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A B S T R A C T

In engineering, several physical models result in inhomogeneous partial differential equations. A prototype of
such an equation is the modified Helmholtz equation or also called Yukawa equation. It may result from fluid
mechanics (false transient approach) or heat transfer if a semi-discretisation in time with a finite difference
schema is applied. Using the Boundary Element Method for the numerical solution of such problems requires
to solve a boundary-domain integral equation. The main drawback of all boundary element methods is the
quadratic complexity, which exists as well for boundary-domain element methods.

Here, a fast approach based on the 2-concept is proposed. The focus is on the discretisation of the domain
integral. Respective cluster trees for the domain and the boundary nodes are established. The integral kernels in
admissible blocks are approximated with Lagrange interpolation. Further, a recompression is applied, which
is here performed with a fully pivoted adaptive cross approximation. The numerical results show that the
memory used to store the approximated matrices is logarithmic linear. Considering the matrix formulation of
the integral kernel approximation one can reduce the storing space needed in memory to linear complexity.
1. Introduction

Large scale numerical analysis in engineering and science is difficult
and time-consuming. However, usually, the cost of numerical investi-
gations is lower than the cost of experiments. Numerical simulation
plays an important role in practical engineering computation, such
as solid mechanics, fluid mechanics, acoustics, electromagnetism, etc.
Practical problems are often governed by non-linear partial differen-
tial equations. In computational fluid dynamics, partial differential
equations have a diffusion, convection, and source part. For unsteady
simulations also a transient part is present. For such problems, mostly
Finite Volume Methods or the Finite Element Method are used. But,
as well the Boundary Element Method (BEM) may have advantages
and is used to handle non-linear partial differential equations. Such
a formulation requires to solve besides the boundary integrals also a
domain integral, why it is often denoted Boundary-Domain Integral
Method (BDIM).

The BDIM is based on Green’s second identity, where a domain in-
tegral kernel is present. Even though the numerical method has higher
computational costs than conventional BEM, the method is employed
by several authors. Mikhailov and Mohamed [1] applied the BDIM to a
Neuman boundary value problem for a scalar elliptic partial differential
equation with a variable coefficient. Portillo [2] employed the method
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on a mixed boundary value problem for the diffusion equation with a
non-homogeneous right-hand side. Verhnjak et al. [3] presented a novel
approach for two-way coupled simulations of multiphase flows within
an Euler–Lagrange framework. To reduce the computational costs for
evaluating the domain integral several methods have been proposed,
which are mostly based on an approximation. The dual reciprocity
method transforms the domain integral into a boundary integral opera-
tor. Partridge and Brebbia [4] used the dual reciprocity method to solve
the Poisson equation. Cheng et al. [5] presented global interpolation
functions within the dual reciprocity BEM. They obtained a better con-
vergence behavior for their approximation of the transformation. An
extension is the triple reciprocity method. Ochiai [6] implemented the
triple reciprocity method to solve the heat equation with heat sources.
Guo et al. [7] presented an improved implementation of the triple
reciprocity BEM for three-dimensional steady-state heat conduction
problems. This formulation has reduced computation time and storage
space. However, the approximation of the domain integral is highly
complex.

The heat equation contains a partial derivative with respect to time,
which either requires a time-domain BE formulation (see, e.g. [8,9])
or a semi-discretisation in time with a finite difference schema. The
latter results in a domain integral similar to the treatment of non-linear
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terms and is called in the framework of fluid mechanics false transient.
Malinson and Davis [10] presented this approach for the solution of a
coupled elliptic equation. Stella and Guj [11] applied the false transient
to solve the lid-driven cavity test case with a finite difference scheme.
Behnia et al. [12] implemented the same procedure to simulate three-
dimensional natural convection flow. The governing equation of the
false transient is the inhomogeneous modified Helmholtz equation,
which we focus on. It is also referred to as the Yukawa equation [13].
Hriberšek and Škerget [14] employed the Yukawa equation to compute
incompressible fluid flow problems. Cui et al. [15] employed the Radial
Integration Boundary Element Method for the solution of transient
heat conduction problems with heat sources and variable thermal
conduction.

Independent which variant of the above briefly discussed BE for-
mulations is used, the bottleneck of every BEM is the complexity with
order (𝑛2). The latter holds in principle for the domain integrals. To
overcome this restriction fast methods have been developed. The fast
multipole method (FMM) is maybe one of the first (see, e.g., [16,17]).
Within the field of the heat equation, the formulation by Messner
et al. [18] may be mentioned. As well the wavelet transform [19]
can be used to accelerate the BEM. Alternatively, hierarchical ma-
trices (-matrices) with some data compression techniques can be
applied. Hackbusch [20] introduced a recursive hierarchical decompo-
sition for the approximation of an asymptotic smooth function. The
recursive hierarchical procedure is known as the -structure. After
the -structure is formed an approximation method is employed. The
most efficient compression method is the Singular Value Decomposition
Method (SVD) [21]. However, the computational cost of the method
scales (𝑛3). Adaptive Cross Approximation (ACA) presented by Beben-
orf [22] is an approximate alternative to the SVD and reduces the
omplexity to (𝑛 log 𝑛) for most elliptic operators. Two versions of
he algorithm were presented: the partial pivoting and full pivoting
CA [23], where only the first makes sense to accelerate BEM. A
ariant called Hybrid Cross Approximation (HCA) has been presented
y [24]. For numerical analysis in solid mechanics, Bebendorf and
rzibovski [22] employed the ACA to solve a linear elasticity problem
ith the Galerkin BEM. Heider and Schanz [25] implemented the ACA

o solve elasticity problem based on an extension of the ACA given by
jasanow and Weggler [26]. Grytsenko and Galybin [27] solved multi-
rack large-scale problems with the ACA and the -matrix. Rjasanow

and Weggler [28] employed the ACA with the -matrix formulation
to solve Maxwell problems. Tamayo et al. [29] applied the multi-level
ACA for electromagnetic and radiation examples. Campos et al. [30]
presented an isogeometric BEM that was accelerated with the ACA
for the analysis of potential problems. Recently Rodopulos et al. [31]
employed the ACA and BEM to solve the chaotic protection problem on
a large scale. Chaotic protection techniques are widely used to avoid
corrosion in offshore structures. For the problem class treated here,
Tibaut et al. [32,33] employed the -matrix and the ACA algorithm to
accelerate the BDIM. Ravnik and Tibaut [34] employed the accelerated
BDIM with the modified Helmholtz equation and ACA to solve the
unsteady convection–diffusion problem with variable diffusion .

An improvement of the hierarchical matrix concept has been pre-
sented by Börm [35] and is called 2-matrix. The 2-matrix form is
based on nested cluster basis functions [36]. In the 2-matrix, the
integral kernel is mostly interpolated in the far-field with polynomi-
als. Börm and Hackbusch [37] approximated the integral kernel with
Lagrangian polynomials. For Helmholtz problems, Börm et al. [38] pre-
sented directional 2-matrices. The authors included in their analysis
also the case of dissipative Helmholtz kernels.

The paper is split into five sections. Firstly, we present the governing
equation that we used for the numerical investigation. Next, we present
the integral equation with its discretisation. For this set of equations,
we present the 2-matrix with a special focus on the domain integral.
As well, a recompression with ACA is introduced. In section four, we
discuss the results and in the last section, we summarise the findings
2

of this paper.
2. Problem setting

Several physical problems result in parabolic inhomogeneous partial
differential equations. An example from fluid mechanics is incompress-
ible, laminar flow of a Newtonian fluid, where often the so-called false
transient approach results in such an equation (see, e.g., [33]). Here,
we consider a model problem, which may either be heat transfer or the
false transient approach. Certainly, the same considerations hold for the
other physical problems governed by such equations.

2.1. Governing equations

Let 𝛺 ⊂ R3 be a bounded Lipschitz domain and 𝛤 ∶= 𝜕𝛺 its
boundary with the outward normal 𝑛. The governing equation for the
scalar field 𝑢(�⃗�, 𝑡), e.g., the temperature field, is given with

𝜕𝑢(�⃗�, 𝑡)
𝜕𝑡

= ∇2
𝑥𝑢(�⃗�, 𝑡) + 𝑏

∗(�⃗�, 𝑡) ∀ (�⃗�, 𝑡) ∈ 𝛺 × (0, 𝑇 ) (1)

where 𝑡 presents the time with the final time 𝑇 and 𝑏∗(�⃗�, 𝑡) is a source
term. Any material data are set to unity for simplicity. As usual, ∇𝑥
denotes the Nabla-operator with respect to the spatial coordinate �⃗�. To
complete the physical setting initial and boundary conditions have to
be described. Here, as model a Dirichlet problem with vanishing initial
condition is used

𝑢(�⃗�, 𝑡 = 0) = 0 ∀ �⃗� ∈ 𝛺 𝑡 = 0 (2a)

𝑢(�⃗�, 𝑡) = �̄�(�⃗�, 𝑡) ∀ �⃗� ∈ 𝛤 × (0, 𝑇 ) , (2b)

with the prescribed boundary data �̄�(�⃗�, 𝑡). Let the time be discretised in
steps 𝑡0 = 0, 𝑡1,… , 𝑡𝑁 = 𝑇 with constant time steps 𝛥𝑡. A time discrete
form of Eq. (1) is obtained by approximating the time derivative 𝜕𝑢(�⃗�,𝑡)

𝜕𝑡
by a first order finite difference scheme. This results for 𝑛 = 1,… , 𝑁 in

𝑢(�⃗�, 𝑡𝑛) − 𝑢(�⃗�, 𝑡𝑛−1)
𝛥𝑡

= ∇2
𝑥𝑢(�⃗�, 𝑡𝑛) + 𝑏

∗(�⃗�, 𝑡𝑛) , (3)

where 𝑢(�⃗�, 𝑡𝑛−1) denotes the value of the scalar field at the previous
time step. Rearrangement and the abbreviations 𝜇2 = 1

𝛥𝑡 , 𝑏(�⃗�, 𝑡𝑛) =
1
𝛥𝑡 𝑢(�⃗�, 𝑡𝑛−1) + 𝑏

∗(�⃗�, 𝑡𝑛) results in the Yukawa equation
(

∇2
𝑥 − 𝜇

2) 𝑢(�⃗�, 𝑡𝑛) + 𝑏(�⃗�, 𝑡𝑛) = 0. (4)

This equation is also called modified Helmholtz equation. In case of
large time steps 𝛥𝑡 → ∞, the parameter 𝜇2 tends to zero, i.e., 𝜇2 → 0.
Thus in the limit, the Poisson equation is obtained.

In order to find the integral form of the Yukawa Eq. (4), we will
employ Green’s second identity. As a preliminary step the fundamental
solutions are formulated. For a given point 𝜉 and the Dirac distribution
s source term, i.e., 𝑏(�⃗�, 𝑡𝑛) = 𝛿(𝜉 − �⃗�) the fundamental solution of the
ukawa Eq. (4) is given

∗(𝜉, �⃗�) = 𝑒−𝜇𝑟

4𝜋𝑟
, (5)

with 𝑟 = |𝜉 − �⃗�|. The flux fundamental solution is as well needed and
can be obtained by the normal derivative

𝑞∗(𝜉, �⃗�) = 𝑛(�⃗�) ⋅ ∇⃗𝑥𝑢∗(𝜉, �⃗�) =
𝑛(�⃗�) ⋅ (𝜉 − �⃗�)

4𝜋𝑟3
(1 + 𝜇𝑟)𝑒−𝜇𝑟. (6)

As discussed above, in case of large time steps the parameter 𝜇2 → 0
and the fundamental solution in (6) tends to the fundamental solution
of the Laplace equation. In Fig. 1, 𝑢∗(𝜉, �⃗�) is plotted versus the argument
f the exponential function 𝑟𝜇 for different values of 𝜇. It can be
bserved that for small values of 𝜇 the fundamental solution behaves as

that of the Laplace equation denoted with 𝜇 = 0. The more interesting
observation is the strong decay of the solution for large 𝜇, i.e., for small
time step sizes. This property will be used subsequently.

Either starting from Green’s second identity or via a weighted resid-

ual statement the usual steps with partial integration and a suitable
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Fig. 1. Fundamental solution 𝑢∗ for different values of the 𝜇.

limit of the load point to the boundary results in the well known
integral equation

𝑐(𝜉)𝑢(𝜉, 𝑡𝑛) + ∫𝛤

[

𝑢(�⃗�, 𝑡𝑛)𝑞∗(𝜉, �⃗�) − 𝑢∗(𝜉, �⃗�)𝑞(�⃗�, 𝑡𝑛)
]

𝑑𝛤

= ∫𝛺
𝑢∗(𝜉, �⃗�)𝑏(�⃗�, 𝑡𝑛)𝑑𝛺 ∀𝜉 ∈ 𝛤 , (7)

where 𝑞(�⃗�, 𝑡𝑛) = 𝑛(�⃗�) ⋅ ∇⃗𝑢(�⃗�, 𝑡𝑛) is the flux of the scalar field 𝑢(�⃗�, 𝑡𝑛). The
boundary integral has kernels with a weak singularity and the integral
free term 𝑐(𝜉) has the usual form (see, e.g., [23]). Note, the integral
equation has to be evaluated at each time step 𝑡𝑛 and the influence of
the last time step is hidden in 𝑏(�⃗�, 𝑡𝑛) =

1
𝛥𝑡 𝑢(�⃗�, 𝑡𝑛−1) + 𝑏

∗(�⃗�, 𝑡𝑛). Including
as well the boundary condition, we arrive at the integral equation to
be solved

∫𝛤
𝑢∗(𝜉, �⃗�)𝑞(�⃗�, 𝑡𝑛)𝑑𝛤 = 𝑐(𝜉)�̄�(𝜉, 𝑡𝑛) + ∫𝛤

�̄�(�⃗�, 𝑡𝑛)𝑞∗(𝜉, �⃗�)𝑑𝛤

− ∫𝛺
𝑢∗(𝜉, �⃗�)𝑏(�⃗�, 𝑡𝑛)𝑑𝛺 ∀𝜉 ∈ 𝛤 . (8)

In the following, the argument 𝑡𝑛, indicating the actual time step, is
skipped for the sake brevity.

2.2. Spatial discretisation of the integral formulation

For the spatial discretisation of the integral Eq. (8), first, the bound-
ary is divided into 𝑁 boundary elements and the domain 𝛺 is divided
into 𝑀 domain cells

𝛤 =
𝑁
⋃

𝑖=1
𝛤𝑖, 𝛺 =

𝑀
⋃

𝑗=1
𝛺𝑗 . (9)

Second, the boundary data are approximated with a continuous
quadratic (9 nodes) interpolation for the primary field and a discon-
tinuous linear ansatz (4 nodes) for the flux. The right hand side is
approximated with a quadratic (27 nodes) interpolation, however, in
this case a volume cell must be used, i.e., hexahedrons are assumed.
The respective shape functions are

𝑢(�⃗�) ≈
9
∑

𝑎=1
𝑢𝑎𝜑𝑎(�⃗�), 𝑞(�⃗�, 𝑡) ≈

4
∑

𝑏=1
𝑞𝑏𝜓𝑏(�⃗�), 𝑏(�⃗�) ≈

27
∑

𝑐=1
𝑏𝑐𝛷𝑐 (�⃗�) , (10)

which are defined locally on each element. The locations of the nodes in
these shape functions are sketched in Fig. 2. The distance of the nodes
of the discontinuous shape functions to the boundary is 0.25. The usage
of discontinuous shape functions avoids any discussions on defining the
normal vector. Further, it fits into the function spaces required for this
elliptic problem. Inserting these shape functions and the panelisation
3

Fig. 2. Locations of the nodes in the boundary elements and volume cells. These nodes
are used in the shape functions in (10).

of the geometry in (8) results in the discrete integral equation
𝑛
∑

𝑖=1
𝑞𝑖 ∫𝑠𝑢𝑝𝑝(𝜓𝑖)

𝜓𝑖(�⃗�)𝑢∗(𝜉, �⃗�)𝑑𝛤𝑖 =
𝑛∗
∑

𝑖=1
𝑐(𝜉)𝑢𝑖𝜑𝑖(𝜉)

+ 𝑢𝑖 ∫𝑠𝑢𝑝𝑝(𝜑𝑖)
𝜑𝑖(�⃗�)𝑞∗(𝜉, �⃗�)𝑑𝛤𝑖

−
𝑚
∑

𝑗=1
𝑏𝑗 ∫𝑠𝑢𝑝𝑝(𝛷𝑗 )

𝛷𝑗 (�⃗�)𝑢∗(𝜉, �⃗�)𝑑𝛺𝑗 ,

(11)

where index 𝑖 restricts the shape functions 𝜑𝑖 and 𝜓𝑖 to the boundary
element 𝛤𝑖 and 𝑗 restricts the shape function 𝛷𝑗 to the domain cell
𝛺𝑗 . The upper limit of the second sum 𝑛∗ indicates that this is not
the number of elements but the number of nodes. Further, 𝑛 = 4𝑁 as
discontinuous shape functions are used. In the last sum, 𝑚 is the number
of domain nodes. Hence, the sums over shape functions and nodes are
collected to one sum and the respective integration domain is marked
with the support of the shape functions.

The integral equation will be solved with a collocation approach.
For the selected Dirichlet problem, the collocation points are at the
nodes of the shape functions of the flux (𝜓𝑖 in Fig. 2) and are denoted
with 𝜉𝑘. Hence, the total number of collocation points is 𝑛 = 4𝑁 .
Writing this in a matrix form the discrete equation system is

[𝐺] {𝑞} = [𝐻] {𝑢} − [𝐵] {𝑏} , (12)

with the matrix elements

ℎ𝑘𝑖 = 𝑐(𝜉𝑘)𝜑𝑖(𝜉𝑘) + ∫𝑠𝑢𝑝𝑝(𝜑𝑖)
𝜑𝑖(�⃗�)𝑞∗(𝜉𝑘, �⃗�)𝑑𝛤𝑖

𝑔𝑘𝑖 = ∫𝑠𝑢𝑝𝑝(𝜓𝑖)
𝜓𝑖(�⃗�)𝑢∗(𝜉𝑘, �⃗�)𝑑𝛤𝑖

𝑏𝑘𝑗 = ∫𝑠𝑢𝑝𝑝(𝛷𝑗 )
𝛷𝑗 (�⃗�)𝑢∗(𝜉𝑘, �⃗�)𝑑𝛺𝑗 .

(13)

Hence, the matrices are of size [𝐺] = [𝑛 × 𝑛], [𝐻] = [𝑛 × 𝑛∗], and
[𝐵] = [𝑛 × 𝑚].

3. -Structure

To obtain a fast BE formulation one option is to use hierarchical
matrices. Here, the 2 approach will be applied, where the focus is on
the domain integral, i.e., the approximation of matrix [𝐵] with the size
𝑛 × 𝑚. We form two different cluster trees, one for the domain and the
other for the boundary. Note that we have in the domain hexahedrons
and on the boundary quadrilaterals.

3.1. The cluster tree

To form uniform cluster trees we use a bottom-up approach based
on equal sized bounding boxes [32]. The bottom-up approach combines
the neighboring cells and forms new clusters on a new level. For each
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Fig. 3. Illustration of the cluster size on each level of the cluster tree 𝑇𝐽 . From top to the bottom of the cluster tree the size of clusters decreases.
Fig. 4. Domain block cluster tree 𝑇𝐽×𝐼 of the clusters 𝑇𝐼 and 𝑇𝐽 . Yellow arrows indicate the different choices to form nearly square blocks. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
level higher, cluster pairs form a new cluster. The procedure is repeated
until one cluster that presents the whole domain is on the top level. We
will denote the cluster tree built from the boundary elements as 𝑇𝐽 and
the domain cluster tree as 𝑇𝐼 . The cluster tree 𝑇𝐽 has 𝑝𝑏 levels and 𝑇𝐼
has 𝑝𝑑 levels. The domain tree has more levels (𝑝𝑏 < 𝑝𝑑) because the
number of domain cells is larger than the number of boundary elements
(see the example in Fig. 4). In Fig. 3, we illustrate clusters that form
the boundary element cluster tree 𝑇𝐽 with their index sets 𝐽 (𝑘)

𝑖 . In the
following, we will denote the clusters by their index sets. Moving from
top to bottom level each cluster is split into son clusters. The bottom
level is called leaf level.

3.2. Block cluster tree

The block cluster tree 𝑇𝐽×𝐼 is a combination of clusters in the
cluster tree 𝑇𝐼 and 𝑇𝐽 . The block clusters in 𝑇𝐽×𝐼 form rectangular
blocks [�̂�]�̂�×�̂� with size �̂� × �̂�, where �̂� < �̂� holds for sufficiently large
meshes. However, square blocks would be preferable. If the clusters
are combined at different levels of both cluster trees it is possible to
get nearly square blocks. Hence, cluster 𝐼 (𝑘)𝑖 is combined either with
a cluster in 𝑇𝑗 one level higher 𝐽 (𝑘−1)

𝑗 , or on the same level 𝐽 (𝑘)
𝑗 , or

one level lower 𝐽 (𝑘+1)
𝑗 . In Fig. 4, the three yellow arrows indicate these

choices exemplarily. In the following, the indication of the level of the
index sets are skipped for the sake of brevity. Clusters at the leaf level
of the cluster tree 𝑇𝐼 are combined to block clusters with the clusters
at the leaf level of 𝑇𝐽 . Similar to the above sketched procedure for the
domain block cluster tree 𝑇𝐽×𝐼 the block cluster tree for the boundary
𝑇𝐽×𝐽 is build. Two identical 𝑇𝐽 cluster trees are combined to form
blocks 𝐽𝑖 × 𝐽𝑗 . Different to the above, the block clusters are only build
within one level.

The cluster pairs constructed as described above form nearly a
square block (�̂� ≈ �̂�) and are tested on admissibility. Following the
literature [39], for 2-matrices the criterion

𝑚𝑎𝑥{𝑑𝑖𝑚(𝐼 ), 𝑑𝑖𝑚(𝐽 )} ≤ 𝜂 𝑑𝑖𝑠𝑡(𝐼 , 𝐽 ) (14)
4

𝑖 𝑗 𝑖 𝑗
Fig. 5. Number of bock cluster 𝐽 × 𝐼 that form the -structure depending on the
admissibility condition (15) (MIN) and (14) (MAX).

is used, where 𝑑𝑖𝑚(𝐼𝑖) and 𝑑𝑖𝑚(𝐽𝑗 ) are the cluster sizes determined by
the largest diagonal of the cluster. 𝑑𝑖𝑠𝑡(𝐼𝑖, 𝐽𝑗 ) is the minimal distance
between the clusters and parameter 𝜂 is defined by the user. Each block
cluster fulfilling (14) is called admissible. Inadmissible blocks are split
into smaller block clusters, i.e., one goes one level down. Block clusters
on the lowest level of the block cluster tree that do not fulfill the
admissibility condition are considered inadmissible and constitute the
near field. For -matrices usually a different condition based on the
minimum of both clusters is applied

𝑚𝑖𝑛{𝑑𝑖𝑚(𝐼𝑖), 𝑑𝑖𝑚(𝐽𝑗 )} ≤ 𝜂 𝑑𝑖𝑠𝑡(𝐼𝑖, 𝐽𝑗 ). (15)

The criterium (15) creates larger admissible blocks compared to (14),
which is exemplarily shown in Fig. 5. There, the number of block
clusters 𝐽 × 𝐼 is presented for matrix [𝐵] for a unit cube. Four mesh
densities were chosen. It can be observed that the admissibility con-
dition (15) forms less block clusters than (14). Hence, condition (14)
formed smaller block cluster than condition (15). However it must be
remarked that the minimum based condition (15) has no mathematical
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𝑛

Fig. 6. Sketch of two matrices for 𝜂 = 5, 𝑑𝑖𝑠𝑡𝑚 = 0.25 and 𝜇 = 20 (top), 𝜇 = 50 (bottom).
The inadmissible blocks are black, admissible blocks from condition (17) are yellow,
admissible blocks from condition (16) are green and white admissible blocks are to be
approximated. Admissibility condition (15) was employed. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

basis if the kernel is interpolated as subsequently done. Nevertheless,
both versions will be compared in the following.

In case of small block clusters, it may happen that a kernel in-
terpolation produces a larger matrix block as it would be without
interpolation, i.e., to store the dense matrix block needs less storage
than the interpolated matrix block. The reason is that the interpolation
degree is to the power of three. To avoid such situations an additional
criterion is introduced. If an admissible block cluster is smaller than a
predefined value, i.e.,

𝑑𝑖𝑠𝑡(𝐼𝑖, 𝐽𝑗 ) ≤ 𝑑𝑖𝑠𝑡𝑚, (16)

holds, no kernel interpolation will be applied but the fundamental
solution itself is used. Hence, a dense matrix block would be stored,
however ACA is used to reduce storage. For this study we set a constant
value 𝑑𝑖𝑠𝑡𝑚 = 0.25. Condition (16) is only checked after the admissibil-
ity condition holds to ensure that a low rank representation with ACA
is possible.

Additionally to the above given clustering some block clusters have
elements with very small values. This is caused by the fundamental
solution (5) for larger values of 𝜇. In Fig. 1, the values of the funda-
mental solution have been plotted with respect to the distance and 𝜇.
It can be observed that the matrix entries decrease by several decades
if the distance 𝑟 is increased, hence become negligible compared to the
other entries. Further, such small values may even cause trouble in a
kernel expansion as, essentially, a zero is approximated. To avoid such
problems and to save storage, blocks which fulfill

‖[�̂�]�̂�×�̂�‖ ≤ 10−15 (17)

are set to zero. The condition is realised in the code by checking the
fundamental solution for the smallest distance of this cluster to the
boundary.

The above conditions are checked in a hierarchy, first (17) then
(15) or (14) and lastly (16). In Fig. 6, we present two examples of
2-matrices constructed in this way. For the top matrix, the parameter
𝜇 = 20 is set and below the value is 𝜇 = 50. Inadmissible matrix
blocks are colored in black. Matrix blocks fulfilling (17) are marked
yellow and are not stored. Those blocks fulfilling (16) are green and are
compressed with ACA. For the remaining white matrix blocks a kernel
interpolation is applied with recompression (see below). Obviously, the
amount of yellow blocks increases with a larger 𝜇.

3.3. Approximation of the integral kernel

A low-rank representation of the kernel is obtained by interpolation
in admissible blocks, which do not fulfill (17) or (16). Such blocks
5

exist for all three matrices [𝐺], [𝐻], or [𝐵] of (12), which are detailed
in (13). The blocks in [𝐻] and [𝐺] stem from block clusters 𝐽𝑖 × 𝐽𝑗
and those in [𝐵] stem from block clusters 𝐽𝑗 × 𝐼𝑖. Within such blocks
we approximate the fundamental solution 𝑢∗

(

𝜉, �⃗�
)

with the Lagrange
interpolation function [37]

𝑢∗
(

𝜉, �⃗�
)

≈
𝛼3
∑

𝜄=1

𝛽3
∑

𝜅=1
𝜄

(

𝜉
)

𝑢∗
(

𝜉𝜄, �⃗�𝜅
)

𝜅
(

�⃗�
)

, (18)

where 𝛼3 is the number of interpolation points in the cluster 𝐽𝑗 ,
𝛽3 is the number of interpolation points in the cluster 𝐼𝑖. Note, the
interpolation is for all three coordinate directions, which gives overall
𝛼3 interpolation points, when each coordinate axis has 𝛼 interpolation
points. The Lagrange interpolation function is defined as usual

𝜄(𝜉) =
∏

𝜄1≠𝓁

𝜉1 − 𝜉1𝓁
𝜉1𝜄1 − 𝜉

1
𝓁

×
∏

𝜄2≠𝓁

𝜉2 − 𝜉2𝓁
𝜉2𝜄2 − 𝜉

2
𝓁

×
∏

𝜄3≠𝓁

𝜉3 − 𝜉3𝓁
𝜉3𝜄3 − 𝜉

3
𝓁

, 𝜄1, 𝜄2, 𝜄3,𝓁 = 1,… , 𝛼3 ,

(19)

with the zeros of the Chebyschev polynomial 𝜉𝓁 . The second Lagrange
interpolation in (18) is defined analogously but there 𝛽3 interpolation
points are used. In the matrix [𝐻] in (13), the normal derivative 𝑞∗ =
𝑛(�⃗�) ⋅ ∇⃗𝑥𝑢∗(𝜉, �⃗�) of the fundamental solution is present, which is realised
by applying the gradient operator on the Lagrange interpolation

𝑞∗
(

𝜉, �⃗�
)

≈
𝛼3
∑

𝜄=1

𝛽3
∑

𝜅=1
𝜄

(

𝜉
)

𝑢∗
(

𝜉𝜄, �⃗�𝜅
)

(𝑛(�⃗�) ⋅ ∇⃗𝑥𝜅
(

�⃗�
)

). (20)

These approximations of the fundamental solutions are used in the
block cluster tree. Considering the block clusters 𝐽𝑖 × 𝐽𝑗 with the size
̂ × �̂� and 𝐽𝑗 × 𝐼𝑖 with the size �̂� × �̂�, then the entries are

ℎ̂𝑘𝑖 =
𝛼3
∑

𝜄=1

𝛽3
∑

𝜅=1
𝜄

(

𝜉𝑘
)

𝑢∗
(

𝜉𝜄, �⃗�𝜅
)

∫𝑠𝑢𝑝𝑝(𝜑𝑖)
𝜑𝑖(�⃗�)(𝑛(�⃗�) ⋅ ∇⃗𝑥𝜅

(

�⃗�
)

)𝑑𝛤𝑖,

�̂�𝑘𝑖 =
𝛼3
∑

𝜄=1

𝛽3
∑

𝜅=1
𝜄

(

𝜉𝑘
)

𝑢∗
(

𝜉𝜄, �⃗�𝜅
)

∫𝑠𝑢𝑝𝑝(𝜓𝑖)
𝜓𝑖(�⃗�)𝜅

(

�⃗�
)

𝑑𝛤𝑖,

�̂�𝑘𝑗 =
𝛼3
∑

𝜄=1

𝛽3
∑

𝜅=1
𝜄

(

𝜉𝑘
)

𝑢∗
(

𝜉𝜄, �⃗�𝜅
)

∫𝑠𝑢𝑝𝑝(𝛷𝑗 )
𝛷𝑗 (�⃗�)𝜅

(

�⃗�
)

𝑑𝛺𝑗 .

(21)

where index 𝑘 determines the �̂�th row, 𝑖 the �̂�th column and 𝑗 is
the �̂�th column. For block cluster 𝐽𝑖 × 𝐽𝑗 cluster 𝐽𝑖 has 𝛽3 and 𝐽𝑗
has 𝛼3 interpolation points. While block cluster 𝐼𝑖 × 𝐽𝑗 has 𝛽3 and 𝛼3

interpolation points. Note, for the elements ℎ̂𝑘𝑖 there is no integral free
term. The integral free term is located on the main diagonal of [𝐻]
and such blocks can never be admissible. Writing the above in a matrix
notation for the whole block cluster results in

[�̂�] = [�̂� ][�̂�][𝑉𝐻 ], [�̂�] = [�̂� ][�̂�][𝑉𝐺], [�̂�] = [�̂� ][�̂�][𝑉𝐵], (22)

with the elements

�̂�𝜄𝜅 = 𝑢∗
(

𝜉𝜄, �⃗�𝜅
)

, �̂�𝑘𝜄 = 𝜄
(

𝜉𝑘
)

,

(𝑉𝐻 )𝜅𝑖 = ∫𝑠𝑢𝑝𝑝(𝜑𝑖)
𝜑𝑖(�⃗�)(𝑛(�⃗�) ⋅ ∇⃗𝑥𝜅

(

�⃗�
)

)𝑑𝛤𝑖,

(𝑉𝐺)𝜅𝑖 = ∫𝑠𝑢𝑝𝑝(𝜓𝑖)
𝜓𝑖(�⃗�)𝜅

(

�⃗�
)

𝑑𝛤𝑖, (𝑉𝐵)𝜅𝑗 = ∫𝑠𝑢𝑝𝑝(𝛷𝑗 )
𝛷𝑗 (�⃗�)𝜅

(

�⃗�
)

𝑑𝛺𝑗 .

Those matrices collect the entries for all nodes in the block cluster,
i.e., the sizes are [�̂� ] = [�̂� × 𝛼3], [�̂�] = [𝛼3 × 𝛽3] and for the right
interpolation matrices [𝑉𝐻 ] = [𝛽3 × �̂�∗], [𝑉𝐺] = [𝛽3 × �̂�], [𝑉𝐵] = [𝛽3 × �̂�].

Following the 2-strategy, a nested cluster basis is introduced to
end up with an almost linear complexity [36]. With nested cluster basis
we can express polynomials corresponding to clusters 𝐽 in terms of
polynomials corresponding to boundary elements on the leaf cluster.
The same holds for cluster 𝐼 . Essentially, the Lagrange interpolant in
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(21) is again interpolated

𝜄
(

�⃗�
)

=
𝛾3
∑

𝜆=1
𝜄

(

�⃗�𝜆
)

′
𝜆(�⃗�),

𝑛(�⃗�) ⋅ ∇⃗𝜂𝜅
(

�⃗�
)

=
𝛾3
∑

𝜆=1
𝜅

(

𝑥𝜆
)

(𝑛(�⃗�) ⋅ ∇⃗𝑥′
𝜆(�⃗�)) ,

(23)

here ′ is of this form (19). The equal sign holds only if the interpola-
ion order 𝛾 is large enough with respect to 𝛼, 𝛽 [39]. The nested cluster
asis replace the Lagrange interpolation functions in the elements �̂�𝑘𝜄,
𝑉𝐻 )𝜅𝑖, (𝑉𝐺)𝜅𝑖 and (𝑉𝐵)𝜅𝑗 of (22)

�̂�𝑘𝜄 =
𝛾3
∑

𝜆=1
𝜄

(

�⃗�𝜆
)

′
𝜆(�⃗�),

𝑉𝐻 )𝜅𝑖 =
𝛾3
∑

𝜆=1
𝜅

(

𝑥𝜆
)

∫𝑠𝑢𝑝𝑝(𝜑𝑖)
𝜑𝑖(�⃗�)(𝑛(�⃗�) ⋅ ∇⃗𝑥′

𝜆(�⃗�))𝑑𝛤𝑖,

(𝑉𝐺)𝜅𝑖 =
𝛾3
∑

𝜆=1
𝜅

(

�⃗�𝜆
)

∫𝑠𝑢𝑝𝑝(𝜓𝑖)
𝜓𝑖(�⃗�)′

𝜆
(

�⃗�
)

𝑑𝛤𝑖,

(𝑉𝐵)𝜅𝑗 =
𝛾3
∑

𝜆=1
𝜄

(

�⃗�𝜆
)

∫𝑠𝑢𝑝𝑝(𝛷𝑗 )
𝛷𝑗 (�⃗�)′

𝜆(�⃗�)𝑑𝛺𝑗 .

(24)

he elements under the boundary and domain integral are stored
eparately in leaf basis matrices

𝑇𝜆 = ′
𝜆(�⃗�), (𝑇𝐻 )𝑖𝜆 = ∫𝑠𝑢𝑝𝑝(𝜑𝑖)

𝜑𝑖(�⃗�)(𝑛(�⃗�) ⋅ ∇⃗𝑥′
𝜆(�⃗�))𝑑𝛤𝑖,

𝑇𝐺)𝑖𝜆 = ∫𝑠𝑢𝑝𝑝(𝜓𝑖)
𝜓𝑖(�⃗�)′

𝜆
(

�⃗�
)

𝑑𝛤𝑖, (𝑇𝐵)𝑗𝜆 = ∫𝑠𝑢𝑝𝑝(𝛷𝑗 )
𝛷𝑗 (�⃗�)′

𝜆(�⃗�)𝑑𝛺𝑗 ,

(25)

here [𝑇 ] = 𝑇𝜆, [𝑇𝐻 ] = (𝑇𝐻 )𝑖𝜆, [𝑇𝐺] = (𝑇𝐺)𝑖𝜆 and [𝑇𝐵] = (𝑇𝐵)𝑗𝜆. For the
eaf basis matrices the elements have to be integrated corresponding
o the boundary element and domain cell. The sizes of the leaf basis
atrices are [𝑇 ] = [𝛾3], [𝑇𝐻 ] = [𝑇𝐺] = [𝑁 × 9𝛾3] and [𝑇𝐵] = [𝑀 × 27𝛾3].
lease note, only the leaf basis matrices are stored in the memory. The
emaining polynomials can either be computed on the fly during the
atrix–vector product, which increases its computation time or these

nterpolations are pre-computed and stored per level.
To speed up the matrix–vector product and to save storage the

atrix [�̂�] from Eq. (22) is compressed with ACA, which is denoted
ecompression because it is already an approximation. This matrix
onsists of the fundamental solution evaluated at a set of interpolation
odes (18). As mentioned above, the size of this matrix is the interpo-
ation order to the power of three. Here, the fully pivoted ACA is used
see, e.g., [23]). Essentially, a low-rank decomposition is sought after

�̂�]𝛼3×𝛽3 = [𝐴∗]𝛼3×𝑘[𝐵
∗]𝑘×𝛽3 , (26)

here 𝑘 < 𝛼, 𝛽 should hold. The ACA approximates these low-rank
atrices with [�̂�𝑘] =

∑𝑘
𝑚=1 𝑎𝑚�⃗�

𝑇
𝑚 and the approximation algorithm can

e sketched as follows:

• Set 𝑅0 = [�̂�]
• For 𝓁 = 1, 2,… , 𝑘

1. (𝑖∗, 𝑗∗)𝓁 = 𝐴𝑟𝑔𝑀𝑎𝑥|𝑅𝓁−1
|

2. 𝜏𝓁 = (𝑅𝓁−1
𝑖∗ ,𝑗∗ )

−1

3. 𝑎𝓁 = 𝜏𝓁𝑅𝓁−1
∶,𝑗∗ , �⃗�𝓁 = (𝑅𝓁−1

𝑖∗ ,∶ )
𝑇

4. 𝑅𝓁 = 𝑅𝓁−1 − 𝑎𝓁 �⃗�𝓁 , �̂�𝓁 = �̂�𝓁−1 + 𝑎𝓁 �⃗�𝓁

• If (‖‖
‖

𝑅𝓁‖
‖

‖𝐹
≤ 𝜀 ‖‖

‖

�̂�𝓁‖
‖

‖𝐹
∨ 𝓁 = 𝑘) Stop

• EndFor

he notation 𝑅𝑖,∶ denotes the 𝑖th column of 𝑅 and analogously 𝑅∶,𝑗
he row. The ACA does six steps to approximate the matrix. In the first
6

tep, the residual matrix 𝑅0 is set. Secondly, the maximal element in the
atrix is determined. Thirdly, the value of 𝜏 for the maximal element

s calculated. After that the vectors 𝑎𝓁 and �⃗�𝓁 are set as the row and
olumn of the residual matrix related to the maximal element. Then the
esidual matrix 𝑅𝓁 is computed by subtracting the outer product of 𝑎
nd �⃗�, i.e., its rank is reduced by one. In the last step, the Frobenius
orm of the residuum ‖

‖

‖

𝑅𝓁‖
‖

‖𝐹
is calculated. The steps from two to six

are repeated until the stopping condition is satisfied or the maximal
rank of matrix [�̂�] is reached. The value of the stopping condition 𝜀 is
set a priori by the user.

4. Numerical test

In this section, we present numerical tests to show the performance
of the proposed methodology. The considerations are restricted to
the matrix [𝐵] in (12) as this matrix is the largest of the involved
matrices. Further, both other matrices [𝐻] and [𝐺] are based only on
the boundary discretisation and have been studied in other publications
on 2-matrices for the Laplace operator. Essentially, three test are pre-
sented. First, to validate the code, the fundamental solution 𝑢∗

(

𝜉𝜄, �⃗�𝜅
)

in [𝐵] is replaced by a polynomial

𝑓 (𝑥) = 𝑥𝑧, (27)

with degree 𝑧. Hence, the domain integral in this test is

∫ 𝑓 (𝑥)𝛷(𝑥)𝑑𝛺 = ∫ 𝑥𝑧𝛷(𝑥)𝑑𝛺. (28)

e expected an exact solution for 𝑧 = 𝛼 = 𝛽 = 𝛾 because in this case the
kernel expansion is exact. The second and third test show the behavior
of the approximation of [𝐵] for the Yukawa fundamental solution as
proposed above. In the second test, the 2-methodology is applied
without recompression, whereas in the third test the ACA is used for
recompression of the matrix [�̂�]𝛼3×𝛽3 .

In all tests, the relative root mean square error defined by

𝑅𝑀𝑆[𝐵] =

(
(

‖𝐵 − �̃�‖
)2

‖𝐵‖2

)

1
2

(29)

is used to measure the approximation. ‖𝐵‖ is the Frobenius norm of
the original matrix [𝐵] and �̃� denotes the approximated matrix.

The test geometry is a three-dimensional unit cube. Hexahedral
elements are used in the domain cells. The mesh density of the compu-
tational domain was varied from 93 = 729 to 913 = 753571 nodes.

4.1. Code validation

As written above, first, we does not use the fundamental solution
but a polynomial of degree 𝑧 as kernel function. Please, note that the
integral (28) consists of the polynomial and the shape functions. In
Fig. 7, the 𝑅𝑀𝑆[𝐵] is displayed versus the approximation, i.e., the
degree of the Lagrange polynomials. When the number of interpolation
points 𝛼 and 𝛽 is equal to the degree of the polynomial 𝑧 the error
drops to a very small value close to machine precision. As expected, the
accuracy increases with increasing the number of interpolation points.

The parameter 𝛾 governs the interpolation (23) within the levels. Its
influence is studied in the right panel of Fig. 7, where 𝛾 = 5 was set.
Also as expected, 𝛾 has to grow with 𝛼 and 𝛽, else an error is introduced,
which gives the straight line after 𝛼 = 𝛽 > 𝛾 for a 𝑧 < 𝛾.

4.2. Results for the Yukawa kernel

In the following tests, the kernel is the fundamental solution 𝑢∗(𝜉, �⃗�)
from (5). Please, remember that the case 𝜇 = 0 represents the case of
a Poisson equation with a right hand side �⃗�∗(�⃗�). This right hand side is
approximated by the shape function in (10). The following results are
again restricted to show the approximation of matrix [𝐵] and, hence,
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Fig. 7. The norm 𝑅𝑀𝑆[𝐵] is plotted versus the number of interpolation points 𝛼 = 𝛽 for a polynomial as integral kernel (27). In the left figure 𝛾 = 𝛼 = 𝛽 is set, whereas in the
ight figure 𝛾 = 5 is used. The mesh density was 93 nodes.
Fig. 8. The norm 𝑅𝑀𝑆[𝐵] versus interpolation order for different meshes and values of parameter 𝜇. No recompression is applied. In the top panels the admissibility condition (14)
is used and in the bottom panels (15) both with 𝜂 = 1.
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are valid for any right hand side which can be approximated by these
shape functions. Please note, for these results the criterium (16) was
disabled.

In Figs. 8 and 9, we present the accuracy of the approximated
[𝐵] for different interpolation orders without recompression. Results
are displayed for four different meshes and two parameter choices 𝜂.
n both figures, the results in the upper line are produced with the
aximum based admissibility criterium (14) and the lower line with

he minimum based admissibility criterium (15). Obviously, the results
epend on 𝜂, where the larger value produce slightly worse results. This
s reasonable as an increased 𝜂 results in more approximated clusters.
urther, the different mesh sizes show a similar behavior. On the other
and the different admissibility conditions show for 𝜂 = 1 a better
pproximation quality for the maximum based criterion. However, for
= 5 this effect is reduced. Nevertheless, it must be remarked that the
inimum criterion produce less cluster and, as shown later, results in
faster matrix–vector product.

Next, the influence of the parameter 𝑑𝑖𝑠𝑡𝑚 in the condition (16) is
tudied. In Fig. 10, we present the 𝑅𝑀𝑆[𝐵] depending on the distance
𝑖𝑠𝑡𝑚 for different 𝜇 and different meshes. Note, now we have the
ukawa type kernel and criterium (16) decides whether the kernel is

nterpolated or not. For this test these dense blocks are not compressed
7

ith ACA and, hence, are not approximated. Decreasing the distance
𝑖𝑠𝑡𝑚 increases the number of admissible block clusters where the
ernel interpolation is applied. Thus, more elements in the matrix
re approximated and, consequently, the accuracy of [𝐵] decreases.
urther, for higher values of 𝜇 this effect is stronger as a lot of entries
re set to zero following (17) and the overall amount of block clusters
ith kernel interpolation is smaller. Finally, it may be remarked that

he influence of the interpolation order is not affected by this additional
ondition.

Next, the influence of 𝜇 and different mesh sizes is studied. In
ig. 11, we present the 𝑅𝑀𝑆[𝐵] depending on the mesh density and
he shape of the fundamental solution. When we increase 𝜇, the global
haracter of the Yukawa fundamental solution changes to local, i.e., the
alues of the fundamental solution decrease away from the collocation
oint to a low order polynomial and, hence, can be better approximated
y the chosen Lagrange interpolation. This effect is similar for all
resented meshes. Increasing the interpolation order decreases the
rror. However, for high values of 𝜇 the influence of the interpolation
rder is nearly not visible because the error is too small to see any
nfluence.

A similar study but differently displayed can be found in Fig. 12.
here, again, the 𝑅𝑀𝑆 is shown for different meshes and different
[𝐵]
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Fig. 9. The norm 𝑅𝑀𝑆[𝐵] versus interpolation order for different meshes and values of parameter 𝜇. No recompression is applied. In the top panels the admissibility condition (14)
is used and in the bottom panels (15) both with 𝜂 = 5.
Fig. 10. The 𝑅𝑀𝑆[𝐵] for 𝑑𝑖𝑠𝑡𝑚 = 0.125 and 𝑑𝑖𝑠𝑡𝑚 = 0.25. The value of parameter 𝜇 was 20 and 50 and results for the meshes with 253 and 413 nodes are displayed. Admissibility
condition (15) is used with 𝜂 = 5. No recompression is applied.
Fig. 11. The 𝑅𝑀𝑆[𝐵] for two values of parameter 𝜇. The mesh densities are 253 (left), 313 (middle) and 413 (right). No recompression is used. Admissibility condition (15) is used
with 𝜂 = 5.
values of 𝜇 but now the error for all meshes is shown in one graph. The
number of interpolation points 𝛼 = 𝛽 = 𝛾 were increased from 1 to 7.
The condition (16) was enabled and 𝑑𝑖𝑠𝑡𝑚 was set to 0.25. Four different
mesh densities were employed. We observe that the accuracy depends
slightly on the mesh density, whereas an increase of the interpolation
order decreases the error as expected. The error level is different for
different values of 𝜇 because an increase of 𝜇 allows to discard matrix
blocks following (17). On the left and middle panel in Fig. 12 the results
for interpolation order 𝛼 = 𝛽 = 𝛾 = 7 are missing. Computing 𝑅𝑀𝑆[𝐵]
requires to compute the dense matrix as well and, hence, the meshes
413 and 463 last too long.
8

To show the influence of the two admissibility conditions (14) and
(15), in Fig. 13 we compare the 𝑅𝑀𝑆[𝐵] again for both conditions but
now, different to the study above, including the condition (16) with
𝑑𝑖𝑠𝑡𝑚 = 0.25. We observe no dependence of the approximation accuracy
on the admissibility condition. The 𝑅𝑀𝑆[𝐵] is for all cases similar.
Compared to the study in Fig. 9 without condition (16) the accuracy is
similar or even better for 𝜇 = 50. Hence, this additional condition (16)
pays off.

In the previous subsection the influence of the interpolation order
𝛾 was studied on the artificial polynomial function (see Fig. 7). The

same effect should be visible for the fundamental solution. In Fig. 14,
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T

Fig. 12. The norm 𝑅𝑀𝑆[𝐵] versus interpolation order for different meshes and parameters 𝜇. No recompression is applied and the admissibility condition was (15) with 𝜂 = 1.

he condition (16) was enabled with 𝑑𝑖𝑠𝑡𝑚 = 0.25.
Fig. 13. The norm 𝑅𝑀𝑆[𝐵] versus interpolation order for different meshes and parameters 𝜇 without recompression. In the top panels the admissibility condition (14) is used and
in the bottom panels (15) with 𝜂 = 5. The condition (16) was enabled with 𝑑𝑖𝑠𝑡𝑚 = 0.25.
Fig. 14. The norm 𝑅𝑀𝑆[𝐵] for 𝛾 = 3 or 𝛾 = 5 and different 𝜇 without recompression. The used mesh has 253 nodes and 𝜂 = 5 is chosen.
we present the 𝑅𝑀𝑆[𝐵] versus the interpolation order 𝛾. As expected,
the error decreases with increasing interpolation order 𝛼 = 𝛽 up to the
point 𝛼 = 𝛽 = 𝛾. An further increase of the interpolation order does
not decrease the error because it is dominated by the error due to the
nested cluster basis (23), which is only introduced for 𝛾 < 𝛼 = 𝛽. The
effect is the same for different values of 𝜇 as this parameter does not
change this dominance of the interpolation error. However, overall the
9

error is smaller for larger 𝜇 due to the above discussed local behavior.
4.3. Results with recompression

For the last test, the ACA algorithm was employed to compress
the matrix [�̂�] from (22) in admissible block clusters, which is de-
noted recompression. In Fig. 15, we present the 𝑅𝑀𝑆[𝐵] to measure
the influence of this recompression. Please note that the admissibility
condition (15) and condition (16) with 𝑑𝑖𝑠𝑡𝑚 = 0.25 are used. The
interpolation of the kernel is done in all three coordinate directions,
hence, the size of [�̂�] is 𝛼3×𝛽3 with the number of interpolation points 𝛼
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Fig. 15. The 𝑅𝑀𝑆[𝐵] versus 𝜀 of the ACA stopping condition for 𝜇 = 20 (left) and 𝜇 = 50 (right). The mesh with 463 nodes and 𝜂 = 5 was chosen.
Fig. 16. The influence of ACA on the storage of matrix [𝐵] for two meshes and values of 𝜇. The interpolation order was 𝛼 = 𝛽 = 𝛾 = 3. The admissibility conditions (14) and
ondition (16) with 𝑑𝑖𝑠𝑡𝑚 = 0.25 are used.
nd 𝛽. The user-defined parameter 𝜀 determines the compression of the
atrix with the ACA and is varied on the horizontal axis in Fig. 15 from
0−4 to 10−10. Obviously and expected, a lower 𝜀 results in a better
pproximation of [𝐵]. In the left panel it can be further observed that a
oint can be reached, where the interpolation error dominates and the
CA does not increase the overall error. For 𝜇 = 50 in all tests the ACA
ased error dominates because the kernel can easily be approximated
y a low order interpolation.

The recompression is introduced to decrease the storage of the 2-
atrix. To see the influence of the ACA the storage of [𝐵] is plotted

ersus 𝜀 in Fig. 16. For higher values of 𝜖 the storage is substan-
ially smaller. The effect is larger for larger matrices comparing the
eft and right plot in Fig. 16. This is not astonishing because larger
atrices have more admissible blocks, where the recompression with
CA can be applied. As discussed above, the price for less storage is

ess accuracy.
After these tests for different approximations, next, the overall

omplexity is studied numerically. It can be expected that a linear
omplexity is obtained. In Fig. 17, we present the memory usage for an
ncreasing number of unknowns 𝑚. The memory is presented for com-
utations with 𝜇 = 20 and 𝜇 = 50 and for both admissibility conditions.
dditionally, complexity curves are displayed for (𝑛𝑚),(𝑚 log𝑚), and
(𝑚). It seems that the proposed method reduces the complexity from
(𝑛𝑚) for a dense version to (𝑚), i.e. the expected linear behavior.
hen 𝜇 is growing the memory decreases, as more matrix blocks are

eglected following condition (17). The admissibility condition (15)
nd (14) have a minor influence on the storage, which is for both
onditions (𝑚).

Beside storage the CPU-time usage is an important criterium. In
ig. 5 it was shown that the min-based condition produces less block
lusters, which should improve the speed in the matrix–vector product.
his is studied in Fig. 18 where the CPU-time for 100 matrix–vector
roducts [𝐵] 𝑏 is plotted versus the number of unknowns. It can be
10

{ }
Fig. 17. The amount of memory needed to store the matrix [B]. The interpolation
order is 𝛼 = 𝛽 = 𝛾 = 3 and the stopping condition was set to 𝜀 = 10−8. MIN indicates
the admissibility condition (15) and MAX is (14).

observed that the matrix–vector product is faster, when condition (15)
is employed. The parameter 𝜇 has no influence on the CPU-time.
This faster matrix–vector product might justify the slightly worse ap-
proximation presented in Fig. 8. However it must be remarked that
condition (15) has no mathematical basis.

5. Conclusions

The Yukawa equation with an inhomogeneous right hand side has
been considered. Beside other applications, an exemplarily physical
application might be the incompressible, laminar flow of a Newtonian
fluid handled with the false transient approach. The Poisson equation
is a special case and can be handled as well with the proposed ap-
proach. The corresponding boundary domain integral equation (BDIM)



Engineering Analysis with Boundary Elements 138 (2022) 1–12J. Tibaut et al.

o

i
t
t
n
d
w
c

t
o
t
e
m
c
b
c
b
t
B
a
s
t

A

R
w
Z

R

Fig. 18. CPU-time of 100 matrix–vector products [𝐵] {𝑏} for four meshes and three values of 𝜇. MIN indicates the admissibility condition (15) and MAX is (14). The interpolation
rder was 𝛼 = 𝛽 = 𝛾 = 3, the ACA stopping condition 𝜀 = 10−8 and 𝜂 = 5.
s classically discretised but the 2-methodology is applied to reduce
he complexity. The main focus was on the application of 2-matrices
o represent the matrix from the domain integral. Two cluster trees are
ecessary where one is living on the boundary and the other in the
omain. Further, the block clusters have been combined not necessarily
ithin one level. Recompression was done with a fully pivoted adaptive

ross approximation (ACA).
Tests revealed that the developed algorithm reduces the computa-

ional cost of the BDIM from (𝑛𝑚) to (𝑚), where 𝑚 is the number
f unknowns in the domain and 𝑛 on the boundary. The accuracy of
he approximation depends on the interpolation order of the kernel
xpansion and on the recompression with ACA. A naive implementation
ay cause for medium sized problems an higher effort compared to a

lassical BDIM without fast methods. Here, additionally to the admissi-
ility criterion of the 2-matrices, block clusters with very small entries
ompared to other blocks, i.e., with a very small Frobenius norm, have
een discarded. Such situations are caused by the strong decrease of
he fundamental solution of the Yukawa operator. As usual in all fast
E methods, one should take care that the error introduced by adding
dditional approximation techniques within the 2-method is of the
ame order of magnitude as the discretisation error and the error due
o the solver of the system of linear equations.
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