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a b s t r a c t 

In this paper, we present a method to decrease the computational demand of the boundary-domain integral 
equation based 3D flow solver. We focus on the solution of the velocity–vorticity formulation of the Navier–
Stokes equation, which governs incompressible viscous fluid flow. We introduce the cross approximation into 
the solution of the boundary vorticity values. This problem is governed by the Poisson type kinematics equation 
and presents a computational bottleneck of the algorithm. In order to accelerate the flow solver, we approximate 
the domain contribution of the kinematics integral equation by the cross approximation algorithm. The cross 
approximation method is used in combination with the hierarchical decomposition of the domain boundary 
combined by the hierarchical decomposition of domain interior. We propose to specify the approximation extent 
by controlling the depth of the hierarchical decomposition and the rank of the approximated integral matrix parts. 

The developed algorithm is tested using the Arnold–Beltrami–Childress and lid driven cavity flows. We study 
the accuracy of boundary vorticity estimation and of the flow solution for different flow complexities (Reynolds 
number values), computational mesh densities and cross approximation settings. We found that that by using 
the cross approximation technique in the flow solver, we were able to reduce the computational demands of 
storing matrices to approximately 30% of the storage space of the original matrices. Furthermore, we showed 
that achieved approximation extent depends on the complexity of the simulated flow problem. 
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. Introduction 

There are many numerical methods that can be used to solve a differ-
ntial partial equations (PDE). In computational fluid dynamics, the fi-
al volume method is often employed. To write the discrete counterpart
f the governing PDE, the volume-based methods require discretization
f the entire domain. The procedure results in a sparse system of lin-
ar equations for the unknown field functions. The boundary element
ethod (BEM) is based on the Green ’s second theorem and by using the

undamental solution of the governing PDE a boundary integral equa-
ion may be derived. Thus, only the discretization of the boundary is
ecessary, [1] . However, due to the non-local nature of the fundamen-
al solution, the resulting system of linear equations is fully populated.
ue to this, the computational demands of the method scale with the

quare of the number of boundary unknowns, O ( N 

2 ). 
The fast boundary element method is a generic term describing a

ide range of numerical algorithms, which aim to reduce computational
emands from O ( N 

2 ) to O ( N log N ) or even to O ( N ). To accelerate the so-
ution process and reduce the computational demand, we present an ap-
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roximation procedure with a hierarchical structure. The hierarchical or
structure is a form that divides the full matrix formulation into smaller
atrices on which an admissibility condition can be applied. Börm et al.

2] introduced the application of hierarchical matrices and the bound-
ng box method for determining cluster trees. Hackbusch [3] wrote the
rithmetic based on  matrices. Another hierarchical matrix form is
he  

2 matrix. Börm [4] used the  

2 matrix formulation to construct
fficient approximations of discretized integral formulation. There are
any approximation procedures. The singular value decomposition is

n efficient approximation method [5] . However, the computational de-
and to perform the SVD scales with O ( N 

3 ) and is therefore not suitable
or more demanding problems [6] . This makes the method unsuitable for
arger problems. Another approach is the fast multipole method (FMM)
hat was presented by Rokhlin [7] . The FMM is based on the expansion
f the integral kernel and thus requires a new implementation when the
ntegral kernel is changed. The wavelet transform technique is another
pproximation method [8] , which works algebraically and can be used
o compress a wide variety of data and signals. 

In the past years the cross approximation algorithm was developed.
ifferent authors proposed different forms and variants of the algorithm.
ik@um.si (J. Ravnik). 
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he most widely used form is the algebraic cross approximation algo-
ithm. The algebraic form includes the adaptive cross approximation
CA [9] and the extended adaptive cross approximation ACA+ [10] . A
ore extended formulation of the algebraic form is the multilevel adap-

ive cross approximation (MLACA) that was proposed by Tamayo [11] .
LACA is a procedure that divides the matrix into levels and applies

he ACA algorithm on each level. In our work, we used the algebraic
ross approximation algorithm for approximation of matrices for a col-
ocation BEM discretization. Similarly, Bebendorf [12] used the cross
pproximation for the collocation BEM, while Rjasanow [13] used the
ross approximation for the Galerkin BEM. Another form of the method
s the hybrid cross approximation of integral operators (HCA) that was
ntroduced by Börm and Grasedyck [14] . They have employed HCA on
he  matrix representation of the finite element stiffens matrix. The

matrix structure is a hierarchical decomposition of the full matrix
ormulation and is used with all forms of the cross approximation. In
his paper we propose the use of hierarchical decomposition approach
f collocation BEM matrices and their approximation with the cross ap-
roximation algorithm. 

The adaptive cross approximation is the most often used form of
ross approximation. In recent years different physical problems were
olved with this procedure. In this work we propose to use the cross ap-
roximation algorithm for the simulation of fluid flows. Other authors
ave applied it to other problems. For example, it was used to solve the
ddy current problem by Smajic et al. [15] . Schröder et al. [16] used the
daptive cross approximation to solve the current distribution in an elec-
romagnetic field. A coupled BEM and fine element numerical method
as accelerated with the adaptive cross approximation to solve the dis-

ribution of a symmetric electromagnetic field by Kurz and Rjasanow
17] . Van et al. [18] used the ACA on different geometries, for solv-
ng the electromagnetic field with the coupled fine element-boundary
ntegral numerical method. On the other hand Grytsenko and Galybin
19] used the adaptive cross approximation to solve a large number
f cracks on a plate with the singular integral method and Maerton
20] employed ACA to solve a 3D elasticity problem. Besides the adap-
ive cross approximation, MLACA was also employed by Tamayo et.al
21] to solve the electromagnetic field distribution between to differ-
ntly charged spheres. Zhao and Vouvakis [22] used the same technique
o solve the magnetic behaviour of the ground plane design. Recently

ei et al. [23] solved the Laplace equation to predict the temperature
istribution in a 2D domain by combining ACA with the singular bound-
ry integral method. However, it has to be noted that Heldring et al.
24,25] revisited the problem of the ACA stopping criteria and proposed
n alternative solution. In all publications, the authors discovered that
he cross approximation method works efficiently towards the goal of
educing computational demand and storage requirements. 

The aim of this work is to implement the cross approximation algo-
ithm to accelerate a BEM based fluid flow solver. The fluid flow solver
26,27] has been developed for the velocity–vorticity formulation of the
avier–Stokes equations. To write this form we introduce the vorticity

nto the Navier–Stokes equations. The continuity equation is reformed
nto the kinematics equation and the equation of momentum conserva-
ion turns into the vorticity equation. Accounting for the Green ’s sec-
nd identity, we can write the integral form of the two equations. The
ollocation scheme is employed and fully populated systems of linear
quations must be solved. 

To accelerate the solution of the kinematics equation we present
n implementation of the cross approximation algorithm with a hier-
rchical structure. Our goal was to decrease the CPU time and memory
torage demands. We test the implementation and assess its usefulness
sing two well-known fluid dynamics problems: the Arnold–Beltrami–
hildress (ABC) flow [28] and the lid driven cavity problem [29,30] .
he paper is divided into four sections, in the first chapter we introduce
he governing equations, in the second we introduce the cross approxi-
ation and the  matrix structure. Finally, we test the implementation

n the third section and summarize the results in the last section. 
18 
. Governing equations 

The governing equations for laminar incompressible fluid flow writ-
en in velocity–vorticity formulation are the kinematics equation and the
orticity transport equation. Let ⃗𝑣 be the velocity field and 𝜔⃗ = ∇⃗ × 𝑣 the
orticity field. For a constant density fluid, the velocity field and the vor-
icity field are divergence free. With this approximation the kinematics
quation may be stated as [26] : 

 

2 𝑣 + ∇⃗ × 𝜔⃗ = 0 . (1)

q. (1) represents a connection between the velocity and vorticity vec-
or field. It is an elliptic partial differential equation. The fluid move-
ent is governed by the vorticity transport equation, written in a non-
imensional form as: 

𝜕 ⃗𝜔 

𝜕𝑡 
+ ( ⃗𝑣 ⋅ ∇⃗ ) ⃗𝜔 = ( ⃗𝜔 ⋅ ∇⃗ ) ⃗𝑣 + 

1 
𝑅𝑒 

∇ 

2 𝜔⃗ , (2)

here 𝑅𝑒 = 𝑣𝑙∕ 𝜈 is the Reynolds number and l the characteristic length
cale. The fluid viscosity 𝜈 is also considered constant. The velocity
oundary conditions are known, while the vorticity boundary condi-
ions are calculated from (1) . 

The Eqs. (1) and (2) are solved in an boundary element based itera-
ive algorithm presented in [31] . A domain decomposition approach is
sed to avoid the fully populated system of linear equations resulting
rom the vorticity transport equation (2) . Domain decomposition can
ot be used for the solution of the kinematics equation for the unknown
orticity boundary conditions due to the fact that the Biot–Savart law
tates that the whole domain must be considered in order to keep the
orticity field divergence free. 

Thus, in the following, we develop the cross approximation tech-
ique to accelerate the solution of the kinematics equation for the un-
nown vorticity boundary conditions. 

.1. The flow solver 

Incompressible fluid flow, governed by a system of non-linear PDE ’s
1) and (2) , is simulated using an iterative algorithm proposed by Ravnik
t al. [27] . In this paper, we present an accelerated version of the first
tep - the estimation of boundary vorticity values ( Section 2.2 ). In the
econd step, using sub-domain BEM solution of the kinematics equation
1) the velocity in the domain is calculated. Lastly, the vorticity trans-
ort equation (2) is solved for domain vorticity values using sub-domain
EM. The procedure is repeated until convergence for all field functions

s achieved. To guarantee convergence under-relaxation is used. A value
f 0.1 is used for problems with low Reynolds number value and 0.01
or problems with high Reynolds number value. 

.2. The kinematics equation for the boundary vorticity 

Let us consider a domain Ω with a position vector ⃗𝑟 ∈ IR 

3 . The bound-
ry of the domain is Γ = 𝜕Ω. The integral form of the kinematics equa-
ion (1) without derivatives of the velocity and vorticity fields takes the
ollowing form, [27] : 

( ⃗𝜉) ⃗𝑣 ( ⃗𝜉) + ∫Γ 𝑣 ∇⃗ 𝑢 ⋆ ⋅ 𝑛 𝑑Γ = ∫Γ 𝑣 × ( ⃗𝑛 × ∇⃗ ) 𝑢 ⋆ 𝑑Γ + ∫Ω( ⃗𝜔 × ∇⃗ 𝑢 ⋆ ) 𝑑Ω. (3)

here 𝑢 ⋆ ( ⃗𝑟 ) = 

1 
4 𝜋|𝑟 − ⃗𝜉| is the fundamental solution of the Laplace equa-

ion and 𝜉 is the source point. In order to use the kinematics equation
o obtain boundary vorticity values, we must rewrite the Eq. (3) in a
angential form by multiplying the system with a normal in the source
oint 𝑛 ( ⃗𝜉) . This yields the following integral equation, 

( ⃗𝜉) ⃗𝑛 ( ⃗𝜉) × 𝑣 ( ⃗𝜉) + ⃗𝑛 ( ⃗𝜉) × ∫Γ 𝑣 ⃗∇ 𝑢 ⋆ ⋅ 𝑛 𝑑Γ

= 𝑛 ( ⃗𝜉) × ∫Γ 𝑣 × ( ⃗𝑛 × ∇⃗ ) 𝑢 ⋆ 𝑑Γ + ⃗𝑛 ( ⃗𝜉) × ∫Ω( ⃗𝜔 × ∇⃗ 𝑢 ⋆ ) 𝑑Ω. (4) 
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Fig. 1. A graphical representation of the boundary and domain cluster three forming 
algorithm. 
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hich results in a non-singular system of linear equations for boundary
orticity values. 

In order to write the discrete form of the kinematics equation, we
ivide the domain into elements Ω = 

∑𝑑 
𝑖 =1 Ω𝑖 and the boundary into

oundary elements Γ = 

∑𝑏 
𝑖 =1 Γ𝑖 , where d is the number of domain el-

ments and b the number of boundary elements. At each mesh node, we
nterpolate the field functions using domain 𝜙i or boundary Φi shape
unctions. Quadratic interpolation of functions is used by 27-noded box
omain elements and 9-noded quadrilateral boundary elements. 

For each collocation node at the boundary 𝜉𝑓 , we calculate the fol-
owing integrals over boundary element c : 

 𝑓𝑐𝑙 = 𝛿𝑓𝑐𝑙 𝑐( 𝜉𝑓 ) + 

9 ∑
𝑙=1 

∫Γ𝑐 Φ𝑙 𝑛 𝑖 
𝜕𝑢 ⋆ 

𝜕𝑥 𝑖 
𝑑Γ𝑐 , (5) 

 

𝑖𝑗 

𝑓𝑐𝑙 
= 

9 ∑
𝑙=1 

∫Γ𝑐 Φ𝑙 
[ 
𝑛 𝑖 
𝜕 𝑢 ⋆ 

𝜕𝑥 𝑗 
− 𝑛 𝑗 

𝜕 𝑢 ⋆ 

𝜕𝑥 𝑖 

] 
𝑑Γ𝑐 , (6) 

nd the following integrals over domain elements e 

 

𝑖 
𝑓𝑒𝑙 

= 

27 ∑
𝑙=1 

∫Ω𝑒 𝜙𝑙 
𝜕 𝑢 ⋆ 

𝜕𝑥 𝑖 
𝑑Ω𝑒 . (7)

he indexes i , j in Eqs. (5) –(7) stand for the coordinates x , y , z . For the
ntegral in Eq. (6) i ≠ j . The symbol 𝛿fcl is the Kronecker delta, which is
qual to 1 when source point and the mesh point are equal. 

Components h fcl are parts of matrix [ H ], ℎ 𝑖𝑗 
𝑓𝑐𝑙 

defines the matrices

 H ij ] and components 𝑑 𝑖 
𝑓𝑒𝑙 

define the matrix [ D i ]. Considering this, we
an write a system of equations, where matrices are shown as [ · ] and
ectors are shown as { · }: 

 𝐻] 
{
𝑣 𝑥 
}
= [ 𝐻 𝑦𝑥 ] 

{
𝑣 𝑦 
}
− [ 𝐻 𝑧𝑥 ] 

{
𝑣 𝑧 
}
+ [ 𝐷 𝑧 ] 

{
𝜔 𝑦 

}
− [ 𝐷 𝑦 ] 

{
𝜔 𝑧 

}
[ 𝐻] 

{
𝑣 𝑦 
}
= [ 𝐻 𝑧𝑦 ] 

{
𝑣 𝑧 
}
− [ 𝐻 𝑦𝑥 ] 

{
𝑣 𝑥 
}
+ [ 𝐷 𝑥 ] 

{
𝜔 𝑧 

}
− [ 𝐷 𝑧 ] 

{
𝜔 𝑥 

}
[ 𝐻] 

{
𝑣 𝑧 
}
= [ 𝐻 𝑥𝑧 ] 

{
𝑣 𝑥 
}
− [ 𝐻 𝑧𝑦 ] 

{
𝑣 𝑦 
}
+ [ 𝐷 𝑦 ] 

{
𝜔 𝑥 

}
− [ 𝐷 𝑥 ] 

{
𝜔 𝑦 

}
(8) 

In order to separate the unknown boundary vorticity values, the vor-
icity vector can be written as a sum of boundary and domain vorticity
s 
{
𝜔 𝑖 
}
= 

{
𝜔 𝑖 
}
Γ + 

{
𝜔 𝑖 
}
Ω∕Γ. The vector { 𝜔 i } Γ includes the vorticity at

odes on the boundary and the vector { 𝜔 i } Ω/ Γ the vorticity at nodes in
he domain. Hence, we can write the system of equations like this: 

[ 𝑛 𝑥 ][ 𝐷 𝑥 ] + [ 𝑛 𝑦 ][ 𝐷 𝑦 ] + [ 𝑛 𝑧 ][ 𝐷 𝑧 ]) 
{
𝜔 𝑥 

}
Γ = ([ 𝑛 𝑦 ][ 𝐻 𝑧𝑥 ] + [ 𝑛 𝑧 ][ 𝐻 𝑥𝑦 ]) 

{
𝑣 𝑥 
}

+ ([ 𝑛 𝑦 ][ 𝐻] − [ 𝑛 𝑧 ][ 𝐻 𝑦𝑧 ]) 
{
𝑣 𝑧 
}
− ([ 𝑛 𝑥 ][ 𝐻] + [ 𝑛 𝑦 ][ 𝐻 𝑦𝑧 ]) 

{
𝑣 𝑦 
}

+ [ 𝑛 𝑧 ][ 𝐷 𝑥 ] 
{
𝜔 𝑧 

}
Γ + [ 𝑛 𝑦 ][ 𝐷 𝑥 ] 

{
𝜔 𝑦 

}
Γ + [ 𝑛 𝑥 ][ 𝐷 𝑥 ] 

{
𝜔 𝑥 

}
Γ − ([ 𝑛 𝑦 ][ 𝐷 𝑦 ] Ω∕Γ

+ [ 𝑛 𝑧 ][ 𝐷 𝑧 ] Ω∕Γ) 
{
𝜔 𝑥 

}
Ω∕Γ + [ 𝑛 𝑦 ][ 𝐷 𝑥 ] Ω∕Γ

{
𝜔 𝑦 

}
Ω∕Γ + [ 𝑛 𝑧 ][ 𝐷 𝑥 ] Ω∕Γ

{
𝜔 𝑧 

}
Ω∕Γ, 

(9) 

[ 𝑛 𝑥 ][ 𝐷 𝑥 ] + [ 𝑛 𝑦 ][ 𝐷 𝑦 ] + [ 𝑛 𝑧 ][ 𝐷 𝑧 ]) 
{
𝜔 𝑦 

}
Γ = ([ 𝑛 𝑧 ][ 𝐻 𝑥𝑦 ] + [ 𝑛 𝑥 ][ 𝐻 𝑧𝑦 ]) 

{
𝑣 𝑦 
}

+ ([ 𝑛 𝑥 ][ 𝐻] − [ 𝑛 𝑥 ][ 𝐻 𝑧𝑥 ]) 
{
𝑣 𝑥 
}
− ([ 𝑛 𝑥 ][ 𝐻] + [ 𝑛 𝑧 ][ 𝐻 𝑧𝑥 ]) 

{
𝑣 𝑧 
}

+ [ 𝑛 𝑧 ][ 𝐷 𝑦 ] 
{
𝜔 𝑧 

}
Γ + [ 𝑛 𝑥 ][ 𝐷 𝑦 ] 

{
𝜔 𝑥 

}
Γ + [ 𝑛 𝑦 ][ 𝐷 𝑦 ] 

{
𝜔 𝑦 

}
Γ − ([ 𝑛 𝑧 ][ 𝐷 𝑧 ] Ω∕Γ

+ [ 𝑛 𝑥 ][ 𝐷 𝑥 ] Ω∕Γ) 
{
𝜔 𝑦 

}
Ω∕Γ + [ 𝑛 𝑧 ][ 𝐷 𝑦 ] Ω∕Γ

{
𝜔 𝑧 

}
Ω∕Γ + [ 𝑛 𝑥 ][ 𝐷 𝑦 ] Ω∕Γ

{
𝜔 𝑥 

}
Ω∕Γ, 

(10) 

[ 𝑛 𝑥 ][ 𝐷 𝑥 ] + [ 𝑛 𝑦 ][ 𝐷 𝑦 ] + [ 𝑛 𝑧 ][ 𝐷 𝑧 ]) 
{
𝜔 𝑧 

}
Γ = ([ 𝑛 𝑥 ][ 𝐻 𝑦𝑧 ] + [ 𝑛 𝑦 ][ 𝐻 𝑥𝑧 ]) 

{
𝑣 𝑧 
}

+ ([ 𝑛 𝑥 ][ 𝐻] − [ 𝑛 𝑦 ][ 𝐻 𝑥𝑦 ]) 
{
𝑣 𝑦 
}
− ([ 𝑛 𝑦 ][ 𝐻] + [ 𝑛 𝑥 ][ 𝐻 𝑥𝑦 ]) 

{
𝑣 𝑥 
}

+ [ 𝑛 𝑦 ][ 𝐷 𝑧 ] 
{
𝜔 𝑧 

}
Γ + [ 𝑛 𝑥 ][ 𝐷 𝑧 ] 

{
𝜔 𝑥 

}
Γ + [ 𝑛 𝑧 ][ 𝐷 𝑧 ] 

{
𝜔 𝑧 

}
Γ − ([ 𝑛 𝑥 ][ 𝐷 𝑥 ] Ω∕Γ

+ [ 𝑛 𝑦 ][ 𝐷 𝑦 ] Ω∕Γ) 
{
𝜔 𝑧 

}
Ω∕Γ + [ 𝑛 𝑥 ][ 𝐷 𝑧 ] Ω∕Γ

{
𝜔 𝑥 

}
Ω∕Γ + [ 𝑛 𝑦 ][ 𝐷 𝑧 ] Ω∕Γ

{
𝜔 𝑦 

}
Ω∕Γ. 

(11) 

Matrices [ n x ], [ n y ], [ n z ] are diagonal matrices, that include the com-
onents of the normal vector 𝑛 = 

{
𝑛 𝑥 , 𝑛 𝑦 , 𝑛 𝑧 

}
. The size of matrices [ H ]

nd [ H ij ] is n × n , where n is the number mesh nodes on the boundary.
19 
ince we decomposed the vorticity vector into boundary and domain
arts we get two types of domain matrices. The first are [ D i ] which are
f the size n × n , while the second [ D i ] Ω/ Γ are of the size n × m . Here m
s the number of interior domain nodes equal to the number of all nodes
inus the number of boundary nodes. 

As the size of [ D i ] Ω/ Γ matrices is one order of magnitude greater than
ll other matrices, we implemented the cross approximation algorithm
or these matrices. 

. Acceleration of the solution of the kinematics equations 

Let us consider one of the integral matrices [ D i ] Ω/ Γ and denote it as
 . It ’s size is n × m and its entries are real numbers, D ∈ IR 

n × m . By
efining a geometrical condition, based on the properties of the funda-
ental solution and the domain shape, we can split the matrix D | n × m 

nto smaller matrices 𝐷̂ |𝑛̂ ×𝑚̂ . As the matrix forms due to the source point
t the boundary and field point in the domain, the splitting of both the
omain and the boundary must be performed. 

.1. Block cluster trees 

The computational domain is meshed with box elements. Each ele-
ent represent a leaf on a tree of clusters of elements. Let these elements

epresent cluster at level 1 of the cluster tree. In order to build the clus-
er tree, we propose a recursive algorithm, which groups neighbouring
lements into higher generation clusters. The procedure is repeated until
 single cluster emerges, which included all elements in the computa-
ional mesh. The total number of levels p defines the depth of a cluster
ree. The following algorithm was used to build the domain cluster tree
 I 

• for all levels 𝑖 = 1 to p 
• for all clusters 𝐼 ( 𝑖 ) 

𝑘 
at level i 

• find 𝐼 ( 𝑖 ) 
𝑘 

’s eight neighbouring clusters and join them into a new clus-
ter at level 𝑖 + 1 

The number of clusters in each level increases like this, 𝑎 = 𝑏 = 8 ( 𝑝 − 𝑖 ) ,
 i ≤ p ). This algorithm yields a cluster tree with a moderate number of
enerations p and a high number of clusters in each generation. The
lusters at level i are sons of a father, which is a cluster at level 𝑖 + 1 . 

This algorithm is used again to build the boundary cluster tree T J by
tarting with boundary elements as first level leaves. The cluster forming
lgorithm is shown in Fig. 1 . Boundary T J and domain T I cluster trees
re joined by combining clusters of both trees at the same levels to form
 block cluster tree T I × J . 

For each domain cluster in T I cluster tree we define a bounding box
 dm 

⊆IR 

3 , which encompassed all domain nodes in the cluster as pro-
osed by Börm [2] . Similarly, for each boundary cluster in the T cluster
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Fig. 2. The implementation of the bounding box method and determination of distances 
between clusters. 

Fig. 3. In this Figure we can see the  structure of the 25 3 nodes mesh, where 𝜂 = 1 was 
used in the admissibility condition. 
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ree we define a bounding box Q bn ⊆IR 

3 from the boundary nodes in the
luster. Fig. 2 shows the boundary box definition on a 2D cross-section
f the domain. 

.2. -matrix 

From the block cluster tree we build a  matrix, which has the recur-
ive structure of the block cluster tree and represents an approximation
f the original matrix. The matrix structure includes several parts in
hich we try to approximate the original matrix part. We decide, which
art is admissible for approximation by employing the admissibility con-
ition. The admissibility condition is: 

𝑖𝑛 
{
𝑑 𝑖𝑚 ( 𝑄 𝑑𝑚 ) , 𝑑 𝑖𝑚 ( 𝑄 𝑏𝑛 ) 

} ≤ 𝜂 𝑑𝑖𝑠𝑡 ( 𝑄 𝑑𝑚 , 𝑄 𝑏𝑛 ) . (12)

xpressions 𝑑𝑖𝑚 ( 𝑄 𝑑𝑚 ) = |𝑟 𝐴 − ⃗𝑟 𝐵 | and 𝑑𝑖𝑚 ( 𝑄 𝑏𝑛 ) = |𝑟 𝐶 − ⃗𝑟 𝐷 | are the diam-
ters of boundary and domain bounding boxes. The distance dist ( Q dm 

,

 dn ) is the minimal distance between nodes in the boundary and domain
lusters. These dimensions are shown in Fig. 2 . 

The parameter 𝜂 is the admissibility parameter, which is defined by
he user. This parameter enables the user to vary the admissibility condi-
ion and control the number of approximated matrix parts. In our simu-
ations we used 𝜂 = 1 , based on the recommendation given by Wei et al.
23] . 

The blocks ( I k × J l ) 
( i ) , which meet the admissibility condition are

alled admissible leaves and cross approximation is used to approximate
his matrix part. 

In Fig. 3 we show an illustration of a  matrix structure. The red
oxes are the matrices that do not fulfil the admissibility condition and
he white boxes are the matrices which are admissible. 

.3. Cross approximation 

Cross approximation is a method that approximates matrices 𝐷̂ |𝑛̂ ×𝑚̂ ,
hat meet the admissibility condition in Eq. (12) , into a RK -form. Let
he rank of the matrix 𝐷̂ be k and let us denote the approximation rank
s r . Every matrix that has the rank k > 1, can be approximated into a
K -matrix using approximation rank r in the following way [2] : 
20 
̃
 |𝑟 ( ̂𝑛 + ̂𝑚 ) ≈ 𝐴̂ ̂𝐵 𝑇 , 𝐴̂ ∈ 𝐼𝑅 

𝑛̂ ×𝑟 , 𝐵̂ ∈ 𝐼𝑅 

𝑟 ×𝑚̂ . (13)

n order to store the RK -matrix into memory and perform matrix-vector
ultiplications, we need 𝑂( 𝑟 ( ̂𝑛 × 𝑚̂ )) computational resources, [10] . The

pproximation rank r is the number of rows in matrix A and the number
f columns in matrix B 

T . The cross approximation algorithm is written
ellow: 

1. 𝑅̂ 

0 = 𝐷̂ |𝑛̂ ×𝑚̂ 
2. The loop u = 0,1,2,3,..., r 

(a) ( 𝑖 ∗ , 𝑗 ∗ ) 𝑢 = 𝐴𝑟𝑔𝑀𝑎𝑥 
|||( ̂𝑅 

𝑢 ) |||
(b) 𝛾𝑢 +1 = ( ̂𝑅 

𝑢 
𝑖 ∗ ,𝑗 ∗ ) 

−1 

(c) 𝑎 𝑢 +1 = 𝛾𝑢 +1 𝑅̂ 

𝑢 
𝑖,𝑗 ∗ , 𝑏 

𝑢 +1 = ( ̂𝑅 

𝑢 
𝑖 ∗ ,𝑗 ) 

𝑇 

(d) 𝑅̂ 

𝑢 +1 = 𝑅̂ 

𝑢 − 𝑎 𝑢 +1 𝑏 𝑢 +1 

n point (1) of the algorithm, we define the residual matrix. The second
oint (2) is a start of a loop that preforms the approximation. In ( a ) the
argest element in the matrix 𝑅̂ 

𝑢 is found. Next, in ( b ), the inverse of
he largest element 𝑅̂ 

𝑢 
𝑖 ∗ ,𝑗 ∗ is calculated. In ( c ) vectors 𝑎 𝑢 +1 and 𝑏 𝑢 +1 are

efined. This two vectors build a cross around the element 𝑅̂ 

𝑢 
𝑖 ∗ ,𝑗 ∗ . ( d )

alculates a new residual matrix 𝑅̂ 

𝑢 +1 . 
The described cross approximation algorithm is an iterative method,

or which we need a way to determine the approximation rank r in order
o stop the iterations. Bebendorf [32] proposed an adaptive determina-
ion of the stopping criteria that is most widely used also by other au-
hors. Heldring revised the problem of the stopping criteria in [24,25] .

e propose to use a user defined compression factor 𝛼, which defines
he approximation rank r in the following way: 

 = 𝑘 ⋅ 𝛼, (14)

here k is the rank of the matrix part 𝐷̂ |𝑛̂ ×𝑚̂ . Based on r we can calculate
he compression ratio 𝜑 

 = 

∑
𝑖 𝑛̂ 𝑖 ⋅ 𝑚̂ 𝑖 + 

∑
𝑗 𝑟 𝑗 ( ̂𝑛 𝑗 + 𝑚̂ 𝑗 ) 

𝑛 ⋅ 𝑚 

, (15)

hich measures the memory usage of the approximated matrix versus
he original matrix. It is the sum of the matrix elements in admissible
eaves 𝐷̃ |𝑟 ( ̂𝑛 + ̂𝑚 ) plus the elements in inadmissible matrix parts 𝐷̂ |𝑛̂ ×𝑚̂ , and
he number of elements in the original matrix D | n × m 

. 

. Numerical experiments 

We tested the proposed algorithm using two established test cases:
he Arnold–Beltrami–Childress (ABC) flow [28] and the lid driven cav-
ty problem [29,30] . The domain in both cases was a unit cube. We
ought steady state flow solutions using four different mesh densities,
aving 17 3 , 25 3 , 41 3 and 49 3 nodes. In order to facilitate the compari-
on between simulations with and without compression, we based the
hoice of fine mesh density on the availability of computer storage to
tore the full uncompressed matrices. We chose the middle and coarse
esh based on previous experiences with simulation of lid driven cavity
ows, [31] . The locations of nodes were concentrated towards the cor-
er of the domain using a geometric series with the ratio between the
ongest and shortest element size being 1: 3 in the 17 3 mesh and 1: 6.5
n others. 

.1. Arnold–Beltrami–Childress flow 

The ABC flow is a time independent solution of the Euler ’s equations
or three dimensional incompressible inviscid fluid flow. The flow is a
rototype for the research of the turbulent flow [28] . The velocity vector
eld is defined like this, 

 𝑥 = 𝐴 ⋅ 𝑠𝑖𝑛 ( 𝑧𝜈) + 𝐶 ⋅ 𝑐𝑜𝑠 ( 𝑦𝜈) , 

 𝑦 = 𝐵 ⋅ 𝑠𝑖𝑛 ( 𝑥𝜈) + 𝐴 ⋅ 𝑐𝑜𝑠 ( 𝑧𝜈) , 

𝑣 = 𝐶 ⋅ 𝑠𝑖𝑛 ( 𝑦𝜈) + 𝐵 ⋅ 𝑐𝑜𝑠 ( 𝑥𝜈) , (16) 
𝑧 
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Fig. 4. Flow structure and boundary conditions for the lid driven cavity ( 𝑅𝑒 = 100 ) (left) 
and Arnold–Beltrami–Childress flow ( 𝜈 = 2 ) (right). Colour denotes velocity component 
magnitude. 

Fig. 5. Memory demand versus the number of boundary unknowns. Memory usage of 
the original uncompressed matrix is compared with approximated matrices at different 
compression factor 𝛼. 
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Fig. 6. Influence of the block cluster tree depth on the simulation accuracy at different 
compression ratios. A deeper block cluster tree yields lower RMS 𝜔 due to an increased 
number of admissible blocks. Results of the ABC flow test case are shown on the 25 3 mesh 
for 𝐴 = 𝐵 = 𝐶 = 1 and 𝜈 = 0 . 1 . 

Fig. 7. Norm RMS 𝜔 for ABC flow at different mesh densities. Mesh independent behaviour 
is observed for high compression. Norm limits towards machine precision at zero compres- 
sion. 
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hile the analytical expression for the vorticity field may be readily
erived. Symbols A , B , C in Eq. (16) are the amplitudes and 𝜈 is the fre-
uency. We used the analytical ABC flow solution and based on the
nown domain vorticity and velocity calculated the boundary vorticity
alues by using the developed cross approximation accelerated BEM for
he kinematics equation. 

We were manipulating the frequency and the amplitude to get dif-
erent structures of the ABC flow. The frequency parameter of ABC flow
etermines the number and size of vortices in the problem domain. The
mplitude parameter defines the maximal velocity of the fluid. In order
o make a parametric study, we chose frequencies from 0.001, 0.1, 1 to
, at a constant amplitude A , B , C equal to 1.0. The amplitude was varied
rom 0.001, 0.1, 1 to 2 at a constant frequency of 𝜈 = 0 . 1 . 

.2. Lid driven cavity flow 

Flow in a 3D lid driven cavity is one of the standard benchmark test
ases used in the development of flow solvers. The domain as well as
he boundary conditions are unambiguously defined and do not change
21 
ith the Reynolds number. The flow exhibits a wide variety of phenom-
na, such as eddies, complex three-dimensional patterns and instabilities
Shankar and Deshpande [33] ). The research of lid driven cavity flow
tarted with the observations of Koseff and Street [34] , who were able
o observe the inherent 3D nature of flow phenomena in the cavity. 

The simulation was performed on a cavity with no-slip velocity
oundary conditions are employed on all wall except the top wall, where
 constant velocity in x direction is prescribed. Dirichlet type boundary
onditions are used for the vorticity transport equation. Vorticity on the
oundary is obtained by the solution of the cross approximation acceler-
ted kinematics equation for all directions and walls, except for 𝜔 𝑥 = 0
n left and right walls, 𝜔 𝑦 = 0 on the front and back walls and 𝜔 𝑧 = 0 on
op and bottom walls. The flow was simulated at three Reynolds number



J. Tibaut et al. Engineering Analysis with Boundary Elements 82 (2017) 17–26 

Fig. 8. Importance of the hierarchical matrix structure for the accuracy of the cross approximation. 

Fig. 9. Influence of the ABC flow structure on the RMS f and RMS 𝜔 norms. A course and a fine mesh are considered with changing amplitude 𝐴 = 𝐵 = 𝐶 and frequency 𝜈 of the vortical 
structures. 

22 
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Fig. 10. Lid driven cavity test case at 𝑅𝑒 = 1000 . Norms versus compression ratio are shown for three meshes having 17 3 , 25 3 and 41 3 nodes. 

Fig. 11. Influence of the Reynolds number on the accuracy of solution of the boundary vorticity values in the lid driven cavity problem. The RMS f and RMS 𝜔 are shown in two panels. 
Three computational grids are considered having 17 3 , 25 3 and 41 3 nodes for three Reynolds number values 𝑅𝑒 = 100 , 400 and 1000. 
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alues: 𝑅𝑒 = 100 , 400 and 1000. Boundary conditions and a representa-
ion of the flow structure is shown in Fig. 4 for both test cases. 

Due to inherent non-linearity of the flow problem, the driven cavity
roblem was solved using an iterative procedure. The iterations were
topped when the difference between subsequent iteration of all field
unctions dropped below 10 −6 . 

.3. Definition of norms 

The cross approximation was used on the matrices [ D x ] Ω/ Γ, [ D y ] Ω/ Γ,
 D z ] Ω/ Γ in Eqs. (9) –(11) . In order to measure the influence of the approx-
mation on the result and find its dependence on the flow structure and
esh density, we used two norms. We measure the difference between

oundary vorticity values as 

𝑀𝑆 𝜔 = 

( ∑
𝑗= 𝑥,𝑦,𝑧 

∑
𝑖 ( 𝜔 𝑗𝑖 − 𝜔 𝐴𝑗𝑖 ) 2 ∑

𝑖 ( 𝜔 𝐴𝑗𝑖 ) 2 

) 

1 
2 

(17)

here 𝜔 ji is the j th component of vorticity in i th boundary node calcu-
ated without an approximation and the 𝜔 Aji its approximated counter-
23 
art. In addition, we calculate 

𝑀𝑆 𝑓 = 

√ √ √ √ 

∑𝑁 
𝑖 =1 ( 𝑓 𝐴𝑖 − 𝑓 𝑖 ) 2 ∑𝑁 

𝑖 =1 ( 𝑓 𝑖 ) 2 
, (18)

hich measures the difference between the right hand side of the linear
ystem of equations for the z component of boundary vorticity (11) . f Ai 

s the right hand side calculated with the use of cross approximation, f i 
ts non approximated counterpart. 

. Results and discussion 

In this section, we illustrate the impact of the cross approximation
ethod on the ABC and lid driven cavity flow solutions. All simula-

ions were performed in double precision on a workstation with an In-
el Xenon 64- bit processor and 64 GB of memory. Flow structures were
hanged, to see how a different compression factor 𝛼, effects the norms
MS 𝜔 and RMS f . 

Fig. 5 illustrates the memory demands needed to store [ D z ] Ω/ Γ matrix
t different compression factors as well as the original fully populated
atrix. We observe that the memory demands of the original matrix
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Fig. 12. Velocity profiles v x ( z ) and v z ( x ) at the 𝑦 = 0 . 5 plane, for different compressions ratios and Reynolds numbers. Results obtained using the 25 3 mesh are shown left, 41 3 mesh is 
on the right. 

24 
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cale quadratically, while the compressed matrices exhibit quasilinear
ependence. 

Each block cluster tree T I × J can have a different number of genera-
ions p . The number of generations is defined by the stopping criterion.
n Fig. 6 we show how a different generation depth p of a cluster tree
ffects the RMS 𝜔 . It can be seen that the RMS 𝜔 difference at a chosen
ompression ratio is lower when a deeper hierarchical matrix structure
s used. 

In Fig. 7 we present the RMS 𝜔 for the ABC flow at different mesh
ensities. The flow was simulated with 𝐴 = 𝐵 = 𝐶= 1.0 and 𝜈 = 0 . 1 .
e observe similar behaviour on all meshes at high compression ra-

io ( 𝜑 < 0.5), while at low compression the dense meshes yield signifi-
antly more accurate results than the coarse meshes. When considering
 coarse mesh, the cluster tree depth is limited by the number of domain
lements. As shown in Fig. 6 the cluster tree depth also has an influence
n RMS 𝜔 . 

Employing hierarchical matrix structure is important for achieving
igh accuracy of the approximation. We compare two approximations
ne with the hierarchical matrix structure and one without. A course
nd a fine mesh were considered. The result is illustrated in Fig. 8 . It
an be seen that the approximation with the hierarchical structure is
ore accurate at a given compression ratio. In Fig. 9 we show how dif-

erent features of the ABC flow influence the norm RMS f by changing
he amplitude and frequency of the vortical flow structures. We con-
ider changing of the amplitude while keeping the frequency 𝜈 constant
nd in vice-versa. Plots of norms RMS f and RMS 𝜔 reveal that flow struc-
ure has virtually no influence on the norms. As expected the norms
ecrease with compression and reach machine precision at zero com-
ression. Comparing these results on course and dense meshes also gives
o difference. The reason for this is the fact that the approximation is
ased on the domain geometry and integral calculation and does not
epend on the flow. As the boundary vorticity for the ABC flow case
s solved by a single step solution using analytical domain flow field,
he solution accuracy is expected to be independent of the flow. This
bservation is clearly confirmed by the norms in Fig. 9 . 

In Fig. 10 we consider the lid driven cavity test case and show the
MS f and RMS 𝜔 norms for Reynold number 𝑅𝑒 = 1000 and three mesh
ensities. In all cases, the norms decrease with decreasing compression.
t a given Reynolds number, we observe that the norms are lower for a
ne mesh as compared to a coarse mesh. This means that a simulation on
 fine mesh is able to use more compression to reach the same accuracy
f results compared to a simulation on a coarse mesh. 

In Fig. 11 we compare the norms at three Reynolds number values,
𝑒 = 100 , 𝑅𝑒 = 400 and 𝑅𝑒 = 1000 . A change in the Reynolds number
f the flow significantly alters the flow structure in the cavity. With an
ncrease in Re the main vortex in the cavity dominates and gives rise to
econdary and tertiary vortices at the bottom corners of the cavity. A
ook at the norms in Fig. 11 reveals that the boundary vorticity solution
ccuracy is unaffected by the Reynolds number. 

Even though the increase of the Reynolds number requires the iter-
tive algorithm to resolve the non-linear nature of the flow by an in-
reased number of iteration, the error made by the cross approximation
lgorithm does not propagate through the iterative algorithm and thus
emains unaffected by flow the Reynolds number. 

Using norms we focused on the impact of the cross approximation
lgorithm on the solution of the boundary vorticity values. The approxi-
ation of the boundary vorticity values affects the whole velocity field.

n Fig. 12 we show velocity profile through the centre of the cavity.
e compare the benchmark results of Yang et al. [30] , our method,
here approximation has not been used and the results obtained using

he cross approximation. We observe very good agreement between the
enchmark and the results obtained without approximation. When ap-
roximation is used, the difference in profiles increases. We observe that
he difference also increases with Reynolds number and decrease with
esh density. Two main conclusions may be drawn: for a given flow
roblem (Reynolds number) a denser mesh enables higher compression
25 
atios and for a given mesh and increase of Reynolds number requires a
ecrease of the compression ratio. 

. Conclusions 

In this study we developed a cross approximation accelerated bound-
ry element based solution of the kinematics equation for evaluation of
he boundary vorticity values using a hierarchical integral matrix struc-
ure. The developed algorithm is included into a boundary element in-
ompressible flow solver, which solves the velocity-vorticity formula-
ion of the Navier–Stokes equation in 3D. We have shown that the cross
pproximation algorithm can be successfully introduced to accelerate
he solution of the kinematics equation. The implementation was tested
sing an analytical Arnold–Beltrami–Childress flow example and the 3D
id driven cavity test case with the Reynolds number up to 1000. 

The results showed that for a chosen solution accuracy the extent of
ntegral matrix compression depends on the computational mesh used.
 finer mesh allows usage of higher compression ratios. We propose to
ontrol the error introduced into the boundary vorticity by the approx-
mation by specifying the rank of the approximated matrix parts. 

Even though the one over r elliptic integral kernel, which is found
n the integral form of the kinematics equation, is not very well suited
or approximation, we can conclude that the application of the cross
pproximation enables the usage of the flow solver on finer meshes at
educed computational cost and thus enables simulation of more com-
lex flow problems. 
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