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A B S T R A C T

Background and objective : Drug inhalation is generally accepted as the preferred administration method
for treating respiratory diseases. To achieve effective inhaled drug delivery for an individual, it is necessary
to use an interdisciplinary approach that can cope with inter-individual differences. The paper aims to present
an individualised pulmonary drug deposition model based on Computational Fluid and Particle Dynamics
simulations within a time frame acceptable for clinical use.
Methods: We propose a model that can analyse the inhaled drug delivery efficiency based on the patient’s
airway geometry as well as breathing pattern, which has the potential to also serve as a tool for a sub-regional
diagnosis of respiratory diseases. The particle properties and size distribution are taken for the case of drug
inhalation by using nebulisers, as they are independent of the patient’s breathing pattern. Finally, the inhaled
drug doses that reach the deep airways of different lobe regions of the patient are studied.
Results: The numerical accuracy of the proposed model is verified by comparison with experimental results.
The difference in total drug deposition fractions between the simulation and experimental results is smaller
than 4.44% and 1.43% for flow rates of 60 l/min and 15 l/min, respectively. A case study involving a COVID-19
patient is conducted to illustrate the potential clinical use of the model. The study analyses the drug deposition
fractions in relation to the breathing pattern, aerosol size distribution, and different lobe regions.
Conclusions: The entire process of the proposed model can be completed within 48 h, allowing an evaluation
of the deposition of the inhaled drug in an individual patient’s lung within a time frame acceptable for
clinical use. Achieving a 48-hour time window for a single evaluation of patient-specific drug delivery enables
the physician to monitor the patient’s changing conditions and potentially adjust the drug administration
accordingly. Furthermore, we show that the proposed methodology also offers a possibility to be extended to
a detection approach for some respiratory diseases.
1. Introduction

According to a statistical report from the World Health Organisa-
tion [1], about 7.7 million people die from chronic respiratory diseases
each year. In China, according to the ‘‘Healthy China Action 2019–
2030’’ data from the National Health Commission [2], the prevalence
of Chronic Obstructive Pulmonary Disease (COPD) in people aged 40
and above is 13.6%, and the total number of COPD patients is nearly
100 million. Inhaled drugs that are deposited in the alveoli can be
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easily absorbed due to the thin wall and large absorption surface area
of the alveoli and are generally accepted as the preferred method of
administration for the treatment of respiratory diseases such as asthma
and COPD worldwide [3].

To achieve effective inhaled drug delivery for an individual, it
is necessary to use an interdisciplinary approach that can cope with
inter-individual differences. However, we note that even with such a
sophisticated approach, effective therapy would also have to deal with
vailable online 3 May 2024
169-2607/© 2024 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cmpb.2024.108203
Received 28 December 2023; Received in revised form 3 April 2024; Accepted 23
 April 2024

https://www.elsevier.com/locate/cmpb
https://www.sciencedirect.com/journal/computer-methods-and-programs-in-biomedicine
https://www.sciencedirect.com/journal/computer-methods-and-programs-in-biomedicine
mailto:yl_wang@hust.edu.cn
mailto:m202270866@hust.edu.cn
mailto:yan_cui@hust.edu.cn
mailto:apollodong@163.com
mailto:lilei89@hust.edu.cn
mailto:lizal@fme.vutbr.cz
mailto:matjaz.hribersek@um.si
mailto:jure.ravnik@um.si
mailto:mingshi.yang@sund.ku.dk
mailto:liuwater@hust.edu.cn
https://doi.org/10.1016/j.cmpb.2024.108203
https://doi.org/10.1016/j.cmpb.2024.108203
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2024.108203&domain=pdf


Computer Methods and Programs in Biomedicine 251 (2024) 108203Y. Wang et al.

t
t

t
H
t
T
b
s
T
c
h

s
u
i
m
S

the patient’s compliance to use their medication as prescribed. More-
over, the clinical conditions are more complicated than the predefined
modelling conditions, and patient compliance is low [4,5]. It is a great
challenge to develop individualised detection technologies.

One way to study the deposition of aerosol drugs is to use a
radiolabelled nebuliser followed by gamma scintigraphy. However, if
the drug deposition is measured by using radiolabelled nebulisers,
patients need to take a CT scan after the test for each type of inhaled
drug. Subsequently, researchers perform visualisation, segmentation,
statistical analysis or modelling of PET images with specialised software
to obtain the regional deposition fractions, which is more costly in
terms of economy and time for patients.

Finlay et al. [6] proposed theoretical calculations to predict the
pattern of lung deposition of hygroscopic aerosols in populations of
normal subjects. This model also takes into account the hygroscopic
growth or evaporation of aqueous nebulised drug solutions. However,
the method of Finlay et al. [6] relies on computational assumptions,
which reduce the dimensionality of the geometry to the 1D case,
and take into account several empirical or semi-empirical models for
deposition, including heat and mass transfer, together with very coarse
approximations on the particle velocity and lung/air temperature and
humidity. The approach has a great practical use, however, it does not
distinguish between different lung geometries and associated turbulent
flow fields, which have the highest impact on particle trajectories and
final deposition regions.

While other established approaches adequately serve the general
purpose, they fall short in distinguishing between different lung ge-
ometries, breathing rates, and associated turbulent flow fields. These
factors significantly impact particle trajectories and their final depo-
sition regions and are highly dependent on an individual’s airway
geometry.

In this study, we introduce an individualised model for determining
pulmonary drug deposition. This model analyses the efficiency of in-
haled drug delivery using Computational Fluid and Particle Dynamics
(CFPD) simulations. As illustrated in Fig. 1, the physician is required
to provide the patient’s CT images (in 2D Dicom format) and the
patient’s breathing pattern. Subsequently, a 3D model of the patient’s
bronchial tree is reconstructed. The transient dynamic flow field within
the respiratory airways is then analysed based on the patient’s breath-
ing pattern, followed by computational analysis of inhaled particle
dynamics, resulting in regional drug deposition pattern, which is the
basis for the final examination of the patient’s drug delivery ability.
Finally, a report is generated from an extensive data analysis which is
returned to the physicians for further evaluation.

The proposed method offers several advantages. First, it provides an
individualised detection method. A 3D geometric model of the patient’s
respiratory airway is constructed from 2D CT images, and the patient’s
breathing pattern (i.e., flow rate versus time) is recorded. Subsequently,
Computational Fluid Particle Dynamics (CFPD) simulations are con-
ducted based on these data. As a result, the analysis of drug delivery
efficiency is highly individualised, as the particle trajectories depend
on the interplay between the airway geometry and time-dependent
flow conditions, resulting form the patient’s breathing pattern. As the
breathing pattern in the case of illness can be severely affected by the
patient’s physical conditions, the coupled airway geometry-breathing
pattern analysis is of the utmost importance. Second, it allows for a
sub-regional diagnosis of respiratory diseases. The proposed method
can assess inhalation ability in different lung regions, such as the right
upper lobe, right middle lobe, right lower lobe, left upper lobe, and
left lower lobe. Furthermore, the drug delivery ability of different lobe
regions can be compared with a database (e.g., patients with the same
disease, sex, and age). This comparison can assist the physician in better
understanding the patient’s current health condition.

However, Several challenges and questions need to be addressed be-
fore applying this detection method in clinical practice. First, accurate
2

CFPD analysis, which is complicated due to the complex structure of t
the bronchial tree, typically takes more than four weeks to produce
results. However, doctors would prefer a processing time of 1–2 days.
Therefore, it is crucial to significantly reduce the simulation time while
maintaining the accuracy of the calculations for this method to be ac-
cepted in clinical practice. Second, different inhalers have varying flow
resistances, which result in different breathing patterns when patients
use different inhalation devices. It is infeasible to measure the breathing
patterns of each patient for all inhalers. Third, the drugs emitted from
pressurised metered-dose inhalers (pMDIs), soft mist inhalers (SMIs),
and dry powder inhalers (DPIs) are different. The emitted dose is
constant for the first two devices, while it varies depending on the
patient for the last case. Moreover, the speed of the emitted particles
is much higher in the case of pMDIs than in the case of SMIs and DPIs.
All these factors influence drug deposition.

Therefore, this work is restricted to the presentation of the potential
lying in the simulation of flow and particle transport in individual
airways under realistic breathing pattern and tries to make the first
step to overcome part of the impediments mentioned above. Therefore,
the main aim of this work focuses on reducing the time consumption
of the proposed approach to within 48 h, with acceptable accuracy in
the simulation results compared with experimentally measured data.
Moreover, in this study, we only investigate nebulisers since the emit-
ted dose and drug size distribution of a nebuliser are not dependent on
the patient’s breathing pattern. The flow resistance of the nebuliser is
much smaller compared with DPIs. Therefore, the patient’s breathing
pattern measured by the spirometer has a only a slight discrepancy
compared with the case of nebuliser, and can be used in the CFPD
analysis together with nebuliser-dependent drug dose and particle size
distribution.

However, the proposed approach also has the possibility to be
extended to other types of inhalers, which will be studied in the
future. It is noted that the proposed approach uses the instantaneous
CT data from the patient as a basis. Our approach at this point has
limitations as it is based on static CT images that do not take into ac-
count the time-dependent changes in the geometry of the oropharynx,
bronchoconstriction and mobile mucus.

Most computational studies use the Euler/Lagrange approach for
analysing the inhaled drug deposition in vivo [7,8], which divides the
calculation of CFPD into the fluid phase and the particle phase. In
the fluid phase, Large Eddy Simulation (LES) or Reynolds-averaged
Navier–Stokes equations (RANS), supplemented by appropriate tur-
bulence models, are used to calculate the dynamic flow field of the
respiratory airway driven by inhalation. In the particle phase, the
one-way coupling is often used to track the trajectory and deposition
position of drug powders/droplets in the steady or unsteady flow field
of the respiratory airway. Because the size and the volume fraction of
inhaled drug particles are small, i.e. particle size ranging from 0.5 μm
o 5 μm and its volume fraction is usually below 10−7, the influence of
he particle on the fluid phase can be neglected.

In the Euler/Lagrange approach, the calculation speed of the par-
icle phase is fast; most CPU time is spent calculating the flow field.
owever, the time step of LES has to be very small to fully resolve

he generation and dissipation of large eddies in the flow field [9,10].
herefore, To save the computational cost, RANS seems to be the
est CFPD method for the proposed approach. However, a previous
tudy [11] showed that RANS could hardly obtain the same level of
urbulent Kinetic Energy (TKE) compared to LES. As a result, the
alculated particle trajectory, i.e. affected by turbulent dispersion, may
ave insufficient accuracy.

The paper aims to present an individualised pulmonary drug depo-
ition model based on CFPD within a time frame acceptable for clinical
se, and is organised as follows. In Section 2.1, an airway boundary
dentification approach is proposed to reconstruct the 3D geometric
odel of the respiratory airway independent of the engineer’s skills.

ections 2.2 and 2.4 proposes a rapid and accurate calculation approach

o the fluid phase. Section 2.5 proposes appropriate force models for
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Fig. 1. Flow chart of the individualised approach to drug deposition analysis.
Fig. 2. Comparison of the CT image of the lung of COVID-19 patients (right) with healthy people (left) including the airway identification.
tracking inhaled drugs. In Sections 3.1 and 3.2, the simulation results
are verified by comparing them with available experimental data in
the literature. In order to have the same setting as the experiments, the
studies in Sections 3.1 and 3.2 use a general bronchial tree geometry,
fixed inhalation flow rates, and monodispersed drug particles. How-
ever, in Section 3.3, the drug inhalation ability of a COVID-19 patient
is studied by applying the individualised bronchial tree geometry,
dynamic breathing pattern, and drug-containing polydisperse droplets
generated by a nebuliser. In Section 4, we discuss several key aspects of
our study. These include the numerical discrepancies observed during
experimental verification, the time analysis of our proposed approach,
the numerical innovations introduced in this work, and the practical
utility of our model for both physicians and patients.

2. Methods

2.1. Construction of bronchial tree 3D model

Medical imaging software such as MIMICS® (commercial software)
and 3D Slicer® (open-source software) can reconstruct the 3D bronchial
tree automatically. However, the accuracy of the reconstructed model
by using the automatic reconstruction algorithm is usually insufficient
for CFPD simulation. This software also has a manual mode: man-
ually select the airway boundary in each 2D Dicom image. In the
manual mode, it is possible to construct the 3D geometric model of
the bronchial tree with good precision, but there are two technical
problems to be solved:

(1) How to find several tiny airways in the 2D Dicom image? As
shown in Fig. 2, the airways in Dicom images are extremely
difficult to find. In the manual mode, it is necessary to go back
to the adjacent image which already determined the airway,
keep in mind the position of the airway in this image, and
then find the airway region in the following image since the
two neighbouring regions should be very close to each other.
However, the manual process is very time-consuming.
3

(2) If the airway has only a few pixels, how to determine the bound-
ary of the airway precisely? Once the airway is located, the
boundary of the airway must be determined precisely. However,
in the CT image, especially at the 7th generation of the bronchial
tree, the image resolution is insufficient, and only a few pixels
can be found in the airway. Therefore, it is difficult to determine
the boundary of the airway precisely.

As a result, the accuracy of the identified airway boundary highly
depends on the user’s skills. To reach a consistent result, we propose
an airway boundary identification approach, by which the accuracy of
the generated airway boundary is irrelevant to user’s skills. As shown
in Fig. 3, the procedure of the proposed approach is as follows:

(1) Filtering of human tissues by the greyscale. Human tissues with
a large difference in density from bronchial tissues in CT images,
such as bones, can be removed by performing threshold filtering
of the greyscale. In this study, the greyscale of DICOM images is
firstly transformed into a size range between 0 and 255, and then
greyscale images are filtered with threshold values. The lower
threshold of the greyscale is between 45 and 60, and the upper
threshold ranges from 85 to 95, depending on the CT images.

(2) Airway boundary detection. After the morphological processing,
the inner and outer boundaries of the airways are detected by
using the edge detection approach proposed by Canny [12]. The
gradient of greyscale of two adjacent pixels increases signifi-
cantly at the airway boundary. In this way, the airway boundary
can be detected.

(3) Clustering of boundary points for different airways. The points at
airway boundaries may belong to different airways. Therefore, it
is necessary to cluster the boundary points into different groups.
The clustering algorithm used in this study is the density-based
spatial clustering of applications (DBSCAN) proposed by Ester
et al. [13]. This algorithm relies on a density-based notion
of clusters which is designed to discover clusters of arbitrary
shapes.
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Fig. 3. Illustration of the airway boundary identification approach.
(4) Extraction of boundary points of a single airway. The boundary
points of the airway on each cluster are extracted by using
a Delaunay-type mesh generator [14]. In this generator, the
airway is meshed by using the Delaunay triangulation mesh.
Subsequently, search for the edges of all triangular mesh, and
only the edges that belonged to one triangle are determined as
the boundary of the airway (i.e. the red line as shown in Fig. 3).
Finally, a convex hull detection is performed to optimise the
airway boundary.

It should be noted that the proposed airway boundary identification
approach is not an independent medical imaging software. It is only
an assistant tool that assists the user in finding the airway boundary
in the medical imaging software, e.g. MIMICS and 3D Slicer. The
process of constructing the 3D geometry of the bronchial tree from 2D
airway boundaries is still realised by using medical imaging software.
Fig. 4 compares the 3D bronchial tree reconstructed by the proposed
approach with the 3D bronchial tree automatically reconstructed by
using MIMICS. The bronchial tree reconstructed by us can reach the
7th generation, while the one reconstructed by MIMICS only reaches the
6th generation at the lower right lobe, but the other parts of the lung
only have the 4th to 5th generation of the bronchial tree. Moreover, the
length of the 7th generation of the bronchial tree of the airway model
using the proposed approach have a significant improvement over the
model reconstructed using the automatic reconstruction algorithm of
MIMICS. Fig. 5 plots part of the 3D bronchial trees reconstructed for
COVID-19 and emphysema patients by using the proposed approach.

2.2. Meshing technique using fully structure mesh

In order to reduce the total number of grid elements for meshing
the bronchial tree and improve the numerical accuracy of the CFPD
simulation, the respiratory airway is meshed by using a fully structured
mesh. In this work, ICEM is used to mesh the respiratory airway.
However, many other meshing tools can also produce the same struc-
tured grid, e.g. GridPro, Ansys Mesh, and Gmsh. Fig. 6 illustrates the
processes to generate a fully structured mesh of the bronchial tree.
First, the respiratory airway is divided into many segments, where
the structure of each segment is a bifurcation. After that, the fluid
domain of each bifurcation is meshed by using a structured mesh,
and the near-wall mesh is fitted to the curved surface of the airway.
Subsequently, the structured meshes at the connecting surfaces of two
4

adjacent segments are assembled. Finally, a fully structured mesh of the
respiratory airway is created, as shown in Fig. 7. The total number of
structured elements is approximately 8 million. The time required for
the meshing lies mainly in the cutting step, i.e. cutting the respiratory
airway into segments. The total time spent on meshing is about 4–
6 h. The accuracy in turbulence calculation of RSM can be significantly
improved by describing the near-wall region with a fine mesh. We have
tested different numbers of prism layers and found that more than 15
prism layers are required to refine the near-wall region (i.e. starting at
a thickness of 0.01 mm and a thickness multiplied by 1.2 in the next
layer).

2.3. Turbulent models

The most accurate CFD calculation of the turbulent flow is the direct
numerical simulation (DNS), which solves the unsteady motion of all
turbulent flow scales. However, the difference in the turbulent time and
length scales between the largest and smallest eddies of the flow in the
respiratory airway can be several orders of magnitude, making the DNS
calculation of the flow in the respiratory airway infeasible. The next
level below DNS is LES, in which only large unsteady turbulent eddies
are modelled, and small-scale dissipative turbulent eddies are assumed
to be isotropic. Although the computational cost of LES is significantly
reduced compared with the DNS, the computational cost for analysing
the respiratory flow is still far beyond the clinical requirement.

The next lower level of sophistication is to model all the unsteady
turbulent eddies with turbulence models [15]. In the case of steady and
incompressible flow, the steady Navier–Stokes equation can be replaced
by the RANS equation, expressed as

[𝐮 ⋅ ∇]𝐮 = −1
𝜌
∇𝑃 + 𝜈∇2𝐮 + ∇ ⋅ 𝜏𝑖𝑗 , (1)

where 𝜌, 𝜈, 𝑃 are the density, kinematic viscosity and pressure of
the fluid, respectively, 𝐮 is the fluid velocity, and 𝜏𝑖𝑗 is the specific
Reynolds stress tensor. Since 𝜏𝑖𝑗 is symmetric, six unknown elements
in the tensor are modelled in various ways by turbulence models. In
the studies of Sommerfeld et al. [16] and Cui et al. [17], the TKE
level of RANS in connection with the Reynolds Stress Models (RSM)
has the most considerable TKE level compared with other turbulent
models. RSM uses a second-order closure and is able to account for
complex interactions in turbulent flow fields. In this work, RSM based
on Speziale–Sarkar–Gatski (SSG) [18] is applied, in which six unknown
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Fig. 4. Comparison of 3D bronchial tree reconstructed using different techniques: (a) automatic reconstruction algorithm of MIMICS®; (b) the proposed airway boundary
identification approach.
Fig. 5. Examples of the reconstructed 3D CAD models of the bronchial tree using the proposed airway boundary identification approach; (a) 3D bronchial trees of COVID-19
patients; (b) 3D bronchial trees of emphysema patients.
elements of 𝜏𝑖𝑗 are solved by six additional transport equations. In
this way, RSM-SSG has the advantage of solving the anisotropy of the
complex turbulence flow of the respiratory airway [16]. We utilise
a second-order upwind numerical scheme to compute conventional
terms, and the Semi-Implicit Method for Pressure-Linked Equations
(SIMPLE) algorithm is employed for the fluid solver. The flow phase
simulation is carried out using ANSYS Fluent.

2.4. Boundary conditions

The no-slip boundary condition is applied to all walls of the fluid
domain. Ambient pressure is set at the inlet, and varying mass flow
rates are assigned to the outlets of different lobes of the bronchial tree.
The weight factor of the flow rate at each outlet is closely tied to the
5

cross-sectional area of the outlet. This method was proposed by Schmidt
et al. [19], who constructed a highly accurate bronchial tree using a
human lung from an adult male, which included 1453 bronchi up to
the 17th Horsfield order. The lung volume is partitioned into regions
for the lobes. Areas of reduced structural density in the high-resolution
computer tomography (HRCT) data are identified as lobe boundaries
using the watershed transform. By assigning each point of the lung
volume to the nearest terminating leaf of the segmented bronchial
tree within the same lobe, they estimated the drain volume supplied
downstream by each part of the bronchial tree. From the results, they
found that the drain volume is related to the cross-sectional area
of their parent. Therefore, the cross-sectional area of the outlet that
divides the total cross-sectional area of the outlets can be considered
as the weight factor of the flow rate of this outlet.
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Fig. 6. Processes to generate a fully structured mesh of the bronchial tree.
Fig. 7. Meshing the respiratory airway using a fully structured mesh and attaching more than 15 prism layers to the wall.
2.5. Forces on particles

The tracking of inhaled drug particles typically adheres to a La-
grangian approach. In this context, the particles are treated as point
particles. The spatial tracking of these particles is dictated by Newton’s
second law of motion, which can be formulated as follows:

𝑚𝑝
𝑑𝒖𝑝
𝑑𝑡

=
∑

𝑭 𝑖, (2)

where 𝑚𝑝 and 𝒖𝑝 are the mass of the particle and the instantaneous
particle velocity, respectively. On the right-hand side of the above
equation, the sum of the forces that act on the particle is represented.
These forces include the drag force 𝑭D, the gravity 𝑭G, the shear-
induced lift force 𝑭 SL, the slip-rotation lift force 𝑭 RL, the pressure
gradient force 𝑭 PG and the Brownian motion force 𝑭 BM. The buoyancy
force that acts on the particle is already accounted for in the pressure
gradient force.

Drag force is the most important force affecting the two-phase flow
of particles. In the case of microscopic particles, i.e. 𝐷𝑝 < 5 μm,
Cunningham correction on the drag force must be considered [11]. The
drag coefficient proposed by Schiller and Naumann [20] for particle
Reynolds number 𝑅𝑒𝑝 ≤ 1000 is given by:

𝐶𝐷 = 24 [

1 + 0.15𝑅𝑒0.687𝑝

]

, (3)
6

𝑅𝑒𝑝
and the particle Reynolds number is defined as:

𝑅𝑒𝑝 =
𝐷𝑝 |𝒖 − 𝒗|

𝜈
, (4)

where 𝐷𝑝, 𝒖, and 𝒗 are the particle size, the fluid velocity and the
particle velocity, respectively. Above 𝑅𝑒𝑝 = 1000 the flow is fully
turbulent, and the drag coefficient is approximately constant value:
𝐶𝐷 ≈ 0.44. It should be noted that the drag force of Schiller and
Naumann [20] does not consider the wall effect. Goldman et al. [21]
observe that the drag force acting on the particle decreases linearly with
the increasing gap (i.e. the gap between the particle and the wall) in the
Stokes regime. They also developed a drag force model as a function of
the gap size for a stationary spherical particle in a linear shear flow, but
this drag model is valid only for the Stokes flow condition. Additional
modelling on the drag force acting on the particle of the near-wall
region at a more extensive range of particle Reynolds numbers may
be required.

The Cunningham correction factor is used to correlate the drag force
for particles of comparable size to the mean free path of the fluid
molecules and is given by:

𝐶𝐷 =
𝐶𝐷
𝐶𝑢

, 𝐶𝑢 = 1 + 2𝜆
𝐷𝑝

[

1.257 + 0.4 exp
(

−
1.1𝐷𝑝

2𝜆

)]

, (5)

where 𝜆 = 0.070 μm is the mean free path of air.
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Fig. 8. Time-averaged velocity fields of the respiratory airway from the inlet to one of the outlets in the left lower lobe of the lung calculated by using LES (a) and RANS (b)
(flow rate: 60 l/min, the displayed airways are highlighted blue in the bronchial tree).
Particles moving in a shear flow experience a transverse lift force.
This is primarily due to the non-uniform relative velocity across the par-
ticle, which subsequently leads to a non-uniform pressure distribution.
The shear-induced lift force is given by:

𝑭 SL =
𝜌𝑓
2

𝜋
4
𝐷2

𝑝𝐶SL𝐷𝑝
[

[𝒖 − 𝒗] × 𝝎𝑓
]

, (6)

where 𝜇𝑓 and 𝝎𝑓 represent the fluid dynamic viscosity and the flow
vorticity, respectively. The shear-induced lift coefficient, denoted as
𝐶SL, is defined as follows:

𝐶SL = 4.1126
𝑅𝑒0.5𝑠

𝑓 (𝑅𝑒𝑝, 𝑅𝑒𝑠), (7)

where 𝑅𝑒𝑠 = 𝜌𝑓𝐷2
𝑝|𝝎𝑓 |∕𝜇𝑓 is the shear Reynolds number. The cor-

rection function, denoted as 𝑓 (𝑅𝑒𝑝, 𝑅𝑒𝑠), was proposed by Mei [22]
and is based on calculations performed by Dandy and Dwyer [23].
This function applies to a particle Reynolds number in the range of
approximately 0.1 ≤ 𝑅𝑒𝑝 ≤ 100.

Particles that are not freely rotating in a flow can also experience
a lift force due to their rotation, known as the Magnus force. An
analytical expression for the slip-rotation lift force, applicable in the
case of the Stokes flow condition, was derived by Rubinow and Keller
[24]:

𝑭 RL =
𝜌𝑓
2

𝜋
4
𝐷3

𝑝 [𝜴 × [𝒖 − 𝒗]] , (8)

where 𝜴 is the relative rotation given by:

𝜴 = 1
2
∇ × 𝒖 − 𝝎𝑝, (9)

with 𝝎𝑝 the particle angular velocity. The slip-rotation lift force can
be extended for higher particle Reynolds numbers by introducing a
7

rotation-induced lift coefficient, denoted as 𝐶RL [25]:

𝑭 RL =
𝜌𝑓
2

𝜋
4
𝐷2

𝑝𝐶RL|𝒖 − 𝒗|𝜴 × [𝒖 − 𝒗]
|𝜴|

, (10)

For small particle Reynolds numbers, the lift coefficient is derived
according to Rubinow and Keller [24] as follows:

𝐶RL =
𝐷𝑝|𝜴|

|𝒖 − 𝒗|
=

𝑅𝑒𝑟
𝑅𝑒𝑝

, (11)

with:

𝑅𝑒𝑟 =
𝜌𝑓𝐷2

𝑝|𝜴|

𝜇𝑓
, (12)

being the Reynolds number of particle rotation. Oesterle and Petitjean
[26] proposed the following correlation, which is based on available lit-
erature data and additional experiments for particle Reynolds numbers
less than 140:

𝐶RL = 0.45 +
[

𝑅𝑒𝑟
𝑅𝑒𝑝

− 0.45
]

𝑒𝑥𝑝(−0.05684𝑅𝑒0.4𝑟 𝑅𝑒0.3𝑝 ). (13)

The local pressure gradient present in the flow results in an addi-
tional force that is directed towards the pressure gradient, which is
given by:

𝑭 PG = 𝑚𝑝
𝜌𝑓
𝜌𝑝

[𝐷𝒖
𝐷𝑡

− 𝒈
]

. (14)

Sub-micro-metre particles are also subjected to Brownian motion,
which is caused by random collisions with gas molecules. The equation
for the Brownian motion force can be articulated as follows:

𝑭 BM = 𝝃𝑚𝑝

√

√

√

√

216𝑘Boltz
[ ]2

√

𝜈𝑓𝑇𝑓
𝜌 𝐷5𝛥𝑡

, (15)

𝜋 𝜌𝑝∕𝜌𝑓 𝐶𝑢 𝑓 𝑝
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where 𝜉𝑖 represents a random number within the range of 0 to 1, 𝑇𝑓
denotes the absolute temperature of the fluid, 𝑘Boltz = 1.380649 × 10−23

J/K is the Boltzmann constant, and 𝛥𝑡 signifies the time step used in
the integration of the particle equations of motion [27]. The time step
utilised in the simulation is significantly smaller than the particle’s
Stokes number.

In this study, a turbulent dispersion model is employed for RANS
simulation to accommodate the local velocity field’s turbulence-induced
fluctuations. The model adopted here is a two-step Lagrangian ap-
proach, as proposed by Sommerfeld [28]. This approach supposes that
the fluctuating fluid velocity encountered by a particle is a combination
of two components: one that is correlated with the velocity from
the previous time step, and another that is randomly derived from a
Wiener process. The Lagrangian particle tracking models have been
incorporated into the open-source software, ParaView®.

3. Results

3.1. Fluid phase analysis and verification

To verify the present simulation results with available experimental
data in the literature [11,16,29], a general geometry model of the
bronchial tree is used for numerical verification in Sections 3.1 and
3.2. For comparison, two flow rates are considered, i.e. 15 l/min and
60 l/min.

As a reference result, LES simulations equipped with the Smagorin-
sky subgrid-scale (SGS) model are performed. In the experiment of Som-
merfeld et al. [16], the lung model is manufactured as a transparent
silicone model and is immersed in a tank. The tank is filled with a
water–glycerine mixture which matches the refractive index of the
silicone model. The flow is generated by using a piston diaphragm
pump attached to a linear actuator.

Fig. 8 shows the flow field from the inlet (i.e. mouthpiece of inhaler)
to one of the outlets in the left lower lobe of the lung (i.e. the blue
region of the respiratory airway in the figure). The calculated velocity
field using RANS is compared to the time-averaged LES results at a
flow rate of 60 l/min. Fig. 9 compares the velocity profiles at six cross-
section areas along the respiratory airway. The indexes of different
cross-sectional profiles are illustrated in Fig. 10. The magnitude of the
fluid velocity 𝑢mag is normalised by diving the bulk velocity inside the
trachea 𝑢T [16]. The difference in velocity profiles, as shown in Fig. 9,
is further analysed in Table 1 quantitatively. The root-mean-square
error (RMSE) of the normalised fluid velocity between the simulation
and experimental results ranges from 0.0803 to 0.2602. It should be
noted that, in the PIV measurements carried by Sommerfeld et al.
[16], a water–glycerine mixture is used instead of the air to avoid
optical distortion. However, in the present study, the RANS and LES
simulations are performed using the air, while the inflow Reynolds
number is the same as in the experiment. Therefore, the difference in
viscosity could bring the discrepancy in the velocity profile near the
boundary layer. By comparing the present RANS results with the LES
results, the RMSE of the normalised velocity reduces significantly and
ranges from 0.0374 to 0.1363.

The flow Reynolds number values (calculated by using the hydraulic
diameter) at different cross-sectional profiles along the airway for
RANS and LES are compared in Fig. 11, and a good agreement is
found between the results. The flow Reynolds number increases in the
streamwise direction at the upper respiratory airway and reaches its
highest in the first respiratory tract as the cross-sectional area becomes
smaller and then decreases continuously due to the increasing pressure
drop.

Fig. 12 compares the calculated turbulent kinetic energy fields for
RANS and LES at a flow rate of 60 l/min. The overall magnitudes
of the turbulent kinetic energy of the RANS results have the same
scale as the LES results. The turbulent kinetic energy 𝑘 is normalised
by dividing the 𝑢2 and is then plotted in the right column of Fig. 9
8

T

Fig. 9. Comparison of the normalised velocity (left column) and the normalised
turbulent kinetic energy (left column) profiles at different cross-sectional profiles along
the airway between the RANS results, the LES results and the experimental data
of Sommerfeld et al. [16] (flow rate: 60 l/min, index of different cross-sectional profiles
is exhibited in Fig. 10, the fluid velocity 𝑢mag and the turbulent kinetic energy 𝑘 are
normalised in terms of the bulk velocity inside the trachea 𝑢T).

for different cross-sectional profiles along the respiratory airway. The
difference between the simulation and experimental results in the lower
airway is smaller than in the upper airway. The RMSE of normalised
turbulent kinetic energy among these profiles is presented in Table 1.
The calculated RMSE of the RANS and LES simulation results compared
with experimental data is between 0.0076 and 0.0588. The difference
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Table 1
Root-mean-square error (RMSE) of the difference in the results as plotted in Fig. 9.
Index of the cross-sectional
profiles

B1–B2 C1–C2 D1–D2 G1–G2 H1–H2 J1–J2

RMSE of LES to exp.
results (𝑢mag∕𝑢T)

0.1597 0.1152 0.2602 0.0803 0.1143 0.0826

RMSE of RANS to exp.
results (𝑢mag∕𝑢T)

0.1407 0.0815 0.2542 0.1181 0.1193 0.1577

RMSE of RANS to LES
results (𝑢mag∕𝑢T)

0.0374 0.0802 0.1101 0.1363 0.0617 0.1231

RMSE of LES to exp.
results (𝑘∕𝑢2T)

0.0090 0.0104 0.0541 0.0076 0.0285 0.0338

RMSE of RANS to exp.
results (𝑘∕𝑢2T)

0.0128 0.0103 0.0588 0.0166 0.0196 0.0223

RMSE of RANS to LES
results (𝑘∕𝑢2T)

0.0074 0.0185 0.0376 0.0217 0.0380 0.0354
Fig. 10. Illustration of the index of different cross-sectional profiles along the respiratory airway as plotted in Figure.
Fig. 11. Flow Reynolds number at different cross-sections along the respiratory airway
(flow rate: 60 l/min).

in RMSE between the RANS and LES simulation results decreases to
0.0380. The difference in the turbulent kinetic energy between the
9

RANS and LES simulation results improves significantly by applying the
near-wall grid refinement and the RSM-SSG turbulent model.

With the help of the structured mesh, the computational cost of the
RANS simulation is reduced significantly. By using a cluster equipped
with 128 cores (dual-core of 2nd Gen AMD EPYCTM 7742), it takes less
than 24 h for each RANS simulation.

3.2. Particle phase analysis and verification

The Lagrangian particle tracking results are verified by comparing
them with the available experimental data from Lizal et al. [29]. In the
experiment, a lung model was created using stereolithography with a
thickness of 3 mm. This lung model is divided into 22 segments, as
depicted in Fig. 13. Segments numbered 23 to 32 are ten collectors
connected to the deepest level of the bronchial tree. These collectors
are designed to gather particles that escape during inhalation in the
experiment. Therefore, the regional deposition analysis only presents
the deposition results for segments numbered 1 to 22.

The aerosol particles are generated using a condensation monodis-
perse aerosol generator, and radiolabelled with Fluorine 18. The parti-
cle deposition was measured by positron emission tomography (PET).
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Fig. 12. Time-averaged turbulent kinetic energy fields of the respiratory airway from the inlet to one of the outlets in the left lower lobe of the lung calculated by using LES (a)
and RANS (b) (flow rate: 60 l/min, the displayed airways are highlighted blue in the bronchial tree).
The monodispersed aerosol particle size is 4.3 μm, and its density is
914 kg/m3. The particles are tracked in the fluid field calculated by
using RANS and LES, respectively. In Lagrangian particle tracking, a
total number of 100,000 particles are released into the airway at the
inlet. These particles are tracked for 0.5 s, ensuring that the majority
of the particles are deposited on the wall or escaped from the airway.
In the experiment, the mucus in the respiratory airway is simulated by
using silicon oil, therefore the particle is assumed to be stuck to the
wall when it touches the wall.

As discussed in Section 2.4, various forces act on the particle. It
is crucial to investigate which forces play important roles in inhaled
particles. Subsequently, we consider the drag force associated with
Cunningham correction and the gravity diminished by buoyancy as the
basic force combination, denoted as 𝐹Basic. For comparison, the particle
trajectory is determined using 𝐹Basic; other forces are computed along
the trajectory but do not influence the particle. To enable a statistical
study, we recorded the forces along the trajectories of 20 particles,
i.e., two particles per outlet. These particles are chosen such that they
can reach the Carina of the respiratory tract simultaneously at a fixed
flow rate. Due to variations in flow rates, the particles exhibit different
particle residence times 𝑡PRT. Therefore, a dimensionless particle track-
ing time is introduced and defined as 𝑡∗ = 𝑡∕𝑡PRT, where 𝑡 represents
the dimensional particle tracking time.

Fig. 14h compares the drag coefficient with and without the Cun-
ningham correction for different particle sizes at 𝑅𝑒𝑝 = 1. The differ-
ence in results is 3.91% for 𝐷𝑝 = 4.3 μm and increases to 8.11% for
𝐷𝑝 = 2 μm. It is noted that the inhaled particles exhibit a non-uniform
size distribution, with a substantial fraction of particles being smaller
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than 2 μm. Consequently, it is necessary to include the Cunningham
correction when calculating the drag coefficient.

Fig. 14a depicts the ratio of the shear-induced lift force to 𝐹Basic
as a function of the dimensionless particle tracking time for various
flow rates. Each data point in the figure signifies the mean value of
the data from 20 particles. The dimensionless particle tracking times
of 0.51 and 0.77 correspond to the moments when the particles reach
the Carina of the respiratory tract for flow rates of 60 l/min and
15 l/min, respectively. Furthermore, Table 2 displays the mean value
and the corresponding standard deviation of all recorded data for each
flow rate. This ratio tends to increase at larger flow rates, which is
reasonable since the shear-induced lift force is associated with the shear
rate. As illustrated in Fig. 14b, the magnitude of the velocity gradient
tensor at 60 l/min is, on average, 6.5 times larger than that at 15 l/min.
Notably, the shear rate at the lower respiratory tract is considerably
larger than that at the upper respiratory tract, resulting in a larger ratio
of 𝐹SL∕𝐹Basic at the lower respiratory tract.

Fig. 14c presents the ratio of the slip-rotation lift force to 𝐹Basic
as a function of the dimensionless particle tracking time for various
flow rates. This ratio tends to increase at larger flow rates, although it
remains less than 0.00001. Fig. 14d further illustrates the magnitude of
the relative rotation of particles along the trajectory, which is notably
small and falls below 200 rad/s. Given such a minimal angular velocity,
the slip-rotation lift force has a negligible influence on the motion of
inhaled drug particles.

Fig. 14e depicts the ratio of the pressure gradient force to 𝐹Basic
along the particle trajectory for different flow rates. Generally, the
values of this ratio at a flow rate of 15 l/min are larger than those at
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Fig. 13. The vitro experimental model: segments 1–32 of the respiratory tract [29].
Table 2
Mean values and standard derivations of the recorded data for 20 tracked particles at
two different flow rates.

Flow rate of 60 l/min Flow rate of 15 l/min

𝐹SL∕𝐹Basic [−] 1.47 × 10−2 ±2.77×10−2 4.33 × 10−3 ±8.38×10−3

𝐹RL∕𝐹Basic [−] 2.39 × 10−6 ±7.12×10−6 6.02 × 10−8 ±1.61×10−7

𝐹PG∕𝐹Basic [−] 1.48 × 10−4 ±4.99×10−4 3.80 × 10−3 ±1.23 × 10−3

𝐹BM∕𝐹Basic [−] 1.54 × 10−4 ±3.55×10−4 3.01 × 10−3 ±6.01×10−3

|𝐺|

[

𝑠−1
]

3657.81 ± 5163.30 563.07 ± 284.62
𝛺 [rad/s] 40.70 ± 154.54 1.31 ± 3.09
∇𝑝

[

𝑁∕𝑚2] 656.73 ± 260.27 1707.69 ± 652.82

60 l/min. As shown in Fig. 14f, the pressure gradient at 15 l/min is ap-
proximately 2.5 times larger on average than at 60 l/min. This suggests
that, compared to the drag force, the pressure gradient force could have
greater importance at lower flow rates. However, considering that this
ratio is less than 0.006 even at 15 l/min, the influence of the pressure
gradient force on particle motion could be deemed negligible.

Fig. 14g compares the ratio of the Brownian motion force to 𝐹Basic
as a function of the dimensionless particle tracking time for two flow
rates. At a lower flow rate, this ratio is slightly larger than that at a
higher flow rate. However, the values of this ratio are less than 0.0005,
suggesting that the Brownian motion force has a minor influence on
particle motion within the considered particle size range.

In summary, it is important to consider both the drag force, the
Cunningham correction, and the shear-induced lift force when tracking
inhaled drug particles. The slip-rotation lift, the pressure gradient force,
and the Brownian motion force can be reasonably neglected.

The primary deposition mechanisms for micro-sized particles are
inertia and turbulent diffusion. If the particle is larger than 5 μm, inertia
deposition is the dominant mechanism [11]. For smaller particles,
while the inertia effect remains the dominant mechanism, the role
of turbulent diffusion becomes increasingly important and cannot be
neglected. As shown in Fig. 15, we compare the simulation results
of regional drug deposition with and without the turbulent dispersion
model. In this comparison, the turbulent model is RANS, the particle
size is 4.3 μm, and the flow rate is 60 l/min. The results show that the
turbulent dispersion model results in a slight increase in the total depo-
sition fraction of particles compared to the case without the turbulent
dispersion model. The difference is noticeable in segments 2, 3, 4, 5, 9,
and 14 because the turbulent kinetic energy in these segments is very
strong near the wall (see Fig. 12), and the particles in these segments
have relatively smaller kinetic energy (i.e., due to the smaller time-
averaged flow velocity as shown in Fig. 8). Therefore, the turbulent
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diffusion becomes stronger, and the inertia effect becomes weaker in
these segments, increasing the deposition fractions.

Figs. 16a and b provide a comparative analysis of numerical and
experimental deposition results of drug particles across various segment
regions at flow rates of 60 l/min and 15 l/min, incorporating results
from both RANS and LES simulations. In the upper respiratory tract
region (segments 1 to 3), the RANS simulation results show a good cor-
relation with the experimental results at a lower flow rate of 15 l/min.
However, the LES simulation results slightly underestimate the drug
deposition at the trachea (segment 2). When the flow rate is increased
to 60 l/min, the LES simulation results align more closely with the
experimental data than the RANS simulation results. Nevertheless, both
simulation results underestimate the drug deposition fraction at the tra-
chea. In the lower respiratory tract, both the RANS and LES simulation
results align well with the experimental results across most segments.
The primary deviation between the simulation and experimental results
is observed in the second generation of the left bronchus (segment 4)
at the flow rate of 60 l/min.

Fig. 16c illustrates the total deposition fractions derived from sim-
ulation and experimental results. The discrepancy between the total
deposition fraction, calculated by RANS and LES based on the flow
field, is small for both flow rates, with differences of 1.03% and 0.55%
for flow rates of 60 l/min and 15 l/min, respectively. Compared to the
experimentally obtained data, the total deposition fraction calculated
by LES aligns well with the experimental results at both flow rates,
with differences of 3.41% and 0.88% for flow rates of 60 l/min and
15 l/min, respectively. The discrepancy between the RANS simulation
results and the experimental results slightly increases to 4.44% and
1.43% for flow rates of 60 l/min and 15 l/min, respectively, which
is still within an acceptable range. While the LES model exhibits
higher accuracy than the RANS model, it is noted that LES simulations
are more computationally demanding. For clinical applications, it is
advantageous to minimise the computational time of the fluid phase as
much as possible. Consequently, we employ the RANS model for flow
field calculations in subsequent case studies.

3.3. COVID-19 patient case study

This work is primarily focused on simulating flow and particle
transport in individual airways, and as such, many aspects mentioned
in the introduction are either simplified or not considered. At present,
we are unable to accommodate all types of drug/device combinations
and can only consider the same drug and device. If this approach can be
clinically applied in the future, even using the same drug and device
across a significant patient population, it could still provide valuable
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Fig. 14. This figure presents various ratios and magnitudes as functions of the dimensionless particle tracking time. Specifically, (a) shows the ratio of the shear-induced lift force
to the basic force combination, (c) depicts the ratio of the slip-rotation lift force to the basic force combination, (e) illustrates the ratio of the pressure gradient force to the basic
force combination, and (g) displays the ratio of the Brownian motion force to the basic force combination. The magnitudes of the velocity gradient tensor, the relative rotation,
and the pressure gradient as functions of the dimensionless particle tracking time are plotted in (b), (d), and (f), respectively. Lastly, (h) compares the drag coefficient with and
without the Cunningham correction for different particle sizes at 𝑅𝑒𝑝= 1 (for the case of Figs. 14a to g, each data point is a mean value of 20 particles).
insights to physicians about the patient’s current health condition based
on database analysis. Additionally, the transport of aerosol droplets
may undergo size changes due to the difference in body and room
temperatures. Therefore, an isothermal condition is assumed in this
work.

In this section, a case study is carried out for a COVID-19 patient
(male, aged 50). As shown in Fig. 17a, the 3D bronchial tree model is
12
reconstructed from the patient’s CT scan by using the proposed airway
boundary identification approach. The model contains up to the 7th
generation of the bronchial tree and is divided into 10 segments. Ta-
ble 3 lists the relationship between each segment and the corresponding
airway regions. Because of radiation in CT scans, radiology departments
in hospitals often use a slice thickness of 0.5–2 mm to scan. The
thickness of two adjacent CT images is 0.625 mm for this patient. The
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Fig. 15. Comparison of regional deposition fraction for cases with and without
turbulent dispersion models. The turbulent model is RANS. The flow rate is 60 l/min.
The particle size is 4.3 μm.

Fig. 16. Comparison of the regional deposition fraction and the total deposition
fraction drug particles calculated using RANS and LES with the experimental results for
two different flow rates; (a) the regional deposition fraction at a flow rate of 60 l/min;
(b) the regional deposition fraction at a flow rate of 15 l/min; (c) the total deposition
fraction.

7th generation of the airway model is the maximum generation that we
could achieve. The total volume of the airway model is 105.9 cm3, and
its surface area is 397 cm2. The average hydrodynamic diameter of the
trachea and the 7th generation are 15.5 mm and 2 mm, respectively.

Given that the number of generations of the reconstructed bronchial
tree depends on the resolution of the CT scan, it is infeasible to
reconstruct the terminal bronchioles and alveoli from the CT images.
However, this limitation does not pose a significant problem, as some
approximations are necessary to complete the 3D computational study
within a desired time slot of 48 h. As the inner diameter of the
bronchi decreases with each new generation, the constricted flow area
increases the probability of deposition of larger aerosol particles, while
the smallest particles are more likely to reach the alveoli. From a
13
Table 3
The relationship between each segment and the corresponding airway regions of the
geometric model of the bronchial tree of the COVID patient as plotted in Fig. 17.

Identification of segment Airway regions

1 Oral cavity, throat and larynx
2 Trachea
3 Carina
4 Generations 2 to 4 of the left bronchus
5 Generations 2 to 4 of the right bronchus
6 Left lower lobe (LLL)
7 Left upper lobe (LUL)
8 Right lower lobe (RLL)
9 Right middle lobe (RML)
10 Right upper lobe (RUL)

computational perspective, this suggests that particles reaching the last
generation of the 3D-modelled bronchi will most likely be deposited
further down from the outlets of the computational fluid domain. In
this way, the deposition pattern in the regions that are 3D modelled is
not affected, and the obtained deposition results are realistic.

The patient’s breathing pattern is measured through a spirometer as
shown in Fig. 17b. The peak flow rate is 60.7 l/min, and the inhalation
time is about 1 s Although the simulation is performed for only one
inhalation, the doses of each inhalation multiplied by the number of
inhalation maneuvers can be regarded as the doses that reach the deep
airway. The CFPD results can add value to the clinical use even if only
the overall dose that reaches the deep airway part is predicted. A jet
nebuliser with polydispersed aerosol droplets is applied, and a Rosin–
Rammler distribution of aerosol size is used (see Fig. 17c) [30]. The size
of aerosols ranges from 0 μm to 8 μm, and the mean diameter is 2.3 μm.
The geometric standard deviation is 2.06. The density of the aerosol is
1000 kg/m3. The aerosols start to release at 𝑡 = 0.1 s (i.e. we assume it
takes 0.1 s for aerosols to travel from the mask to the oral cavity), and
100,000 aerosols are released. At the end of the inhalation, aerosols
which are not deposited or reached the outlets are not accounted for in
the deposition study, as they will naturally be removed from the airway
through exhalation.

Fig. 18 plots the instantaneous velocity field of the respiratory
airway calculated by performing RANS simulations for different inhala-
tion times. At 𝑡 = 0.3 s, the flow rate is the maximum. The velocity
magnitude in the oral cavity is larger than in the other region. The
maximum flow velocity could reach 14 m/s. Fig. 19a plots the total
deposition fraction of aerosol droplets as a function of inhalation time.
The aerosols start to deposit after 0.05 s of the injection time. At the
end of the inhalation, the total deposition fraction is 27.01%. It means
that 72.99% of aerosol droplets can reach to the 8th generation of the
respiratory airway. The deposition fraction at each segment is plotted in
Fig. 19b. The deposition fraction at the oral cavity (segment 1), the LLL
(segment 6), the RML (segment 9) and the RUL (segment 10) are larger
than in the other regions. The deposition fraction of the LUL (segment
7) is 0.63% and is considerably lower than the other lobe regions. The
deposition fraction at the trachea (segment 2) is the smallest and its
value is 0.19%. This is because the main deposition mechanism is due
to the inertia effect. At the trachea, there is no bifurcation and the
deposition is mainly induced by turbulence diffusion.

Fig. 20a plots the deposition percentage of each size range of
aerosols for different segmental regions. For each size range of aerosols,
the total deposition percentage is 100%. In segment 1, aerosols in the
range of 5–8 μm have the largest percentage, since these aerosols are
more inertia. For the smallest size range, i.e. 0–1 μm, most of the
deposition occurs at segments 1, 9 and 10, the corresponding deposition
percentages are 26.47%, 29.43% and 10.78%, respectively. Fig. 20b
plots the deposition percentage in each segment for different aerosol
size ranges. In each segment, the total deposition percentage is 100%
for all aerosol size ranges. Analysing the cumulative mass fraction fig-
ure for particle size under the Rosin–Rammler distribution reveals some
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Fig. 17. The reconstructed geometric model of the bronchial tree of a COVID-19 patient (a) (male, 50 years old), the breathing pattern of the patient (b), and the size distribution
of the aerosol droplet generated by a jet nebuliser (c).
key observations. Specifically, when the average particle size is 2.3 μm,
there are very few particles with a diameter larger than 5 μm, and the
majority of particles fall within the 1–4 μm range. Consequently, when
checking the deposited particles in each section of the respiratory tract,
it becomes evident that the largest proportion consists of particles in
the 0–3 μm range. Furthermore, particles with diameters between 5–
8 μm are primarily distributed in the upper respiratory tract, while
the 0–4 μm particles are predominantly found in the small bronchi
within the pulmonary lobes. This distribution pattern underscores the
significant role that particle size plays in their deposition within distinct
regions of the respiratory system. In general, the deposition percentage
of all segments increases with increasing aerosol size. Therefore, for the
design of the nebuliser, it is important to reduce the generated aerosol
size to as small as possible.

The inhalation ability of different lobe regions of the lung is plotted
in Fig. 21. The total drug inhalation percentage is 72.99%. It should be
noted that the inhalation ability for the lobes is the fractions deposited
in the generation larger than the 7th. However, some targeted receptors
(e.g. beta receptors) and inhalation corticosteroids are predominantly
in the deep airways. The deep airway has not been analysed because:

(1) Due to the limitations of CT resolution (i.e. slice thickness be-
tween 0.5–2 mm), 7th generation is the smallest airway to be
reconstructed.

(2) The 1st to 7th generations of the airways are wrapped by car-
tilage, and their shape only changes slightly during inhalation.
However, the geometry of the small airway changes with in-
halation/exhalation. The corresponding computational cost will
increase significantly by using the immersed boundary condition
to solve the dynamic boundary, making the proposed approach
not applicable to clinical practice.

The inhalation ability of the RML of the patient is the largest, whereas
the LUL has the smallest drug inhalation percentage. The overall in-
halation ability of the right lobe is larger than the left lobe (i.e. 51.69%
compared with 21.31%). The physician can understand the drug inhala-
tion ability for different lobe regions of the patient by comparing his
data with a sufficiently large database.
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4. Discussion

4.1. Analysis of discrepancies between simulation and experimental results

Fig. 9 compares the simulation and experimental results for the
fluid phase. The discrepancy could be attributed to the different fluids
used in each case. Air was used in the simulation, while a mixture of
water and glycerin was used in the experiment. In the context of fully
developed turbulent pipe flow, the difference between the two cases
at the turbulent layer is minimal for the same Reynolds number, given
that the shear rate is nearly zero. However, differences in turbulent
properties become evident in the viscous sublayer, the buffer layer and
the overlap layer. For instance, at the viscous layer, the wall shear stress
(which is proportional to the fluid density and the square of the fluid
kinematic viscosity) in the water–glycerin case is 237 times larger than
in the air case. It is noted that this calculation is only applicable for
fully developed turbulent pipe flow. The flow within the respiratory
airway is more complex, hence the difference in fluids could lead to
variations in velocity and turbulent profiles. Additionally, the RANS
and LES turbulent models could introduce further errors as they are
based on certain assumptions and the small eddies are not resolved.
If the fluid phase is solved using DNS, the fluid field will be the most
accurate. However, due to its significant computational costs, DNS may
not be suitable for this application at the moment.

Fig. 16 presents a comparison between the simulation and experi-
mental results for the particle phase. The total fraction is the sum of all
drugs deposited in all segments divided by the number of emitted drugs
at the end of inhalation. Indeed, the numerical error in calculating the
fluid phase will impact the accuracy of the particle tracking results.
Additionally, the numerical error in the particle phase could also arise
from the wall effect. When a particle moves towards the wall, the wall-
induced lift force pushes the particle away from the wall, resulting in
a decrease in the deposition fraction. This could explain why our total
deposition fraction is slightly higher than the experimental results. At a
lower flow rate, the flow velocity is much smaller and the wall-induced

lift force also decreases. Therefore, the numerical results align better
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Fig. 18. Instantaneous velocity fields of segments 1 to 3 of the respiratory airway for different inhalation times; a realistic breathing pattern is applied as shown in Fig. 17b.
Fig. 19. Total deposition fraction of aerosols as a function of inhalation time (a) and
regional deposition fraction of aerosols for different segments of the respiratory airway
(b) as shown in Fig. 17a.

with the experimental results at a lower flow rate. However, we have
tested the wall-induced lift force model in the literature and found
it is unsuitable for the current case, leading to unreasonable results.
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Developing a suitable wall-induced lift force model for inhaled drug
particles will be our future work.

4.2. Time analysis of the approach

The entire technical process, depicted in Fig. 22, can be completed
within 48 h without compromising the accuracy of CFPD calculations.
The process includes the airway boundary identification approach to
reconstruct the 3D geometric model of the respiratory airways that is
independent of the skills of the user (6–12 h), the use of structured
grids to discretise the 3D bronchial tree (4–6 h), the computational
RANS based simulation of the fluid flow in the respiratory airways (less
than 24 h), and the analysis of the regional drug delivery ability (1–
2 h including data post-processing). A significant effort is devoted to
the most important mechanism, fluid flow, and particle-related aero-
dynamic forces, with the aim of improving the 3D and time-dependent
computational solution of the respiratory airways as accurately and
realistically as possible. The proposed approach is a comprehensive
and direct 3D approach, as well as time-resolved in terms of particle
dynamics, and is therefore ready to be used on a personalised level. In
total, the entire process takes 35–44 h.

4.3. The numerical innovation

In the fluid phase, this study’s innovation lies in reducing the
simulation time from 2–4 weeks to less than 24 h to meet clinical
needs. In the study of Koullapis et al. [11], each fluid phase simulation
took 25 days, with a relative error of 22.22% between simulation and
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Fig. 20. Deposition percentage of each aerosol size range for different segments (a)
and deposition percentage in each segment for different aerosol size ranges (b).

Fig. 21. Distribution of inhaled drug particles for different regions of the lung.

experimental results for a flow rate of 60 l/min. However, by using our
approach, the simulation time for the fluid phase is reduced to 24 h,
and the relative error between simulation and experimental results is
reduced to 13.04% and 16.98% for LES and RANS, respectively, at
the same flow rate. This approach reduces the simulation time and
improves the numerical accuracy of the fluid phase, making it possible
for clinical use.

In the particle phase, this study’s innovation is developing an ef-
ficient and accurate in-house Lagrangian particle tracking code based
on the open-source software Paraview®. The main advantage of this
code is its high compatibility, allowing it to import fluid phase data
calculated by any CFD software. Most CFD software, such as Ansys
Fluent®, requires simultaneous calculation of the fluid and particle
phases. Therefore, if one changes the particle properties, the software
needs to recalculate the fluid phase, increasing the simulation time.
However, in clinical applications, physicians may need to test differ-
ent combinations of drugs and inhalers to find the optimal one for
the patient. Some open-source software, such as OpenFoam®, allows
separate calculations of the particle phase. However, they can only use
the fluid phase calculated by this CFD software and are incompatible
with other CFD software. In practice, many CFD engineers are only
familiar with commercial CFD software and may struggle with open-
source CFD software due to the lack of a graphical user interface (GUI).
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However, by using our in-house Lagrangian particle tracking code, CFD
engineers can export the data of any commercial CFD software to the
standard VTK format and import it into our code. Since our code also
has a GUI, it would be much easier for CFD engineers to calculate the
particle phase efficiently.

4.4. The practical utility of the proposed model for physicians and patients

The proposed model evaluates drug delivery efficiency based on the
patient’s bronchial tree geometry and breathing pattern. Changes in
these factors lead to differences in the fluid field, inhalation flow rate,
and flow rate distribution in different lung regions. As the drug particle
trajectories depend on the interplay between the airway geometry and
time-dependent flow conditions, resulting from the patient’s breathing
pattern, the computational analysis of drug delivery efficiency is highly
individualised. As the breathing pattern in the case of illness can
be severely affected by the patient’s physical conditions, the coupled
airway geometry-breathing pattern analysis is of the utmost importance
for obtaining realistic results.

When a physician first meets a patient, the model can calculate
the regional drug deposition fraction in different lung regions based
on the current patient’s physical conditions. Since the particle phase
calculation is quick and independent of the fluid phase simulation,
the physician can test various drug and inhaler combinations to find
the best one for the patient. By comparing this patient’s regional drug
inhalation efficiency with a larger database (e.g., patients of the same
disease, gender, and age), the physician can identify less functional lung
regions and improve the patient’s treatment.

During follow-up visits, the physician can compare new numerical
simulation data with previous data to assess the effectiveness of the
treatment because the patient’s bronchial tree geometry and breathing
pattern may change during treatment, which can easily be addressed
by the developed CFPD simulation. The physician can also test different
drug and inhaler combinations again to find the best one for the new
treatment stage.

From the patient’s perspective, this 3D approach allows them to
visualise the dynamic flow field and drug deposition results in their
lungs through animations. Compared to other complex medical data
(e.g., test reports or CT images), this method of data presentation could
enhance the trust between patients and physicians.

5. Conclusion

To achieve effective inhaled drug delivery for an individual, an
individualised 3D computational flow and particle model to predict
the deposition of inhaled medicines is proposed. The proposed model
allows for the analysis of inhaled drug delivery efficiency and has
potential applications in the sub-regional detection of respiratory dis-
eases. The numerical accuracy of the proposed model is verified by
comparison with experimental results. A case study involving a COVID-
19 patient is conducted to illustrate the potential clinical use of the
model. The entire process of applying the proposed model can be
completed within 48 h, allowing an evaluation of the deposition of
the inhaled drug in an individual patient’s lung within a time frame
acceptable for clinical use. As the breathing pattern in the case of
illness can be severely affected by the patient’s physical conditions,
the coupled airways geometry-breathing pattern analysis (CFPD) offers
an excellent basis for the physician to adapt the drug administration
to the new physical conditions of the patient, which can significantly
improve the speed of the patient’s recovery. Furthermore, we show that
the proposed methodology also offers a possibility to be extended to a
detection approach for some respiratory diseases.

Based on the developed methodology on how to design and perform
a (relatively) fast computational study of flow and particle motion
in a 3D reconstructed individual lung, it is possible to also include
additional phenomena into the computational model, for example, flow
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Fig. 22. Flow chart of the methodology and the time required for each technical process of the proposed approach.
based on the use of heat and mass transfer models of evaporation
or hygroscopic growth. Furthermore, a higher-precision computation
services could be provided using LES based fluid flow simulation for
patients who require surgery (e.g. lung cancer), since the computational
time requirements in case of these patients are not limited to 48 h.

At the current stage, our model is limited to nebulisers, but it holds
the potential to be adapted for other types of inhalers. It is noted that
physicians follow certain protocols when selecting a device–drug pair
for a patient. As such, the combination of inhalers and drugs could
only be among products of the same type. Furthermore, our proposed
approach uses instantaneous CT data from the patient as a foundation
and does not account for time-dependent changes in the geometry of
the oropharynx, bronchoconstriction, and mobile mucus.

In the long run, the additional validation of the developed method-
ology would certainly need to be performed based on additional data
from clinical studies, approved by an Ethical Committee, to test the
applicability and safety of the proposed methodology. As the method-
ology builds on clinical techniques, which have already been proven
clinically safe, we see no obstacles in its final clinical implementation.
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