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a b s t r a c t 

In this paper, we present a method to decrease the computational cost of the Boundary-Domain Integral Method. 
We focus on the solution of the velocity–vorticity formulation of the Navier–Stokes equation for incompressible 
3D fluid flow. The objective is to accelerate the solution of the boundary vorticity values. In order to reduce 
the computational cost of the Boundary-Domain Integral Method, we employ the Adaptive Cross Approximation 
algorithm in combination with the hierarchical matrix structure. The hierarchical matrix structure enables higher 
compression rates when individual matrix parts are approximated by low-rank matrices. We use the fundamental 
solution of the modified Helmholtz equation to improve further the approximation accuracy when solving the 
boundary vorticity values. 

The developed algorithm is used to simulate natural convection in a closed cavity. By comparing the simula- 
tion results with a published benchmark, we are able to assess the influence of the approximation techniques and 
give a recommendation on parameter values that lead to optimal compression characteristics when simulating 
the heat and mass transfer processes. 
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. Introduction 

Even though we are witnessing exponential growth in comput-
ng power, the need to develop efficient numerical algorithms is al-
ays present. In this study, we propose an algorithm to accelerate the
oundary-Domain Integral Method (BDIM) and test the new method by
erforming a number of fluid flow and heat transfer simulations. 

Fluid flow is governed by a system of partial differential equations.
ifferent numerical methods were introduced in order to solve such sys-

ems. The most widely used method in fluid mechanics is the Finite
olume Method (FVM). The FVM is based on the discretization of the
omain. 

An alternative approach is the Boundary Element Method (BEM). It
s based on the discretization of only the boundary and the use of a fun-
amental solution of the underlying problem. Several researchers have
orked on using BEM for simulation of transport phenomena. Wang
nd Ang [1] implemented the boundary element method solve a steady-
tate advective-diffusion-reaction equation. Ghadimi et al. [2] solved
oisson’s equation by employing an analytical boundary element inte-
ration. The boundary element method is widely used in heat transfer
roblems. Li et al. [3] used the Galerkin boundary element to perform
 steady heat conduction analysis. Liao and Chwang [4] used BEM for
he solution of unsteady non-linear heat transfer problems. Yu et al.
5] presented a Radial Integral Boundary Element Method (RIBEM) with
 precise integration method to solve transient heat conduction prob-
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ems with variable thermal conduction. Recently Cui et al. [6] used the
ame method for the solution of transient heat conduction problems with
eat sources and variable thermal conduction and in [7] the same au-
hors solved a heat conductivity problem. On the other hand Yang et al.
8] used the virtual boundary element method in conjunction with the
radient algorithm to solve a three-dimensional inverse heat conduction
roblem. 

In this paper, we develop an alternative approach, which is based
n the Boundary-Domain Integral Method. We develop the fast BDIM
o solve a non-linear heat transfer problem. The BDIM is a numerical
ethod, which is based on the Boundary Element Method. Ravnik et al.

9] proposed BDIM for simulation of 3D flow and heat transfer problems.
hey used the Laplace fundamental solution to develop the algorithm.
n this work, we propose to use the modified Helmholtz fundamental
olution, which was used for the acceleration of the BDIM algorithm. 

The Boundary-Domain Integral Method is based on the application
f Green’s second theorem. By using the fundamental solution of the
overning partial differential equation, a boundary-domain integral
quation may be derived [10] . Our main objective is to solve the
elocity–vorticity formulation of the Navier–Stokes equations. In this
ormulation, the continuity equation is reformed into a kinematics equa-
ion and the momentum conservation equation is recast into a vorticity
quation. Accounting for Green’s second identity, we can write the in-
egral form of the two equations. Š kerget and Kuhn [11] have observed
hat this form of the Navier–Stokes equations can be solved efficiently
y the BDIM. The first advantage of using the velocity–vorticity formula-
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ion is the computational decoupling of the kinematics and kinetics fluid
otion from pressure computation. Since the pressure does not appear

xplicitly in the field functions, the well-known difficulty with the com-
utation of the boundary pressure values in incompressible fluid motion
s avoided. Next, the boundary vorticity is computed directly, and not
hrough the use of some approximation formula. Lastly, the convection
ominated fluid motion suffers from numerical instability. In BDIM, the
roblem can be avoided by the use of Green’s functions of appropriate
inear differential operators [12] . However, the computational cost in
emory and CPU time is of the order O( N 

2 ) and, therefore, the method is
ery costly. Thus, in this work, we develop a fast Boundary-Domain Inte-
ral Method to reduce the computational cost and storage requirements.

The fast Boundary-Domain Integral Method is a term that we use for
he Boundary Domain Integral Methods that are faster than the conven-
ional BDIM. Since the BDIM was developed from the Boundary Element
ethod, the techniques employed to accelerate the method are very sim-

lar to the ones used with the Boundary Element Method. Several accel-
ration approaches were introduced. Kalman [13] considered using the
ingular Value Decomposition method (SVD) to approximate full ma-
rices with a low-rank matrix approximation. The SVD is an efficient
ompression technique, however its computational cost is very high.
omputational cost is lower with other approximation methods, such as
he Fast Multipole Method (FMM) [14] , wavelet transform [15,16] and
he Adaptive Cross Approximation (ACA) [17] . 

In this paper, we focus on the implementation of the Adaptive Cross
pproximation method in order to accelerate the Boundary-Domain In-

egral Method. The ACA algorithm is algebraic, and can be used with-
ut any information on the origin of matrix entries. Several improve-
ents have been proposed, the extended Adaptive Cross Approxima-

ion (ACA+) [18] and the Hybrid Cross Approximation (HCA) [19] .
he ACA+ has an optimized pivoting procedure, and the HCA uses a
egenerate kernel function in order to interpolate between the elements
n the matrix. However, the ACA+ and HCA are very complex approxi-
ation techniques. The simplicity of the Adaptive Cross Approximation

nables the algorithm to be used in different engineering applications.
or example, it has been used to solve the eddy current problem by
majic et al. [20] . Schröder et al. [21] used the Adaptive Cross Approx-
mation to solve the current distribution in an electromagnetic field. On
he other hand, Grytsenko and Galybin [22] used the Adaptive Cross
pproximation to solve a large number of cracks on a plate with the
ingular integral method, and Maerton [23] employed ACA to solve a
D elasticity problem. Kurz et al. [24] used the ACA for the acceleration
f the Boundary Element Method, and Van et al. [25] implemented the
CA to solve the electromagnetic field distribution on different appli-
ations. Recently, Campos et al. [26] implemented the Adaptive Cross
pproximation algorithm to solve potential problems with non-uniform
oundary conditions. The fast BEM is considered an alternative for the
EM methods used for magnetic field computations [27] . 

Hackbusch [28] introduced a recursive hierarchical decomposition
f the domain in order to write the boundary element matrix using such
 -structure. Each matrix part is tested using an admissibility condi-
ion, to assess which parts may be approximated using a low-rank ma-
rix approximation [29] . A more extended version of the -structure
as introduced by Börm [30] . He introduced the  

2 matrix formula-
ion, which further reduces the number of arithmetical operations in
he matrix-vector multiplication and the needed memory storing space.

Tibaut et al. [31] used the elliptic fundamental solution in combi-
ation with the Adaptive Cross Approximation, for the simulation of a
id-driven cavity test case and discovered poor compression character-
stics. In order to avoid the use of the the elliptic fundamental solution
e propose to use the false transient approach, that introduces an artifi-

ial time derivative into the steady-state formulation of the kinematics
quation and enables the use of the modified Helmholtz fundamental
olution. Due to the fact that the shape of the modified Helmholtz fun-
amental solution depends on the time step, we are able to choose a
hape which yields improved approximation characteristics. 
223 
The false transient approach has been used by other authors as well.
allinson and Davis [32] introduced the false transient approach for the

olution of a coupled elliptic equation. Guj and Stella [33] used the false
ransient in order to solve a lid-driven cavity test case with the finite
ifference scheme. The proposed procedure has shown great promise
mong other methods. Behnia et al. [34] used the same approach so
imulate a buoyancy-driven flow with thermocapillary convection. On
he other hand, Š kerget and Rek [35] , have observed the impact of the
odified Helmholtz fundamental solution on the solution of the fluid
ow in a lid-driven cavity at different Reynolds numbers. Recently, Ko-
utar et al. [36] used the same function in order to solve an unsteady
urbulent fluid flow with a hybrid turbulent model. 

The source of fluid movement in natural convection type problems
re the changes in fluid density, which are caused by temperature or
oncentration differences. Natural convection appears in nature as wind
r a sea current. It also appears in a variety of different engineering ap-
lications. In the past, natural convection was studied in different forms
or different problems. We have focused on the natural convection in a
losed cavity. Phillips [37] has performed a variety of simulations. He
olved the problem of numerical instability with an automatic method
hat determines the step size. Quere and Aliziary de Roquefort [38] per-
ormed a two-dimensional simulation of the natural convection in a
losed cavity. They solved the problem of numerical instability, with the
se of the Chebyshev polynomials and the second-order time-stepping
cheme. However, the time integration was only conditionally stable.
his resulted in a long computing time. Tric et al. [39] observed the
tructures of the three-dimensional natural convection from an accurate
umerical solution. They changed the Rayleigh number in the range of
0 3 to 10 7 and observed the influence of the mesh density on the solu-
ion of the flow. Markatos and Pericleous [40] observed the laminar and
urbulent natural convection in a two-dimensional closed cavity. Their
olver was built on the Finite Volume Method. They observed different
ow structures that appear at Rayleigh numbers 10 3 to 10 16 . 

The aim of this work is to develop an algorithm that integrates
he Adaptive Cross Approximation method with the hierarchical ma-
rix structure and the modified Helmholtz fundamental solution into
he Boundary-Domain Integral Method fluid flow solver. To accelerate
he solution of the kinematics equation, we present a modification of the
inematics equation from the elliptic partial differential to a parabolic
artial differential equation. The newly developed algorithm is assessed
n terms of accuracy and effectiveness. 

. Velocity–vorticity formulation 

In the present work, we consider an incompressible, Newtonian, and
aminar fluid flow. The velocity–vorticity formulation of the Navier–
tokes equations is used. Let 𝑣 be the velocity and let �⃗� = ∇⃗ × 𝑣 be the
orticity of the fluid flow. The continuity equation can be reformulated
nto the following form: 

 

2 𝑣 + ∇⃗ × �⃗� = 0 . (1)

q. (1) is the kinematics equation, and represents a connection between
he velocity and vorticity vector field. In order to accelerate the conver-
ence and the stability of the coupled velocity–vorticity field, the false
ransient approach is applied to Eq. (1) : 

 

2 𝑣 − 

1 
𝛼

𝜕 ⃗𝑣 

𝜕𝑡 
+ ∇⃗ × �⃗� = 0 , (2)

here 𝛼[ m 

2 

s 
] is a relaxation parameter. The false transient kinemat-

cs equation reverts back to the kinematics equation only at steady
tate ( t →∞), when the artificial time derivative term vanishes. When
 finite difference approximation is used for the time derivative, a
odified Helmholtz type equation emerges, for which the modified
elmholtz fundamental solution is known. By using a finite difference
pproximation of the time derivative Δ𝑡 = 𝑡 − 𝑡 𝐹−1 , where Δt is the time
tep, we can write the inhomogeneous modified Helmholtz kinematics
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Fig. 1. The shape of the modified Helmholtz fundamental solution is shown in the left panel at different values of the 𝜇 parameter and distances between the 
collocation and field points r . When 𝜇→0 the Helmholtz fundamental solution limits towards the elliptic fundamental solution. In the central panel the absolute 
value of matrix entries is shown. In the right panel we present the share of mesh nodes that is at a distance 𝜇r . The mesh density was 25 3 . 
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Fig. 2. Illustration of a mesh with 25 3 nodes is shown. Nodes are compressed 
towards the walls using a geometrical series. The domain and boundary clusters 
of elements are shown along with the definition of cluster size. 
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quation: 

∇ 

2 − 

1 
𝛼Δ𝑡 

)
𝑣 = 

𝑣 𝐹−1 
𝛼Δ𝑡 

− ∇⃗ × �⃗� . (3)

n our algorithm, we solve Eq. (3) for the boundary vorticity values and
or the domain velocity values. The fluid movement is governed by the
orticity transport equation written in the non-dimensional form: 

 ⃗𝑣 ⋅ ∇⃗ ) ⃗𝜔 = ( ⃗𝜔 ⋅ ∇⃗ ) ⃗𝑣 + 𝑃 𝑟 Δ�⃗� − 𝑃 𝑟 𝑅𝑎 ∇⃗ × 𝜃𝑔 , (4)

here 𝜃 = ( 𝑇 − 𝑇 ∞)∕( 𝑇 𝑤 − 𝑇 ∞) is the non-dimensional temperature, T w 
s the wall temperature and T ∞ the fluid temperature, 𝑅𝑎 = 

𝑔𝛽( 𝑇− 𝑇 ∞) 𝑙 3 

𝛾𝜈

s the Rayleigh number, g is gravitational acceleration, l is the charac-
eristic length scale, 𝜈 kinematic fluid viscosity, 𝛽 thermal expansion,
= 

𝑘 

𝜌𝑐 𝑝 
is the thermal diffusivity and 𝑃 𝑟 = 

𝜈

𝛾
is the Prandtl number. The

uid properties are constant. Steady state formulation of the equation is
iven, as we consider only steady flows in this paper. The vorticity trans-
ort equation is employed to solve the domain vorticity of the flow. In
rder to solve the temperature field function 𝜃, we consider the steady
nergy conservation equation: 

 ⃗𝑣 ⋅ ∇⃗ ) 𝜃 = 𝛾∇ 

2 𝜃. (5)

In the following, we present a fast implementation of the Boundary-
omain Integral Method for the solution of the nonlinear system of Eqs.

3) –(5) . A domain decomposition approach is used to solve the vorticity
ransport equation and the energy equation. However, Eq. (3) cannot be
olved with the domain decomposition method. This is because of the
iot–Sawart law, that states the whole domain must be considered in or-
er to keep the vorticity field divergence free [41] . Thus, we developed
n algorithm to accelerate the calculation of the unknown boundary
orticity by using the modified Helmholtz kinematics equation. 

.1. The modified Helmholtz fundamental solution 

Let u ∗ be the fundamental solution of the modified Helmholtz equa-
ion: 

∇ 

2 − 𝜇2 )𝑢 ∗ + 𝛿( ⃗𝜉, ⃗𝑟 ) = 0 , (6)

here 𝛿( ⃗𝑟 , ⃗𝜉) is the Kronecker delta, 𝑟 is the position vector of a point
n the domain and 𝜉 is the position of a source point. The modified
elmholtz fundamental solution is of the form, 𝑢 ∗ = 𝑒 − 𝜇 𝑟 ∕(4 𝜋𝑟 ) , where
 is the absolute distance between the domain point and the source
oint and 𝜇 is a constant. When the kinematics equation is consid-
red 𝜇 = 

1 √
𝛼 Δ𝑡 

and, thus, the time step Δt and the relaxation param-

ter 𝛼 determine the shape of the fundamental solution. In the case of
arge time steps, Δt →∞ the parameter 𝜇 = 

1 √
𝛼Δ𝑡 

→ 0 and the modified

elmholtz fundamental solution reverts into the elliptic fundamental
olution 𝑢 ∗ = 1∕(4 𝜋𝑟 ) . On the other hand, for short time steps, the mod-
fied Helmholtz fundamental solution becomes more local, diminishing
224 
uickly with the growing distance away from the source point. In Fig. 1
left panel) we illustrate the shape of fundamental solutions at different

values and compare it to the elliptic fundamental solution exposing
he local character of the modified Helmholtz fundamental solution at
arge 𝜇. In the right panel of Fig. 1 we present the share of matrix el-
ments, which are calculated by integration at the distance 𝜇r . We can
bserve that at large 𝜇 values most of the matrix elements are calculated
ith a fundamental solution, which is very small, and the resulting ma-

rix elements are also small (central panel in Fig. 1 ). Thus, we can expect
ore efficient approximation when using high 𝜇 values. 

.2. Integral formulation of the modified Helmholtz kinematics equation 

Let us consider a domain Ω with a position vector ⃗𝑟 ∈ IR 

3 . The bound-
ry of the domain is Γ = 𝜕Ω. The integral formulation of the modified
elmholtz kinematics equation (3) can be formed with the implemen-

ation of Green’s second theorem. The following integral form, without
he derivatives of the velocity and vorticity vector field, can be written: 

( ⃗𝜉) ⃗𝑣 ( ⃗𝜉) + ∫Γ 𝑣 ( ⃗𝑛 ⋅ ∇⃗ ) 𝑢 ∗ 𝑑Γ = ∫Γ 𝑣 × [( ⃗𝑛 × ∇⃗ ) 𝑢 ∗ ] 𝑑Γ

+ ∫ ( ⃗𝜔 × ∇⃗ 𝑢 ∗ ) 𝑑Ω + 𝜇2 ∫ 𝑢 ∗ 𝑣 𝐹−1 𝑑Ω, (7) 

Ω Ω
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here 𝑣 𝐹−1 is the velocity of the previous time step, u ∗ is the modi-
ed Helmholtz fundamental solution and the parameter 𝜇2 = 

1 
𝛼Δ𝑡 . Eq.

7) is the boundary-domain integral formulation of the domain-velocity
odified Helmholtz kinematics equation. In order to use the modified
elmholtz kinematics equation to obtain the boundary vorticity values,
e must rewrite Eq. (7) into a tangential form. This is done by multi-
lying the system with a normal vector of the source point 𝑛 ( ⃗𝜉) , as was
roposed by Š kerget et al. [41] . The following equation is obtained: 

( ⃗𝜉) ⃗𝑛 ( ⃗𝜉) × 𝑣 ( ⃗𝜉) + ⃗𝑛 ( ⃗𝜉) × ∫Γ 𝑣 ( ⃗𝑛 ⋅ ∇⃗ ) 𝑢 ∗ 𝑑Γ

= 𝑛 ( ⃗𝜉) × ∫Γ 𝑣 × [( ⃗𝑛 × ∇⃗ ) 𝑢 ∗ ] 𝑑Γ + ⃗𝑛 ( ⃗𝜉) 

×∫Ω( ⃗𝜔 × ∇⃗ 𝑢 ∗ ) 𝑑Ω + ⃗𝑛 ( ⃗𝜉) × 𝜇2 ∫Ω 𝑢 ∗ 𝑣 𝐹−1 𝑑Ω. (8) 

q. (8) is the boundary-domain integral formulation of the boundary-
orticity modified Helmholtz kinematics equation. 

Both, the domain-velocity and the boundary-vorticity modified
elmholtz kinematics equations are reformulated into discrete forms, in
rder to solve the domain velocity and boundary vorticity vector fields
f the fluid flow. 

. Solution algorithms 

During the simulation of coupled fluid flow and heat transfer prob-
em, we solve the boundary-vorticity modified Helmholtz kinematics
quation (7) , the domain-velocity modified kinematics equation (8) , the
orticity equation (4) and the energy equation (5) . The individual algo-
ithms are explained in detail below. 

.1. Discretization of the modified Helmholtz kinematics equation 

In order to write the discrete form of the boundary-vorticity and
omain-velocity modified Helmholtz kinematics equation, we divide the
omain into domain elements Ω = 

∑𝐷 
𝑖 Ω𝑖 and the boundary into bound-

ry elements Γ = 

∑𝐵 
𝑖 Γ𝑖 . The domain elements are hexahedra with 27

odes for quadratic interpolation of function. The boundary elements
re quadrilaterals with 9 function nodes for quadratic interpolation of
unction. Let the boundary and domain shape functions be denoted by
 m 

and 𝜙m 

. When the collocation point is placed in node k , the following
ntegrals must be calculated 

 𝑘𝑙 = ∫Γ𝑏 𝜑 𝑚 ( ⃗𝑛 ⋅ ∇⃗ ) 𝑢 ∗ 𝑑Γ𝑏 , ℎ⃗ 𝑡 
𝑘𝑙 
= ∫Γ𝑏 𝜑 𝑚 ( ⃗𝑛 × ∇⃗ ) 𝑢 ∗ 𝑑Γ𝑏 , 

𝑑 𝑘𝑙 = ∫Ω𝑑 

𝜙𝑙 ⃗∇ 𝑢 ∗ 𝑑Ω𝐷 , 𝑏 𝑘𝑙 = 𝜇2 ∫Ω𝑑 

𝜙𝑚 𝑢 
∗ 𝑑Ω𝑑 (9) 

he matrix entries are stored in row k and column l , which is the node
umber of 𝑚 th node in 𝑏 th element. We denote the matrices compiled
ith entries from Eq. (9) as [ H ], [ ⃗𝐻 

𝑡 ] , [ ⃗𝐷 ] Γ, [ ⃗𝐷 ] Ω∕Γ and [ B ]. Let the com-
utation grid include n boundary nodes and m interior domain nodes.
he matrices have the following number of rows and columns: Matrices
 H ], [ ⃗𝐻 

𝑡 ] , [ ⃗𝐷 ] Γ have n × n rows and columns, [ ⃗𝐷 ] Ω∕Γ have n ×m and [ B ]
as 𝑛 × ( 𝑛 + 𝑚 ) . 

.2. Solution of the boundary-vorticity modified Helmholtz kinematics 

quation 

The first stage of the algorithm is to solve for the vorticity at the
oundary. In the following, we propose a fast BDIM for the boundary-
orticity modified Helmholtz equation. In order to obtain the boundary
orticity vector field from Eq. (8) , we have to separate the unknown
oundary vorticity values. The vorticity vector has to be written as a sum
f boundary and domain vorticity as 

{
𝜔 𝑖 

}
= 

{
𝜔 𝑖 

}
Γ + 

{
𝜔 𝑖 

}
Ω∕Γ. From this,

e can split the integral formulation ⃗𝑛 ( ⃗𝜉) × ∫ ( ⃗𝜔 × ∇⃗ 𝑢 ∗ ) 𝑑Ω in Eq. (8) into
Ω

225 
oundary and domain integral parts. Thus, we are able to form sys-
ems of linear equations for the boundary vorticity components { 𝜔 i } Γ.
 non-singular system is obtained when the normal derivative operator

s formed as ([ 𝑛 𝑥 ][ 𝐷 𝑥 ] Γ + [ 𝑛 𝑦 ][ 𝐷 𝑦 ] Γ + [ 𝑛 𝑧 ][ 𝐷 𝑧 ] Γ) . Considering this and the
iscretization procedure, the following three systems of linear equations
re written for the unknown boundary vorticity components: 

[ 𝑛 𝑥 ][ 𝐷 𝑥 ] + [ 𝑛 𝑦 ][ 𝐷 𝑦 ] + [ 𝑛 𝑧 ][ 𝐷 𝑧 ]) 
{
𝜔 𝑥 

}
Γ

= ([ 𝑛 𝑦 ][ 𝐻 

𝑡 
𝑦 ] + [ 𝑛 𝑧 ][ 𝐻 

𝑡 
𝑧 ]) 

{
𝑣 𝑥 
}
Γ + ([ 𝑛 𝑦 ][ 𝐻] − [ 𝑛 𝑧 ][ 𝐻 

𝑡 
𝑥 ]) 

{
𝑣 𝑧 
}
Γ

−([ 𝑛 𝑥 ][ 𝐻] + [ 𝑛 𝑦 ][ 𝐻 

𝑡 
𝑥 ]) 

{
𝑣 𝑦 
}
Γ + [ 𝑛 𝑧 ][ 𝐷 𝑥 ] 

{
𝜔 𝑧 

}
Γ + [ 𝑛 𝑦 ][ 𝐷 𝑥 ] 

{
𝜔 𝑦 

}
Γ

+[ 𝑛 𝑥 ][ 𝐷 𝑥 ] 
{
𝜔 𝑥 

}
Γ − ([ 𝑛 𝑦 ][ 𝐷 𝑦 ] Ω∕Γ + [ 𝑛 𝑧 ][ 𝐷 𝑧 ] Ω∕Γ) 

{
𝜔 𝑥 

}
Ω∕Γ

+[ 𝑛 𝑦 ][ 𝐷 𝑥 ] Ω∕Γ
{
𝜔 𝑦 

}
Ω∕Γ + [ 𝑛 𝑧 ][ 𝐷 𝑥 ] Ω∕Γ

{
𝜔 𝑧 

}
Ω∕Γ − [ 𝑛 𝑦 ][ 𝐵] 

{
𝑣 𝐹−1 
𝑧 

}
Ω

+ [ 𝑛 𝑧 ][ 𝐵] 
{ 

𝑣 𝐹−1 
𝑦 

} 

Ω
, (10) 

[ 𝑛 𝑥 ][ 𝐷 𝑥 ] + [ 𝑛 𝑦 ][ 𝐷 𝑦 ] + [ 𝑛 𝑧 ][ 𝐷 𝑧 ]) 
{
𝜔 𝑦 

}
Γ

= ([ 𝑛 𝑧 ][ 𝐻 

𝑡 
𝑧 ] + [ 𝑛 𝑥 ][ 𝐻 

𝑡 
𝑥 ]) 

{
𝑣 𝑦 
}
Γ + ([ 𝑛 𝑥 ][ 𝐻] − [ 𝑛 𝑥 ][ 𝐻 

𝑡 
𝑦 ]) 

{
𝑣 𝑥 
}
Γ

−([ 𝑛 𝑥 ][ 𝐻] + [ 𝑛 𝑧 ][ 𝐻 

𝑡 
𝑦 ]) 

{
𝑣 𝑧 
}
Γ + [ 𝑛 𝑧 ][ 𝐷 𝑦 ] 

{
𝜔 𝑧 

}
Γ + [ 𝑛 𝑥 ][ 𝐷 𝑦 ] 

{
𝜔 𝑥 

}
Γ

+[ 𝑛 𝑦 ][ 𝐷 𝑦 ] 
{
𝜔 𝑦 

}
Γ − ([ 𝑛 𝑧 ][ 𝐷 𝑧 ] Ω∕Γ + [ 𝑛 𝑥 ][ 𝐷 𝑥 ] Ω∕Γ) 

{
𝜔 𝑦 

}
Ω∕Γ

+[ 𝑛 𝑧 ][ 𝐷 𝑦 ] Ω∕Γ
{
𝜔 𝑧 

}
Ω∕Γ + [ 𝑛 𝑥 ][ 𝐷 𝑦 ] Ω∕Γ

{
𝜔 𝑥 

}
Ω∕Γ − [ 𝑛 𝑧 ][ 𝐵] 

{
𝑣 𝐹−1 
𝑥 

}
Ω

+ [ 𝑛 𝑥 ][ 𝐵] 
{
𝑣 𝐹−1 
𝑧 

}
Ω, (11) 

[ 𝑛 𝑥 ][ 𝐷 𝑥 ] + [ 𝑛 𝑦 ][ 𝐷 𝑦 ] + [ 𝑛 𝑧 ][ 𝐷 𝑧 ]) 
{
𝜔 𝑧 

}
Γ

= ([ 𝑛 𝑥 ][ 𝐻 

𝑡 
𝑥 ] + [ 𝑛 𝑦 ][ 𝐻 

𝑡 
𝑦 ]) 

{
𝑣 𝑧 
}
Γ + ([ 𝑛 𝑥 ][ 𝐻] − [ 𝑛 𝑦 ][ 𝐻 

𝑡 
𝑧 ]) 

{
𝑣 𝑦 
}
Γ

−([ 𝑛 𝑦 ][ 𝐻] + [ 𝑛 𝑥 ][ 𝐻 

𝑡 
𝑧 ]) 

{
𝑣 𝑥 
}
Γ + [ 𝑛 𝑦 ][ 𝐷 𝑧 ] 

{
𝜔 𝑧 

}
Γ + [ 𝑛 𝑥 ][ 𝐷 𝑧 ] 

{
𝜔 𝑥 

}
Γ

+[ 𝑛 𝑧 ][ 𝐷 𝑧 ] 
{
𝜔 𝑧 

}
Γ − ([ 𝑛 𝑥 ][ 𝐷 𝑥 ] Ω∕Γ + [ 𝑛 𝑦 ][ 𝐷 𝑦 ] Ω∕Γ) 

{
𝜔 𝑧 

}
Ω∕Γ

+[ 𝑛 𝑥 ][ 𝐷 𝑧 ] Ω∕Γ
{
𝜔 𝑥 

}
Ω∕Γ + [ 𝑛 𝑦 ][ 𝐷 𝑧 ] Ω∕Γ

{
𝜔 𝑦 

}
Ω∕Γ − [ 𝑛 𝑥 ][ 𝐵] 

{ 

𝑣 𝐹−1 
𝑦 

} 

Ω

+ [ 𝑛 𝑦 ][ 𝐵] 
{
𝑣 𝐹−1 
𝑥 

}
Ω, (12) 

here the symbol { v i } Γ is the boundary velocity vector field. Matrices
 n x ], [ n y ], [ n z ] are diagonal matrices, that include the components of
he normal vector 𝑛 = { 𝑛 𝑥 , 𝑛 𝑦 , 𝑛 𝑧 } . 

Since BDIM matrices are fully populated, we implemented the
CA algorithm with the -structure on the domain matrices [ D x ] Ω/ Γ,
 D y ] Ω/ Γ, [ D z ] Ω/ Γ and [ B ] in order to reduce the storage requirements
nd CPU time needed for matrix-vector multiplications. The systems are
olved with the LU decomposition with a diagonal preconditioning. 

.2.1. Fast ACA matrix-vector multiplication 

Let us consider one of the integral matrices [ D i ] Ω/ Γ and denote it
s D . Its size is n ×m and its entries are real numbers, D ∈ IR 

n ×m . In
rder to accelerate the algorithm, we implemented the Adaptive Cross
pproximation and a -structure. Firstly, the -structure is built, and
ach part of the structure is tested for admissibility. Admissible parts are
hen approximated using the Adaptive Cross Approximation algorithm.
his procedure approximates the matrix D | n ×m 

by splitting it into matrix
arts �̂� |�̂� ×�̂� and approximating admissible parts via the low rank matrix
pproximation �̃� |𝑟 ( ̂𝑛 + ̂𝑚 ) . 
.2.2. Construction of the -matrix structure 

The computational domain is meshed with hexahedral elements. In
rder to construct the -structure we have to build two cluster trees.
e will denote the cluster tree that is built from boundary elements as

 and the domain cluster tree that is built from the domain elements as
 . The root node of cluster trees is the whole domain and/or boundary.
t the leaf level each mesh element represents a leaf node. The trees
re formed using a bottom-up approach [31] combining neighbouring
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Fig. 3. Representation of the boundary-domain -matrix 
structure. White blocks are admissible parts, red blocks are 
inadmissible parts. Mesh with 25 3 nodes was used with 𝜂 = 2 
(top panel) and 𝜂 = 5 (bottom panel). 

Table 1 

The share of inadmissible matrix 
blocks 1 − 𝑁 𝑎𝑑𝑚 

𝑁 
. A cubic geometry 

was considered, meshed with elements 
concentrated at the walls. See Fig. 2 
for an illustration of the mesh design. 

𝜂 17 3 25 3 33 3 41 3 

1 0.95 0.45 0.34 0.21 
2 0.53 0.25 0.17 0.10 
3 0.38 0.17 0.13 0.069 
4 0.31 0.12 0.097 0.054 
5 0.30 0.11 0.085 0.043 
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lement clusters together to form larger clusters in the next level. An
xample of a boundary and a domain cluster is shown in Fig. 2 . 

We combine the two cluster trees to build a boundary-domain block
luster tree I × J . Each cluster is then tested for admissibility using the
ollowing admissibility condition: 

𝑖𝑛 
{
𝑑 𝑖𝑚 ( 𝐼 𝑖 ) , 𝑑 𝑖𝑚 ( 𝐽 𝑗 ) 

} ≤ 𝜂 𝑑𝑖𝑠𝑡 ( 𝐼 𝑖 , 𝐽 𝑖 ) , (13)

here dim ( I i ) and dim ( J j ) are the cluster sizes defined in Fig. 2 . The dis-
ance dist ( I i , J j ) is the minimal distance between nodes in the boundary
nd domain clusters. The admissibility parameter 𝜂 is defined by the
ser. The admissibility condition (13) determines the admissible and
nadmissible clusters. 

When all clusters in the boundary-domain cluster tree are tested for
dmissibility, the -matrix is formed. In Fig. 3 , we present an example
f the -matrix structure. The inadmissible matrix parts are red blocks,
nd the admissible matrix parts are white blocks. Comparison of the
tructure at 𝜂 = 2 and 𝜂 = 5 reveals that the number of inadmissible ma-
rix parts decreases at higher value of 𝜂. 

In Table 1 , we present the effect of the admissibility parameter 𝜂
nd mesh density on the number of matrix entries in admissible matrix
arts. In the table, 𝑁 = 𝑛 × 𝑚 is the number of entries in the matrix D ,
nd N adm 

is the number of entries which are in admissible parts. The
atio 1 − 

𝑁 𝑎𝑑𝑚 

𝑁 

represents the share of inadmissible matrix blocks and, as
uch, the limit compression ratio for the approximation. 

The geometry, the mesh density and the parameter 𝜂 have a high
nfluence on the construction of the -matrix and the number of ad-
issible matrix parts. After the -matrix is constructed a low rank-

pproximation technique can be employed. 
226 
.2.3. Adaptive Cross Approximation (ACA) 

The Adaptive Cross Approximation is a method that approximates
he matrix parts �̂� |�̂� ×�̂� that meet the admissibility condition, using a
ow rank matrix approximation (RK-matrix) [42] . Let the rank of the
atrix �̂� : be k , and let us denote the approximation rank as r . The ap-
roximation rank r is the number of rows in matrix A and the number
f columns in matrix B 

T . The Adaptive Cross Approximation algorithm
s written bellow: 

• State �̂� 

0 = �̂� |�̂� ×�̂� 
• For 𝑟 = 0 , 1 , 2 , 3 , … , 𝑘 

1. ( 𝑖 ∗ , 𝑗 ∗ ) 𝑟 = 𝐴𝑟𝑔𝑀𝑎𝑥 |( ̂𝑅 

𝑟 ) |
2. 𝛾𝑟 +1 = ( ̂𝑅 

𝑟 
𝑖 ∗ ,𝑗 ∗ ) 

−1 

3. 𝑎 𝑟 +1 = 𝛾𝑟 +1 �̂� 

𝑟 
𝑖,𝑗 ∗ , 𝑏 𝑟 +1 = ( ̂𝑅 

𝑟 
𝑖 ∗ ,𝑗 ) 

𝑇 

4. �̂� 

𝑟 +1 = �̂� 

𝑟 − 𝑎 𝑟 +1 𝑏 𝑟 +1 
• If ( ‖𝑎 𝑇 

𝑟 +1 ‖𝐹 ‖𝑏 𝑇 𝑟 +1 ‖𝐹 ≤ 𝜖‖𝑆 𝑟 +1 ‖𝐹 ∨ 𝑟 = 𝑘 ) Stop 
• EndFor 

At the start of the algorithm, we define the residual matrix. Next, we
tart a loop that performs the approximation. Firstly, the largest element
n the matrix �̂� 

𝑢 is found. Next, the inverse of the largest element �̂� 

𝑢 
𝑖 ∗ ,𝑗 ∗ is

alculated. In the third step the vectors 𝑎 𝑢 +1 and 𝑏 𝑢 +1 are defined. These
wo vectors build a cross around the element �̂� 

𝑢 
𝑖 ∗ ,𝑗 ∗ . Finally, we calculate

 new residual matrix �̂� 

𝑢 +1 . The algorithm ends when the stopping crite-
ia is satisfied, or if the maximal rank is reached. We use the Frobenius
orm ‖ · ‖F and a user prescribed stopping parameter 𝜖. The stopping
ondition was implemented as proposed by Bebendorf and Grzibovski
43] : 

𝑆 𝑟 +1 
‖‖‖𝐹 = ‖𝑆 𝑟 ‖𝐹 + 

𝑟 ∑
𝑗=1 

𝑎 𝑇 
𝑟 +1 𝑎 𝑟 𝑏 𝑟 𝑏 

𝑇 
𝑟 +1 + 

‖‖‖𝑎 𝑇 𝑟 +1 ‖‖‖𝐹 ‖‖‖𝑏 𝑇 𝑟 +1 ‖‖‖𝐹 . (14)

ased on the approximation rank r we can calculate the compression
atio 

 = 

∑
𝑖 �̂� 𝑖 ⋅ �̂� 𝑖 + 

∑
𝑗 𝑟 𝑗 ( ̂𝑛 𝑗 + �̂� 𝑗 ) 

𝑛 ⋅ 𝑚 

, (15)

hich measures the memory usage of the approximated matrix versus
he original matrix. It is the sum of the matrix elements in admissible ma-
rix parts �̃� |𝑟 ( ̂𝑛 + ̂𝑚 ) plus the elements in inadmissible matrix parts �̂� |�̂� ×�̂� ,
nd the number of elements in the original matrix D | n ×m 

. 
The ACA algorithm reformulates the full matrix formulation into a

ow rank RK -matrix approximation. In order to store the RK -matrix into
emory and perform matrix-vector multiplications, we need 𝑂( 𝑟 ( ̂𝑛 + �̂� ))

omputational resources, [44] . Furthermore, the complexity of the
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Fig. 4. The boundary conditions for the natural convection in a closed cavity 
test case. A 𝑅𝑎 = 10 5 temperature field is shown on the 𝑥 − 𝑧 cross-section. The 
profile export locations are shown on the 𝑦 = 0 . 5 plane. 
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DIM is reduced from O( N 

2 ) to O( N log N ), with the ACA algorithm
nd the -structure. 

.3. Solution of the domain-velocity modified Helmholtz kinematics 

quation 

The second stage of the flow simulation algorithm is the solution of
he domain-velocity vector field by solving equation (7) . We employed
he subdomain boundary-domain method, that was proposed by Ravnik
t al. [9] . 

The subdomain Boundary-Domain Integral Method is based on do-
ain decomposition. It splits the domain into smaller domain parts and

pplies BDIM on each part. Compatibility boundary conditions are pre-
cribed between subdomains. In this paper, we used each mesh element
s a subdomain. The resulting integral matrices are sparse and have a
nite-element type structure. The following systems of linear equations
re produced: 

 𝐻] 
{
𝑣 𝑥 
}
= [ 𝐻 

𝑡 
𝑧 ] 
{
𝑣 𝑦 
}
− [ 𝐻 

𝑡 
𝑦 ] 
{
𝑣 𝑧 
}
+ [ 𝐷 𝑧 ] 

{
𝜔 𝑦 

}
− [ 𝐷 𝑦 ] 

{
𝜔 𝑧 

}
+ [ 𝐵] 

{
𝑣 𝐹−1 
𝑥 

}
, 

[ 𝐻] 
{
𝑣 𝑦 
}
= [ 𝐻 

𝑡 
𝑥 ] 
{
𝑣 𝑧 
}
− [ 𝐻 

𝑡 
𝑧 ] 
{
𝑣 𝑥 
}
+ [ 𝐷 𝑥 ] 

{
𝜔 𝑧 

}
− [ 𝐷 𝑧 ] 

{
𝜔 𝑥 

}
+ [ 𝐵] 

{ 

𝑣 𝐹−1 
𝑦 

} 

, 

[ 𝐻] 
{
𝑣 𝑧 
}
= [ 𝐻 

𝑡 
𝑦 ] 
{
𝑣 𝑥 
}
− [ 𝐻 

𝑡 
𝑥 ] 
{
𝑣 𝑦 
}
+ [ 𝐷 𝑦 ] 

{
𝜔 𝑥 

}
− [ 𝐷 𝑥 ] 

{
𝜔 𝑦 

}
+ [ 𝐵] 

{
𝑣 𝐹−1 
𝑧 

}
. 

(16) 

he source point is placed into each node in each subdomain. This means
hat the system of Eq. (16) is over-determined. A least squares solver is
sed to find a solution [45] . 

.4. Solution of vorticity and energy transport equations 

The final two steps in the flow solution algorithm is the solution of
qs. (4) and (5) for the unknown vorticity domain field and the tem-
erature field. Subdomain BDIM is used, as proposed by Ravnik et al.
9] . 

.5. Flow solution algorithm 

Due to the nonlinear nature of the governing equations of flow and
eat transfer, we propose an iterative algorithm with under-relaxation.
e propose to implement a nonlinear loop and, within each nonlinear

tep, a false transient loop to resolve the false time. The solution proce-
ure is presented in the following algorithm: 

• While nonlinear loop, ||𝑣 − ⃗𝑣 ′|| > 𝜅 ∨ ||�⃗� − �⃗� 

′|| > 𝜅 ∨ ||𝑇 −
𝑇 ′|| > 𝜅

1. Solve Eq. (12) for the boundary vorticity vector using ACA accel-
erated BDIM 

• While false transient loop, ||𝑣 − ⃗𝑣 𝐹−1 || > 𝜅

(a) Solve Eq. (16) for the domain velocity vector field using sub-
domain BDIM 

• EndWhile 
2. Solve Eq. (4) for the domain vorticity vector field using subdomain
BDIM 

3. Solve Eq. (5) for the temperature field using subdomain BDIM 

4. Apply under-relaxation 
• EndWhile 

Firstly, the algorithm solves the tangential formulation of the modi-
ed Helmholtz kinematics equation to find the boundary vorticity val-
es. These serve as boundary conditions for the vorticity transport equa-
ion. The solution of Eq. (12) could be placed inside or outside of the
alse transient loop, due to the fact it is always inside of the nonlinear
oop. When it is placed outside, even though at the start of the nonlinear
oop the values of boundary vorticity are inaccurate, the overall conver-
ence properties are better. Next, the modified Helmholtz kinematics
quation is solved in a false transient loop to calculate the domain ve-
ocity values. When the difference between the velocity vector field of
227 
he previous time step 𝑣 𝐹 and the velocity vector field of the current
ime step 𝑣 converges the solution of the domain velocity field is equal
o the domain velocity vector field of the kinematics equation, for the
ame boundary vorticity. Secondly, the vorticity transport equation is
olved for domain vorticity. In the third step, the velocity and vorticity
ector fields are used to solve the energy equation for unknown tem-
erature values. Lastly under-relaxation of the solved vector and scalar
elds is applied to stabilize the numerical calculation. The value of the
nder-relaxation parameter ranged between 0.5 to 0.01 in the simula-
ions performed in this study. The temperature and the velocity bound-
ry conditions are known, while boundary vorticity values are obtained
s a part of the algorithm. The false transient loop and the nonlinear
oop run until convergence is achieved. The difference between subse-
uent iterations, expressed as RMS norm, is compared with convergence
riterion 𝜅 = 10 −6 . 

. Numerical example 

Natural convection occurs due to differences in fluid temperature,
hich results in density differences and buoyancy forces. A standard
atural convection benchmark test case is the flow in a closed differ-
ntially heated cavity. This case has already been studied by different
uthors, so results for comparison are available [37–39] . 

The simulation is performed in a three-dimensional cube. In Fig. 4 ,
e present an illustration of the geometry, boundary conditions and
rofile export locations. The no-slip velocity boundary conditions are
mployed on all walls. Two opposite walls have constant hot and cold
emperatures prescribed, while all other walls are adiabatic. The vor-
icity boundary conditions are unknown, they are calculated by solv-
ng the Adaptive Cross Approximation accelerated modified Helmholtz
inematics equation as a part of the solution algorithm. 

All numerical simulations were performed on an Intel Xeon 64-bit
rocessor using 64 GB of memory. We simulated the fluid flow and
eat transfer at different Rayleigh numbers ( Ra ) in order to observe
he influence of the ACA approximation on the solution accuracy. The
ayleigh number was set to 10 3 , 10 4 and 10 5 . A Prandtl number value
f 𝑃 𝑟 = 0 . 71 was used, which represents air at 20 ◦C . 

In order to facilitate the comparison between simulations with and
ithout matrix approximation, we based the choice of the fine mesh
ensity on the availability of the computer storage space to store full
ncompressed matrices. The mesh structure was built from hexagonal
on-uniform mesh elements. In order to have a well-resolved boundary
ayer, the size of elements increases with the distance from the domain
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Fig. 5. Compression ratio 𝜑 dependence on the mesh density (left), on the parameter 𝜂 (centre) and on the stopping condition 𝜖 (right). 
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alls using a geometrical progression. Four different mesh resolutions
ere employed to perform the simulations. The meshes had 17 3 , 25 3 ,
3 3 , and 41 3 nodes. The ratio between the longest and shortest element
ize was 1:3 in mesh 17 3 and 1:6.5 in others. 

In order to determine the maximal approximation rank r , and its re-
ationship to the flow solution accuracy, we used Eq. (15) with different
topping parameters 𝜖. The stopping parameter 𝜖 was varied from 10 −2 

o 10 −20 . 
The Adaptive Cross Approximation, in combination with the -

atrix, was implemented on matrices [ D x ] Ω/ Γ, [ D y ] Ω/ Γ, [ D z ] Ω/ Γ and [ B ].
n order to measure the influence of the approximation on the results
nd find the dependence on the flow structure and mesh density, we
sed an RMS norm to measure the difference in vorticity, velocity and
emperature fields: 

𝑅𝑀𝑆 𝜔 = 

( ∑
𝑗= 𝑥,𝑦,𝑧 

∑
𝑖 ( 𝜔 𝑗𝑖 − 𝜔 𝐴𝑗𝑖 ) 2 ∑

𝑗= 𝑥,𝑦,𝑧 
∑

𝑖 ( 𝜔 𝐴𝑗𝑖 ) 2 

) 

1 
2 

, 

𝑀𝑆 𝑉 = 

( ∑
𝑗= 𝑥,𝑦,𝑧 

∑
𝑖 ( 𝑣 𝑗𝑖 − 𝑣 𝐴𝑗𝑖 ) 2 ∑

𝑗= 𝑥,𝑦,𝑧 
∑

𝑖 ( 𝑣 𝐴𝑗𝑖 ) 2 

) 

1 
2 

, 𝑅𝑀𝑆 𝑇 = 

( ∑
𝑖 ( 𝑇 𝑖 − 𝑇 𝐴𝑖 ) 2 ∑

𝑖 ( 𝑇 𝐴𝑖 ) 2 

) 

1 
2 

, 

(17)

here 𝜔 ji is the 𝑗 th component of vorticity in the 𝑖 th node calculated
ithout an approximation, and the 𝜔 Aji is its approximated counterpart.
he same notation is used for the velocity and temperature fields. 

.1. Results and discussion 

In this subsection, we examine the properties of the newly presented
lgorithm by performing simulations of the natural convection phe-
omenon in a closed cavity. 

The choice of the ACA stopping parameter 𝜖, the fundamental solu-
ion parameter 𝜇, the computational mesh density and the admissibil-
ty criterion 𝜂 determine the compression ratio, the amount of memory
sed, the CPU time needed to perform matrix operations and the accu-
acy of the final solution. The ultimate goal is to provide guidelines for
he choice of parameter values at which the accuracy of the final solu-
ion is unaffected by the introduction of the fast method and at which
he compression ratio the highest possible. 

In Fig. 5 , we present the compression ratio 𝜑 obtained for different
omputational grids, admissibility parameters 𝜂, and ACA stopping pa-
ameters 𝜖. We can observe that the compression of the matrices depends
n the mesh resolution, where denser meshes enable higher compression
atios. The parameter 𝜇 also has an effect on the compression of the ma-
rices. Choosing a higher value of the parameter 𝜇 leads to an increase
f the compression ratio. We have observed that the compression of the
atrices [ D x ] Ω/ Γ, [ D y ] Ω/ Γ, [ D z ] Ω/ Γ is very similar, and that the matrix

 B ] was compressed even more. This happened due to the fact that the
ntegral entries of the matrices [ D x ] Ω/ Γ, [ D y ] Ω/ Γ, [ D z ] Ω/ Γ include the
radient of the fundamental solution for its kernel, while the entries of
228 
he matrix [ B ] are obtained by using the fundamental solution as the
ernel. In consequence, the ACA algorithm approximated the matrices
ifferently. The ACA stopping parameter 𝜖 is used to set the compression
atio, where large values lead to high compression ratio. The compres-
ion ratio 𝜑 also depends on the -matrix structure. Higher values of 𝜂
ead to stronger compression. 

The compression ratio is linked with the memory consumption. In
ig. 6 we present the amount of memory that has to be assigned in
rder to store all of the matrices arising from the discretization of the
inematics equation. In the left panel we present how the choice of the 𝜇
arameter affects the memory consumption. We observe, that at a given
CA stopping condition 𝜖, using high values of 𝜇 leads to lower mem-
ry usage. In the right panel, we compare memory usage at different
esh densities. We observe that for all choices of 𝜇 and 𝜖 the growth of
emory usage is approximately linear, while the growth of the original
DIM method is quadratic. 

In Fig. 1 , we illustrate the shape of the fundamental solution at dif-
erent 𝜇 values, exposing the more local character of the fundamen-
al solution at high 𝜇 values. This observation is confirmed by looking
 Fig. 5 ) at the compression ratio 𝜑 of the matrices, which is higher at
= 50 than at 𝜇 = 20 . In consequence the memory consumption is lower

t high 𝜇 values ( Fig. 6 ). Thus, the shape of the fundamental solution
as an influence on the compression ratio of the matrices. 

Next, we study the influence of the parameter 𝜂 by simulating the
roblem at 𝑅𝑎 = 10 5 and keeping 𝜇 = 20 ( Fig. 7 ). We present norms
MS 𝜔 , RMS T and RMS v versus compression ratio obtained with differ-
nt choices of the 𝜖 parameter. We observe that, for low compression ra-
io, the result accuracy is independent of the admissibility parameter 𝜂.
he error introduced by the ACA approximation is smaller than the dis-
retization and linear solver errors. We observe a sharp decrease of solu-
ion accuracy at a critical compression ratio, when the error introduced
y the matrix approximation begins to dominate. This critical compres-
ion ratio does depend on the admissibility parameter; the higher the
dmissibility parameter, the lower the critical compression ratio. Since
t the critical compression ratio, we have the best compression ratio and
till no influence of the matrix approximation on the solution result, we
enote this compression ratio as the optimal compression ratio. When
imulations are run at the optimal compression ratio, we will achieve
aximal possible compression at negligible influence on the results. 

In Fig. 8 , we present the dependence of the RMS 𝜔 on the Rayleigh
umber and the type of fundamental solution used. We observe that,
hen elliptic fundamental solution is used, the optimal compression ra-

io does not seem to depend on the Rayleigh number value (non-linear
ature of the problem). On the other hand, when modified Helmholtz
undamental solution is used, dependence on Rayleigh number value is
vident, especially at high 𝜇 values. 

In Fig. 9 , we present the total number of iterations in the nonlinear
nd in the false transient loops at different compression ratios. We ob-
erve that the total number of iterations depends on the Rayleigh num-
er, the compression ratio 𝜑 and the shape of the fundamental solutions.
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Fig. 6. Memory usage of all of the kinematics matrices. Influence 
of the 𝜇 parameter is examined in the left panel, dependence on 
the mesh density in the right panel. BDIM denotes the original 
algorithm, which does not use fast compression techniques. 

Fig. 7. Norms RMS 𝜔 (left), RMS T (center) and RMS v (right) versus compression ratio obtained with different choices of the 𝜖 parameter. Three different values of 
admissibility parameter are considered. The mesh density was 25 3 , 𝑅𝑎 = 10 5 . 

Fig. 8. Norms RMS 𝜔 versus compression ratio obtained using the elliptic fundamental solution (left), modified Helmholtz fundamental solution 𝜇 = 20 (center) and 
𝜇 = 50 (right) at different Rayleigh numbers. Mesh density was 25 3 . 

Fig. 9. Number of iterations needed to obtain a converged solution of the flow field for different compression ratios, 𝜇 = 20 . Rayleigh number values 𝑅𝑎 = 10 3 (left 
panel), 𝑅𝑎 = 10 4 (centre panel) and 𝑅𝑎 = 10 5 (right panel). 

229 
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Fig. 10. We examine how the type of fundamental solution and 
the 𝜇 value effect the accuracy of the solution expressed using 
RMS 𝜔 norm. Rayleigh number 10 3 is shown in the left panel and 
𝑅𝑎 = 10 5 in the right panel. The mesh density was 25 3 . 

Fig. 11. Dependence of the mesh density and parameter 𝜇 on the 
compression ratio 𝜑 of the matrices. The Rayleigh number for all 
cases was 10 5 and the mesh density was 25 3 . 
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Table 2 

Influence of 𝜇 and 𝜖 on the average Nusselt number 𝑁𝑢 at differ- 
ent Rayleigh number values and comparison with the benchmark 
results of Tric et al. [39] and Lo et al. [46] . BDIM denotes the 
solution obtained without compression ( 𝜖 = 0 ). Simulations were 
performed with 𝜂 = 5 . 

Mesh density 𝜇 BDIM 𝜖 = 10 −10 𝜖 = 10 −6 𝜖 = 10 −2 

𝑅𝑎 = 10 3 

17 3 20 1.0710 1.0708 1.0708 1.0709 
25 3 20 1.0710 1.0710 1.0705 1.0694 
41 3 20 1.0710 1.0710 1.0695 1.0666 
17 3 50 1.0709 1.0709 1.0710 1.0710 
25 3 50 1.0709 1.0709 1.0708 1.0707 
Tric et al. [39] 1.0700 
Lo et al. [46] 1.0710 

𝑅𝑎 = 10 4 

17 3 20 2.0574 2.0574 2.0569 2.0575 
25 3 20 2.0571 2.0571 2.0552 2.0501 
41 3 20 2.0572 2.0573 2.0500 2.0457 
17 3 50 2.0592 2.0592 2.0591 2.0591 
25 3 50 2.0544 2.0544 2.0530 2.0521 
Tric et al. [39] 2.0542 
Lo et al. [46] 2.0537 

𝑅𝑎 = 10 5 

17 3 20 4.3499 4.3499 4.3485 4.5077 
25 3 20 4.3600 4.3600 4.3561 4.3411 
41 3 20 4.3706 4.3705 4.3584 4.3888 
17 3 50 4.3671 4.3672 4.3671 4.3671 
25 3 50 4.3362 4.3361 4.3295 4.3280 
Tric et al. [39] 4.3375 
Lo et al. [46] 4.3329 

d  

s  

T  

p
 

t  

i  
ven though the increase of the Rayleigh number requires an increased
umber of iterations to resolve the nonlinear nature of the flow, the er-
or introduced into the flow by the ACA matrix approximation does not
ropagate to the increase the number of iterations. When the ACA stop-
ing parameter 𝜖 is set below the optimal compression ratio, we observe
 sharp increase in the number of iterations. This results in poor solution
ccuracy, and increases the CPU time needed to reach the solution. 

The shape of the fundamental solution has an influence on the ap-
roximation of the matrices. In Fig. 10 , we illustrate the influence of 𝜇
n the compression ratio and the RMS 𝜔 . The integral matrices, which
re using the modified Helmholtz fundamental solution, can be approxi-
ated better by the ACA than the ones using the elliptic fundamental so-

ution. This is due to the more local character of the modified Helmholtz
undamental solution, which is governed by the parameter 𝜇. To show
his we marked points that represent the optimal compression of the
atrices in the figure. The optimal compression point moves to a lower

ompression ratio 𝜑 at a higher 𝜇 value. 
At low Rayleigh number values the solution accuracy at the optimal

ompression ratio is independent of the type of fundamental solution. At
igh Rayleigh number values, when the non-linearity of the problem is
ore pronounced, the accuracy at the optimal compression ratio drops
ith increasing 𝜇 value. This can be explained by the fact that the error

ntroduced by ACA approximation is multiplied by the Rayleigh number
alue and, thus, has a stronger effect at high Rayleigh number values. 

In Fig. 11 , we illustrate the dependence of the mesh density on the
olution of the vorticity vector field. A better resolved mesh contributes
o the approximation of the matrix. The RMS 𝜔 is lower at a better re-
olved mesh. Thus, the optimal compression ratio is improved. 

In Fig. 12 , we present the temperature and velocity profiles at the
 = 0 . 5 plane. In order to verify that without using compression, the al-
orithm yields the same result, regardless of the 𝜇 value employed, we
resent a comparison of profiles in the left panel of Fig. 12 . We observe
ood agreement between results obtained using the elliptic fundamental
olution and results obtained using the modified Helmholtz fundamen-
al solution at different 𝜇 values. In the central and in right panels we
isplay temperature and velocity profiles obtained at different compres-
ion ratios. The optimal compression was 𝜑 = 0 . 42 , where virtually no
230 
ifference can be observed to the uncompressed solution. When using
ub-optimal compression ( 𝜑 < 0.42) small differences can be observed.
he differences are larger in the velocity field and smaller in the tem-
erature field. 

In Table 2 , we present the heat flux at the hot wall expressed as
he average Nusselt number value 𝑁𝑢 . The approximation error that is
ntroduced by the ACA algorithm into the fluid flow does not have a
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Fig. 12. In the left panel we show the temperature profiles across the 𝑦 = 0 . 5 plane for different fundamental solution types without compression. Next, we compare 
the temperature profiles (center) and the velocity profiles (right) at different compression ratios using 𝜇 = 50 and 𝜂 = 5 . The Rayleigh number was 10 5 and the mesh 
density was 25 3 . BDIM denotes the solution obtained without the compression. 
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ubstantial effect on the average 𝑁𝑢 , even when sub-optimal compres-
ion is used. The average Nusselt number increases with a higher com-
ression of the matrices. However, the ACA has little effect on the aver-
ge Nusselt number at a better-resolved mesh. Comparison with bench-
ark data provided by Tric et al. [39] and Lo et al. [46] is good. 

. Conclusions 

In this study, we developed an Adaptive Cross Approximation algo-
ithm with the modified Helmholtz fundamental solution in order to
ccelerate the Boundary-Domain Integral Method. The developed al-
orithm was used in an incompressible flow solver, which solves the
elocity–vorticity formulation of the Navier–Stokes equations in three-
imensions. We have shown that the Adaptive Cross Approximation al-
orithm can be combined with the modified Helmholtz fundamental
olution to reduce computational demands of the flow solver. 

We investigated the influence of the shape of the fundamental so-
ution, the nonlinearity of the problem, and the admissibility criterion,
o establish the optimal compression ratio. We have shown that, at the
ptimal compression ratio, the solution accuracy and the convergence
roperties are unaffected by the introduction of approximation of inte-
ral matrices. 

Due to its more local shape, the modified Helmholtz fundamental
olution enables better optimal compression ratios compared to the el-
iptic fundamental solution. Thus, the use of the modified Helmholtz
undamental solution is preferred in terms of computer storage. On the
ther hand, in order to employ the modified Helmholtz fundamental so-
ution in the solution procedure for determination of boundary vorticity,
e had to introduce a false transient loop into the algorithm. For this

eason, in terms of CPU time, the advantage of the modified Helmholtz
undamental solution is less pronounced. 

Four main conclusions can be derived from our observations on the
nfluence of the ACA approximation algorithm and modified Helmholtz
undamental solution on the solution of the fluid flow. Firstly, the mod-
fied Helmholtz fundamental solution contributes to the Adaptive Cross
pproximation algorithm in the way that a greater compression can be
chieved. Secondly, the modified Helmholtz fundamental solution has
 positive effect on the error that is introduced by the Adaptive Cross
pproximation algorithm on the solution of the fluid flow. Thirdly, the
pproximation of the matrices depends on the -matrix formulation,
nd, finally, a better-resolved mesh can support higher compression ra-
io to achieve a target solution accuracy. 
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