝜖t,max = 𝑓 (𝛼 = 2.5), with 𝐵∗ = 0.75, (𝑠1 =
𝑠2 → 0), see Eq. (58).

In the second step, we investigate the influence of shape factors
on the tangential restitution coefficient in the case of diamond-like
particles (1 < 𝑠𝑖 ≤ 2, 𝑖 = 1, 2). As shown in Fig. 12, a significant
influence of the shape factors on the tangential restitution coefficient 𝜖t
remains also for diamond shapes. Similar to the collision configuration
I, see Section 5.1, an increase in 𝑠1 ↑, 𝑠2 ↑ for diamond-like particles
leads to a lower tangential restitution coefficient, i.e. a larger loss of
relative tangential velocity during the collision. The lower limit of
the tangential restitution coefficient 𝜖t for convex diamond particles is
given by 𝜖 = 𝑓 (𝛼 = 6), with 𝐵∗ = 2.5, (𝑠 = 𝑠 → 2), see Eq. (58).
t,min 1 2



Powder Technology 437 (2024) 119526J. Wedel et al.
(a) 𝑣nP,21 = 0 − 2 m∕s (b) 𝑣nP,21 = 0.01 m∕s

(c) 𝑣nP,21 = 0.1 m∕s (d) 𝑣nP,21 = 0.2 m∕s

Fig. 8. The coefficient of tangential restitution 𝜖t for a steel particle of diamond shape (𝜆1 = 5, 𝜆2 = 1, 𝜇 = 0.4, 𝜌𝑝 = 7850 kg∕m3, 𝑑𝑒𝑞 = 0.04m) as a function of the shape factors
𝑠1 (= 𝑠2), relative normal (𝑣nP,21) and tangential (𝑣tP,21) impact velocity under the assumption of pure Coulomb friction. Shape factors 𝑠1 = 𝑠2: 1, 1.2, 1.4, 1.6, 1.8,

2, 𝑠1 = 𝑠2 → 2 (𝐵∗ = 2.5).
(a) diamond particles (b) cubical particles

Fig. 9. The coefficient of tangential restitution 𝜖t for a steel particle of diamond or cubical shape (𝜆2 = 1, 𝜇 = 0.4, 𝜌𝑝 = 7850 kg∕m3, 𝑑𝑒𝑞 = 0.04m) as a function of the shape factors
𝑠1 (= 𝑠2), relative normal (𝑣nP,21), tangential (𝑣tP,21) impact velocity and aspect ratio (𝜆1) under the assumption of pure Coulomb friction. Studied aspect ratios 𝜆1 = 1 (striped lines)
and 𝜆1 = 20 (dotted lines). Shape factors for cubical particles (𝑠1 = 𝑠2): 1, 0.8, 0.6, 0.4, 0.2, 0.001, 𝑠1 = 𝑠2 → 0 (𝐵∗ = 0.75). Shape factors for diamond-like
particles (𝑠1 = 𝑠2): 1, 1.2, 1.4, 1.6, 1.8, 2, 𝑠1 = 𝑠2 → 2 (𝐵∗ = 2.5).
5.3. Cylinder filling

Finally, examples of cylinder filling with different superellipsoidal
particles and friction coefficients 𝜇 are studied. The particles are chosen
to have size 𝑑𝑒𝑞 = 0.01m and density 𝜌𝑝 = 1000 kg∕m3. Note that the
normal restitution coefficient is chosen to be 𝜖n = 0.5 in all subsequent
simulations. We randomly inject 100 particles into a cylinder of 𝐷 =
10

𝑒𝑞
0.057 m (filled with air at 20 ◦C) with a minimal initial particle elevation
of 2 𝑑𝑒𝑞 , see Fig. 13. This initialization allows the particles to accelerate
after initialization with zero velocity and angular velocity prior to wall
contact. First, we study the cylinder filling process with oblate particles
(𝜆1 = 𝜆2 = 1.5, 𝑠1 = 𝑠2 = 1.0). In this context, we investigate the
range of tangential restitution coefficients, i.e. three different cases of
𝜖t , where 𝜖t = 1 refers to no friction, 𝜖t = 0 refers to the complete loss of
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Fig. 10. Sketch of head-on particle collision of two prolate particles (𝑆1 , 𝑆2), where 𝑆1 is rotated by 90 ◦ about the 𝑧-axis. The half-axis are denoted as 𝑎, 𝑏, 𝑏 (= 𝑐), the collision
frame as 𝒆1, 𝒆2 and the contact point as 𝑃 .
(a) 𝑣nP,21 = 0 − 2 m∕s (b) 𝑣nP,21 = 0.01 m∕s

(c) 𝑣nP,21 = 0.1 m∕s (d) 𝑣nP,21 = 0.3 m∕s

Fig. 11. The coefficient of tangential restitution 𝜖t for a steel particle of cubical shape (𝜆1 = 𝜆2 = 1, 𝜇 = 0.4, 𝜌𝑝 = 7850 kg∕m3, 𝑑𝑒𝑞 = 0.04m) as a function of the shape factors
𝑠1 (= 𝑠2), relative normal (𝑣nP,21) and tangential (𝑣tP,21) impact velocity under the assumption of pure Coulomb friction. Shape factors 𝑠1 = 𝑠2: 1, 0.8, 0.6, 0.4,

0.2, 0.001, 𝑠1 = 𝑠2 → 0 (𝐵∗ = 0.75).
the tangential relative velocity after the collision, and an intermediate
case that can be obtained by setting the friction coefficient to 𝜇 = 0.5,
yielding a 𝜖t in the range of 0 ≤ 𝜖t ≤ 1. As shown in Fig. 14, the
final stacking height of the considered oblate particles strongly depends
on the friction model used. The higher the tangential coefficient of
restitution, the lower the volume fraction of the final particle stack.
Second, we evaluate the influence of the friction coefficient 𝜇 on the
stacking height of spherical, oblate (𝜆1 = 𝜆2 = 1.5, 𝑠1 = 𝑠2 = 1.0),
prolate (𝜆1 = 1.5, 𝜆2 = 1, 𝑠1 = 𝑠2 = 1.0), cubic (𝜆1 = 𝜆2 = 1,
𝑠1 = 𝑠2 = 0.6) as well as diamond-like (𝜆1 = 𝜆2 = 1, 𝑠1 = 𝑠2 = 1.4)
particles. As presented in Fig. 15, we find a strong dependence of the
11
final packing height on the friction coefficient 𝜇 used for all particle
shapes considered. We also find that the influence of 𝜇 on the packing
height is not linear, as the differences between 𝜇 = 0.1 and 𝜇 = 0.25
are more pronounced than between 𝜇 = 0.75 and 𝜇 = 0.9. Note that 𝜖t ,
see Eq. (48), depends also on the normal coefficient of restitution 𝜖n.
Thus, increasing 𝜖n would alter the results obtained since it leads to a
decrease in 𝜖t .

To estimate the packing density we employ the nondimensional
average stacking height 𝑧∗ = 𝑧∕𝑑𝑒𝑞 , see Fig. 16. As presented, for all
friction coefficients 𝜇 studied, we observe the largest nondimensional
average stacking height 𝑧∗ for spherical particles. With increasing
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(a) 𝑣nP,21 = 0 − 2 m∕s (b) 𝑣nP,21 = 0.01 m∕s

(c) 𝑣nP,21 = 0.1 m∕s (d) 𝑣nP,21 = 0.3 m∕s

Fig. 12. The coefficient of tangential restitution 𝜖t for a steel particle of diamond shape (𝜆1 = 𝜆2 = 1, 𝜇 = 0.4, 𝜌𝑝 = 7850 kg∕m3, 𝑑𝑒𝑞 = 0.04m) as a function of the shape factors
𝑠1 (= 𝑠2), relative normal (𝑣nP,21) and tangential (𝑣tP,21) impact velocity under the assumption of pure Coulomb friction. Shape factors 𝑠1 = 𝑠2: 1, 1.2, 1.4, 1.6, 1.8,

2, 𝑠1 = 𝑠2 → 2 (𝐵∗ = 2.5).
Fig. 13. Sketch of initial position of particles in the cylinder filling simulation.

friction coefficient (up to 𝜇 = 0.75) 𝑧∗ increased for all particles
studied, however, note the non-linear trend. Moreover, we observe that
the lowest 𝑧∗ and thus the highest packing density is obtained using
cubical particles for all investigated friction coefficients. Furthermore,
we observe that the difference between the stacking heights of the
shapes is the highest for the lowest friction coefficient 𝜇 = 0.1 studied.
12
Note that by only slightly varying the particle shape from the
spherical shapes, see the oblate (𝜆1 = 𝜆2 = 1.5, 𝑠1 = 𝑠2 = 1), prolate
(𝜆1 = 1.5, 𝜆2 = 𝑠1 = 𝑠2 = 1), diamond-like (𝜆1 = 𝜆2 = 1, 𝑠1 = 𝑠2 = 1.4),
and cubical particles (𝜆1 = 𝜆2 = 1, 𝑠1 = 𝑠2 = 0.6) considered, we
observe significant differences in particle stack (Fig. 15) as well as
in average particle heights (Fig. 16). Thus, we emphasize the impor-
tance of considering the dependence of the tangential coefficient of
restitution on particle shape as deviations from the spherical reference
occur.

6. Conclusion

In this article, we proposed a novel model of the tangential resti-
tution coefficient as an extension of our previously presented efficient
computation of three-dimensional frictional collisions between particles
and between particles and walls based on a superellipsoidal particle
shape definition using a robust Newton–Raphson based Lagrangian
multiplier optimization technique. This work aimed to extend the
previously used simplified friction model, where only a fixed tangen-
tial restitution coefficient 𝜖t or spherical models were available for
non-spherical particles.

We present the derivation of the tangential coefficient of restitution
for arbitrarily shaped particles based on the assumption of Coulomb
friction. Thus, the model assumes pure sliding between the collision
partners, i.e. 𝜖t ≥ 0. Furthermore, we assume a constant 𝜖n as commonly
employed in the literature. In addition, we validated the novel collision
model for non-spherical particles against literature results for spherical
particles in Coulomb friction. In addition, we performed examples of
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Fig. 14. Comparison of fixed tangential restitution coefficient 𝜖t (left, right) to novel frictional collision model (middle).

Fig. 15. Influence of the friction coefficient 𝜇 on the final packing of spherical, oblate (𝜆1 = 𝜆2 = 1.5), prolate (𝜆1 = 1.5, 𝜆2 = 1), diamond-like (𝜆1 = 1.5, 𝜆2 = 1, 𝑠1 = 𝑠2 = 1.4) and
cubical particles (𝜆1 = 1.5, 𝜆2 = 1, 𝑠1 = 𝑠2 = 0.6) using 𝜖n = 0.5.
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Fig. 16. Average dimensionless stacking height 𝑧∗ = 𝑧∕𝑑𝑒𝑞 of various superellipsoidal
particles: spheres, oblate ellipsoids (𝜆1 = 𝜆2 = 1.5) prolate ellipsoids (𝜆1 = 1.5,
𝜆2 = 1), diamond-like particles, cubical particles.

cylinder filling simulations, where we investigated different particle
shapes from oblate to cubes to diamond-like shapes, as well as dif-
ferent coefficients of friction (𝜇). By varying the shapes slightly from
the spherical reference, we were able to establish the importance of
considering the dependence of the tangential coefficient of restitution
on particle shape as deviations from the spherical reference occur. The
derived superellipsoidal particle contact model including the improved
friction treatment can be directly applied in CFD with Lagrangian
particle tracking algorithms. In our future work, we intend to extend
our tangential restitution coefficient model for arbitrary particles by
incorporating different force laws. Furthermore, we aim to apply the
novel friction model for non-spherical particles to study more complex
phenomena of particles transported in flows.
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Appendix A. Notation

In the following, tensors of various orders are denoted using bold
italic font. Note that vectors (first-order tensors) are expressed using
bold italic lowercase letters (𝒂), while higher-order tensors are denoted
by bold italic uppercase letters (𝑨). The coordinate representation of
two Cartesian coordinate systems with base vectors 𝒆′𝑖 , 𝒆𝑖 (𝑖 = 1, 2, 3)
can be written using Einstein’s summation convention, as follows:

𝒂 = 𝑎′𝑖𝒆
′
𝑖 = 𝑎𝑖𝒆𝑖 and 𝑨 = 𝐴′

𝑖𝑗𝒆
′
𝑖 ⊗ 𝒆′𝑗 = 𝐴𝑖𝑗𝒆𝑖 ⊗ 𝒆𝑗 .

In this context, 𝑎′𝑖 , 𝑎𝑖 and 𝐴′
𝑖𝑗 , 𝐴𝑖𝑗 represent the corresponding tensor

coefficients in the coordinate system 𝒆′𝑖 , 𝒆𝑖, respectively. The coefficient
matrices 𝑎′𝑖 , 𝑎𝑖 and 𝐴′

𝑖𝑗 , 𝐴𝑖𝑗 are expressed by underlined italic letters:

𝑎′ =
⎡

⎢

⎢

⎣

𝑎′1
𝑎′2
𝑎′3

⎤

⎥

⎥

⎦

, 𝑎 =
⎡

⎢

⎢

⎣

𝑎1
𝑎2
𝑎3

⎤

⎥

⎥

⎦

and 𝐴′ =
⎡

⎢

⎢

⎣

𝐴′
11 𝐴′

12 𝐴′
13

𝐴′
21 𝐴′

22 𝐴′
23

𝐴′
31 𝐴′

32 𝐴′
33

⎤

⎥

⎥

⎦

,

𝐴 =
⎡

⎢

⎢

⎣

𝐴11 𝐴12 𝐴13
𝐴21 𝐴22 𝐴23
𝐴31 𝐴32 𝐴33

⎤

⎥

⎥

⎦

.

The rotation matrix 𝑅 relating the coordinate systems 𝒆′𝑖 , 𝒆𝑖 is given as

𝑅 =
⎡

⎢

⎢

⎣

𝑅11 𝑅12 𝑅13
𝑅21 𝑅22 𝑅23
𝑅31 𝑅32 𝑅33

⎤

⎥

⎥

⎦

with 𝑅𝑖𝑗 = 𝒆′𝑖 ⋅ 𝒆𝑗 (A.1)

and transforms coefficients with respect to the base vectors 𝒆𝑖 to
coefficients with respect to 𝒆′𝑖 . Using 𝑅, we can transform coefficient
matrices of vectors and second-order tensors in the following manner

𝑎′ = 𝑅𝑎 and 𝐴′ = 𝑅𝐴𝑅T . (A.2)

Appendix B. Surface equation of a superellipsoid

To describe non-spherical particles, we employ the superellipsoid
surface equation as proposed by Barr, [48]. This surface equation reads
in the particle frame of reference (pFoR) [𝑥′, 𝑦′, 𝑧′] as

𝑆(𝑥′, 𝑦′, 𝑧′) =

[

[

|𝑥′|
𝑎

]2∕𝑠2
+
[

|𝑦′|
𝑏

]2∕𝑠2
]𝑠2∕𝑠1

+
[

|𝑧′|
𝑐

]2∕𝑠1
− 1 = 0 , (B.1)

where the particle half-lengths in the direction of the principle axes are
denoted as 𝑎, 𝑏 and 𝑐. In this work, we set 𝑐 ≤ 𝑏 ≤ 𝑎 and express the
aspect ratios as 𝜆1 = 𝑎∕𝑐 ≥ 𝜆2 = 𝑏∕𝑐. The shape factors 𝑠1 and 𝑠2 control
the squareness of the particle, [7,8]. The mass of a superellipsoidal
particle can be written as: [49]

𝑚 = 2𝜌𝑝𝑎𝑏𝑐𝑠1𝑠2𝐵
( 𝑠1
2

+ 1, 𝑠1
)

𝐵
( 𝑠2
2
,
𝑠2
2

)

, (B.2)

where 𝜌𝑝 denotes the particle density. Furthermore, 𝐵 is related to the
Gamma function as follows: [49]

𝐵 (𝑥, 𝑦) =
𝛤 (𝑥)𝛤 (𝑦)
𝛤 (𝑥 + 𝑦)

. (B.3)

In Fig. B.17 a set of representative superellipsoidal particles is dis-
played. The principal values of the inertia tensor of the particle are
denoted by 𝐼 ′𝑥𝑥, 𝐼 ′𝑦𝑦, 𝐼 ′𝑧𝑧. The expressions of the principal values of the
inertia tensor for a superellipsoidal particle are: [49]

𝐼 ′𝑥𝑥 = 1
2
𝜌𝑎𝑏𝑐𝑠1𝑠2

[

𝑏2𝐵
(

1.5𝑠2,
𝑠2
2

)

𝐵
( 𝑠1
2
, 2𝑠1 + 1

)

+4𝑐2𝐵
( 𝑠2
2
,
𝑠2
2

+ 1
)

𝐵
(

1.5𝑠1, 𝑠1 + 1
)

]

, (B.4)

𝐼 ′𝑦𝑦 =
1
2
𝜌𝑎𝑏𝑐𝑠1𝑠2

[

𝑎2𝐵
(

1.5𝑠2,
𝑠2
2

)

𝐵
( 𝑠1
2
, 2𝑠1 + 1

)

+4𝑐2𝐵
( 𝑠2
2
,
𝑠2
2

+ 1
)

𝐵
(

1.5𝑠1, 𝑠1 + 1
)

]

, (B.5)

𝐼 ′𝑧𝑧 =
1
2
𝜌𝑎 𝑏 𝑐 𝑠1 𝑠2

[

𝑎2 + 𝑏2
]

[

𝐵
(

1.5 𝑠2,
𝑠2
2

)

𝐵
( 𝑠1
2
, 2 𝑠1 + 1

)]

. (B.6)
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Fig. B.17. Representative superellipsoidal shapes with 𝜆1 > 𝜆2 and varying shape
factors 𝑠1 , 𝑠2 = [0.2, 1.8].

Appendix C. Particle–wall collision

In the case of particle–wall collision, 𝛾, see Eq. (42), simplifies to

𝛾𝑤𝑎𝑙𝑙 = 𝑚
[

−𝛥�̃� × 𝒓∗
]

⋅ 𝒆n (C.1)

and 𝛽, see Eq. (45), to

𝛽𝑤𝑎𝑙𝑙 = 𝑚
[

−𝛥�̃� × 𝒓∗
]

⋅ 𝒆t . (C.2)

Consequently, we obtain the final expression for the tangential restitu-
tion coefficient 𝜖t for arbitrarily shaped particles in collision with walls
under the assumption of Coulomb friction by inserting the expressions
of 𝛾 = 𝛾𝑤𝑎𝑙𝑙 and 𝛽 = 𝛽𝑤𝑎𝑙𝑙 into Eq. (48).
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