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a b s t r a c t

A computational scheme based on the subdomain Boundary Element Method is presented for the
numerical simulation of the adsorption process in a honeycomb adsorber. Incompressible flow of air
mixed with a very low concentration (o1%) of n-butane in a carbon coated adsorber channel is
considered. A new model accounting for the mass transfer due to the adsorption process at the channel
walls is presented. A diffusion–convection transport equation for species transport is solved for the mass
transfer in the fluid, whereas the mass transfer from the fluid phase to the solid phase, driven by the
adsorbent concentration gradient near the wall, which takes place until adsorption equilibrium is
reached in the adsorbent layer, is modelled in a form of a dynamic boundary condition for adsorbent
concentration. Adsorption equilibrium is calculated with the use of the Dubinin–Radushkevich
equilibrium model. Due to very low concentration, the isothermal case is computed and the break-
through concentration curves at the outlet of the adsorber channel are compared with experimental and
computational results. A detailed analysis of local values of the Sherwood number, concentrations at the
wall and partitioning coefficient at different Re number values shows that the proposed numerical model
accurately predicts the adsorption dynamics inside a honeycomb adsorber, and can be extended to other
types of surface adsorbers.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Adsorption process and adsorption based technologies have
enjoyed much attention in the past and a wide range of different
scientific studies were performed in this field. Because of the
engineering importance most of the works was done in the field of
adsorption equilibrium modelling [16,21,9,27] or in the field of
adsorption processes and interactions of heat and mass transfer in
packed bed adsorbers [4,5,20]. Adsorption equilibrium modelling
is traditionally described by simple analytical models such as
Henry, Langmuir or Freundlich isotherms, and was in the last
decade advanced with the development of Monte Carlo (MC)
simulations and Molecular Dynamics (MD) simulations, as noted
in [8]. Accuracy of MD simulations is in most cases remarkable, but
this technique still did not enter engineering applications on a
wide scale. The main reason for that can be found in the amount
of computer resources it demands, the complexities associated
with this kind of modelling and with the lack of information
about adsorbent/adsorbate properties. For engineering calcula-
tions empirical models, for example the Dubinin–Radushkevich

model, are still the preferred choices over more complex MC and
MD simulations [6,23]. Adsorption technologies also gained some
new attention, especially with new types of special adsorbers that
do not feature adsorbent material in a packed bed form. In case of
a honeycomb adsorber the adsorbent material is attached to the
honeycomb structure as a thin film on the surfaces of the channels
[22], ensuring fast mass exchange rates between the bulk flow and
the adsorbent walls. Because of the simple channel geometry the
pressure drop is much lower, which together with a possibility
of very short time intervals for cycling of adsorption/desorption
processes drives the research in the field of honeycomb adsorbers
[24,10,11,26,25].

The Boundary Element Method (BEM) and its variants possess
an advantage over other members of approximation methods in
the form of a direct computation of function and its normal
derivatives on the boundary of the domain. Since in the present
case the most important physical phenomenon – the adsorption
of species – is occurring at the wall, direct computation of func-
tion derivatives could be used in order to simplify and improve
computation of adsorption mass fluxes at the solid walls. In the
BEM context, passive convection–diffusion mass transfer was
accounted for in [19,14,1], mainly in the context of species con-
centration influenced buoyancy force. When using the subdomain
version of BEM for the solution of velocity–vorticity formulation
of Navier–Stokes equations, the main disadvantage of BEM is
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accounted for, as sub-domain BEM leads to sparse system
of equations. In the present case of adsorption phenomenon
inside the honeycomb channels, which is influenced by both mass
transfer mechanisms, the subdomain BEM for simple mass transfer
problems in fluids is therefore extended to mass transfer problems
with fluid-wall interaction in the form of adsorption. Since
adsorption mass transfer stops, when equilibrium conditions are
reached, special attention has to be paid to proper incorporation
of equilibrium conditions on the solid walls, presenting the inter-
face between the fluid and the solid phase. There is however
an additional problem, associated with adsorption in the phase
when equilibrium conditions are not yet established, namely a
proper definition of the driving force in the form of concentration
difference between the solid wall and the surrounding fluid. Here,
a physically correct model for the varying concentration values on
the solid wall plays the most important role. To solve this problem,
a quasi-equilibrium model is introduced, which enables a dynamic
adaptation of the concentration boundary values according to the
already adsorbed adsorbent mass.

The paper is organized as follows. After a short description of
the adsorbent geometry, mixture flow and physical properties,
governing equations are explained, followed by definition of initial
and boundary conditions. A special attention is given to boun-
dary and equilibrium conditions at the wall. Next, the Boundary
Element Method based transformation of the governing equations
into the final nonlinear system of algebraic equations is described
in detail. A summary of the numerical procedure and simulation
details precedes Section 5, where the derived numerical algorithm
is applied for a computational parametric study of the adsorp-
tion process in the honeycomb channel. The paper closes with
conclusions.

2. Problem description

A honeycomb adsorption channel is schematically shown in
Fig. 1. As the carrier gas with an adsorbate species enters the
honeycomb channel, a fraction of adsorbate molecules is absorbed
by the adsorbent materials on channel surfaces. Adsorbed mole-
cules penetrate into the pore system of adsorbent material and
form a thin film on active surfaces of adsorbent due to short range
attractive forces between active surfaces of solid adsorbent and
adsorbate molecules. Diffusion processes in adsorbent materials
are still not well explained but equilibrium times for adsorption
processes are known to be in a range of several μs. Therefore
the diffusion processes of adsorbate molecules in the bulk fluid
towards adsorbent material on the channel walls are the rate
controlling mechanism. The model presented is based on the
following conditions: (1) the flow is isothermal, incompressible

and laminar, (2) species concentration is low, (3) buoyancy
forces, thermal diffusion, diffusion-thermo (Dufour), interdiffusion
effects are neglected, (4) viscous heat dissipation, thermal radia-
tion, pressure work are also neglected in comparison to advection.
Since the amount of adsorbed species is negligibly small in
comparison to the mass flow rate of carrier gas it is assumed
that the adsorption process does not affect the flow field in the
channel. For a solid adsorbent it is assumed that it has a micro-
pore system and it is non-porous for the carrier fluid flow. As such,
it is not geometrically included in flow calculations.

3. Governing equations

3.1. Fluid flow and mass transfer

The air mixture is considered as an incompressible fluid with
constant physical properties' density ρ0 ¼ 1:164 kg=m3 and kine-
matic viscosity ν0 ¼ 1:522� 10�5 m2=s. Due to the adsorption
phenomena, the species in the form of butane is transported
within the mixture by means of convection and diffusion, and is
adsorbed or desorbed on the walls. Species diffusivity D0 ¼ 1:13�
10�5 m2=s is considered as a constant, defining the Schmidt
number value as Sc¼ ν0=D0 ¼ 1:347. The Reynolds number value
is Re¼ v0d=ν0, with v0 being the average inflow velocity.

The honeycomb adsorber consists of multiple parallel narrow
channels, and the incoming flow is distributed among these
channels. This leads to low values of flow velocities inside the
channels, and due to small channel diameters (a few mm or even
less) this results in very low Reynolds number values. The flow can
therefore be considered as laminar, and it is possible to analytically
derive the expression for the velocity profile of the developed
flow. The results of such analytical derivation is adopted from
derivation of Chen [2], and reads for a channel with a square cross-
section as

vx ¼ 48
π3v0 1�192

π5 ∑
1

n ¼ 1;3;…

1
n5 � tanh

nπ
2

� � !�1

� ∑
1

n ¼ 1;3;…

1
n3ð�1Þððn�1Þ=2Þ � 1�

cosh
nπy
d

� �
cosh

nπ
2

� �
0
B@

1
CA cos

nπz
d

� �
ð1Þ

where d is the channel width, v0 the average inflow velocity and y
and z are the coordinates in the channel. It would be possible to
compute the flow field by implementing the sub-domain BEM
[18], however since preliminary computations showed identical
results compared to the results of the analytical expression, the
latter was adopted in computing velocity of the fluid inside the
channel. This approach substantially decreases the computational
time for the simulation and proves reasonable due to the fact
that honeycomb adsorption processes are always conducted at low
Reynolds numbers.

With a known velocity field, the adsorbate species is trans-
ported by the flow by convection and diffusion, according to the
following equation:

∂C
∂t

þð v!� ∇!ÞC ¼ 1
Re Sc

∇2C; ð2Þ

where C is the species concentration, v! the flow velocity and t the
time. Due to very low species concentration in the mixture (less
than 1% of the total mass in the flow), the mixture properties are
assumed constant, i.e. adsorption and the consequent change of
the mixture composition have no effect on the fluid flow.

Fig. 1. Sketch of a single honeycomb channel. The length of the channel is
L¼50 mm, the width of the channel is d¼1.5 mm and the thickness of the
adsorbent layer is h¼ 0:015 mm.
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3.2. Initial and boundary conditions

Geometry of the honeycomb channel in which the adsorption
process is taking place is shown in Fig. 1, where a characteristic
high ratio between the height and the length of the channel can be
observed. The channel height and width in our example are of the
same length so the channel cross-section has a square shape.
The adsorbent layer on the channel walls is very thin and
adsorbate diffusion in the layer is not included in our geometrical
and mathematical model.

It is assumed that adsorption equilibrium in the layer is
reached instantaneously. The interface between the adsorbent
layer and the bulk flow is considered as the boundary of the
computational domain, where the no-slip boundary conditions are
applied vw¼0, with the index w marking the wall of the channel.
Adsorbate concentration on the channel wall Cw is set to 0 only in
the first time step of the simulation. In the following time steps
the value of concentration on the wall Cw is set according to the
dynamic model, described in the following section.

At the inflow of the channel the constant concentration Cin ¼
const ¼ 0:007358 kg=m3 is set and the velocity profile of the
developed laminar flow (Re¼2.92) is applied. At the outflow
of the channel the open boundary condition is applied in a manner
that concentration values from the nearest nodes inside the
domain are copied to the outflow boundary nodes and thus a
zero normal flux boundary condition is achieved.

3.3. Concentration boundary condition at the solid wall

The adsorption process in the channel is taking place on the
interface between the adsorbent layer and the fluid phase loaded
with a low concentration of adsorbate. Molecules of adsorbate are
attracted by the adsorbent layer due to the intermolecular forces
and when they reach the vicinity of the interface they enter the
pore system of adsorbent. By entering the pore system they leave
the bulk fluid phase leading to a decrease in the value of adsorbate
concentration in the vicinity of the interface. Due to this mechan-
ism a concentration gradient forms from the bulk of the fluid
towards the interface

∂C
∂n

o0 ð3Þ

as shown in Fig. 2. Adsorbate concentration gradient causes mass
flux of adsorbate molecules towards the adsorbent layer which can

be described by the following equation:

_q ¼
Z
Γ
D0∇

!
C � n! dΓ ð4Þ

Γ is the outer surface area of the adsorbent layer. The quantity of
adsorbate mass that can accumulate in the adsorbent layer
depends on the adsorption equilibrium at a given concentration
and temperature. Adsorption equilibrium can be calculated with
the Dubinin–Radushkevich model [3,12]

Qeq ¼ qmax exp � RT
βE0

ln
Csat

C

� �2
( )

: ð5Þ

In the case of air-butane activated carbon system, the qmax ¼
509:34 kg=m3 is the maximum amount of adsorbate adsorbed at
the saturation pressure, R is the gas constant, temperature T¼
293.15 K, Csat ¼ 6:48 kg=m3 the saturation concentration, C ¼ Cin is
the concentration of adsorbate and the affinity coefficient multi-
plied with the energy parameter is βE0 ¼ 22 767 J=mol.

If the mass flux is calculated with Eq. (4) it is possible to
calculate the quantity of accumulated mass in each time step of
the simulation with the following equation:

QaccumðtÞ ¼ ∑
t

0
_q �Δt: ð6Þ

Mass flux (6) of adsorbate species occurs until the equilibrium
state is reached when the accumulated mass of adsorbate Qaccum

reaches equilibrium mass of adsorbate Qeq. When the equilibrium
state is reached the concentration gradient on the wall becomes 0.

The model for defining boundary concentration values (bound-
ary condition) is governing the adsorbate concentration gradient
and thus time interval in which equilibrium is reached in the
adsorbent layer. The equilibrium state is reached when accumu-
lated mass equals equilibrium mass at given temperature and
concentration. Accuracy of channel adsorption process modelling
is highly dependable on the model of boundary concentration
definition in each time step of simulation. Boundary concentration
as a boundary condition can be defined in each time step as

Cw ¼ Ci � kðtÞ; ð7Þ
where Ci is the concentration value of the nearest numerical mesh
node, as shown in Fig. 3, Cw is the boundary concentration on the
wall and kðtÞ is the distribution coefficient in a specific time step.

Other authors [8] used a different approach and set the value of
wall concentration Cw¼0 during the adsorption process. When
adsorption equilibrium is reached the wall concentration is set to
inlet concentration, Cw ¼ Cin. A similar approach was also used by
Valdes-Solis et al. [23] where an effective diffusion coefficient Def

was proposed for accurate modelling of the adsorption process.
We propose to introduce the distribution coefficient kðtÞ defined as
the ratio between accumulated mass and equilibrium mass. It may
be written as

kðtÞ ¼
Qaccum

Qeq
QaccumrQeq

1 otherwise

8><
>: ð8Þ

Fig. 2. Definition of concentration boundary conditions. Fig. 3. Surface and volume elements.
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4. Numerical method

With the known velocity field the diffusion–convection trans-
port equation for adsorbate species has to be solved numerically.
The numerical solution is based on subdomain BEM [17,13] and its
extension to 3D problems in the form of the BEM based solution
of the velocity–vorticity formulation of the Navier–Stokes equa-
tions [18].

Starting with Eq. (2) and applying the Weighted residuals
technique the integral form of the adsorbate species conservation
equation may be written as

cð θ
!

ÞCð θ
!

Þþ
Z
Γ
C∇
!

un � n! dΓ ¼
Z
Γ
un q!C � n! dΓ

þRe Sc
Z
Ω
unfð v!� ∇!ÞCgdΩ

þRe Sc
Z
Ω
unðβ1Cþβ2C

nþβ3C
n�1Þ dΩ ð9Þ

where θ
!

is the source or collocation point, n! is a vector normal to
the boundary, pointing out of the domain, and un is the funda-
mental solution for the diffusion operator:

un ¼ 1

4πj θ
!

� r!j
ð10Þ

cð θ
!

Þ is the geometric factor defined as cð θ
!

Þ¼ α=4π, where α is

the inner angle with an origin in θ
!

. If θ
!

lies inside of the domain

then cð θ
!

Þ¼ 1; cð θ
!

Þ¼ 1=2, if θ
!

lies on a smooth boundary. At a
time t for a time step Δt a second order finite difference
approximation is used to approximate the time derivatives as

∂C
∂t

¼ β1Cþβ2C
nþβ3C

n�1 ð11Þ

where β1 ¼ 3=2Δt, β2 ¼ �2=Δt and β3 ¼ 3=2Δt. C is the concen-

tration in the time step to be computed, Cn and Cn�1 are the
concentrations in the previous two time steps. In the very first

time step, when Cn�1 is not defined, a backward Euler approxima-
tion is used (β1 ¼ 1=Δt, β2 ¼ �1=Δt and β3 ¼ 0). Concentrations

on the boundary Cð r!Þ and adsorbate mass flux on the boundary

q!Cð r!Þ¼ ∇
!

Cð r!Þ � n! are set as boundary conditions.
It is possible to further simplify the first domain integral in

Eq. (9). Due to solenoidality of the velocity field the following
relation is valid:

ð v!� ∇!ÞC ¼ ∇
!� ð v!CÞ ð12Þ

and the domain term can be transformed into the following form:

Re Sc
Z
Ω
fð v!� ∇!ÞCgundΩ¼ Re Sc

Z
Ω
f∇!� ð v!CÞgundΩ ð13Þ

With the use of the algebraic relation

∇
!� funð v!CÞg ¼ un∇

!� ð v!CÞþð v!CÞ � ∇!un ð14Þ

it is possible to further transform the right hand side integral in
Eq. (13) into two domain integrals:

Re Sc
Z
Ω
f∇!� ð v!CÞgundΩ¼ Re Sc

Z
Ω
∇
!� funð v!CÞgdΩ

�Re Sc
Z
Ω
ð v!CÞ � ∇!undΩ: ð15Þ

The first integral on the right hand side of Eq. (15) can be
transformed into the boundary integral with the use of the Gauss
divergence theorem, which finally leads to the transformation of

the first domain integral of (9) into the following relation:

Re Sc
Z
Ω
fð v!� ∇!ÞCgundΩ¼ Re Sc

Z
Γ
n!

� funð v!CÞgdΓ�Re Sc
Z
Ω
ð v!CÞ � ∇!undΩ ð16Þ

The final form of Eq. (9) can therefore be written with the use of
Eq. (16) as

cð θ
!

ÞCð θ
!

Þþ
Z
Γ
C∇
!

un � n! dΓ

¼
Z
Γ
un q!c n

! dΓþRe Sc
Z
Γ
n! unð v!CÞ
n o

dΓ

�Re Sc
Z
Ω
ð v!CÞ � ∇!undΩþRe Sc

Z
Ω
un3C�4CnþCn�1

2Δt
dΩ ð17Þ

where the second order finite difference approximation of the
time derivative was considered.

In order to lower computational demands the subdomain BEM
method was used to solve the concentration transport equation.
Since Eq. (17) consists of boundary and domain integrals, discre-
tization of only the boundary is not sufficient and discretization of
the whole domain is necessary. Computational mesh consists of
hexahedral elements which are considered as subdomains, and
Eq. (17) is then calculated for each of these subdomains.

The computational domain can be defined as the Ω¼∑eΩe

and all element sides that are adjacent to the outer domain
boundary are denoted as boundary elements, Γ ¼∑bΓb. Each
subdomain in the form of a hexahedral element consists of
27 nodes. The interpolation is based on continuous quadratic
interpolation of the field function with the use of Lagrangian
interpolation functions Φi. The boundary of each hexahedron
subdomain consists of 6 boundary elements and each boundary
element consists of 9 function and 4 flux nodes.

With the described discretization Eq. (17) is transformed
into the following form for each hexahedron subdomain and for
every θ:

cð θ
!

ÞCð θ
!

Þþ∑
b

Z
Γb

C∇
!

un � n! dΓ ¼∑
b

Z
Γb

unq n! dΓ

þRe Sc∑
b

Z
Γb

n! unð v!CÞ
n o

dΓ�Re Sc∑
e

Z
Ωe

ð v!CÞ � ∇!undΩ

�Re Sc∑
e

Z
Ωe

un3C�4CnþCn�1

2Δt
dΩ ð18Þ

The concentration function is interpolated over the boundary
elements as C ¼∑φiCi and inside each hexahedron subdomain
as C ¼∑ΦiCi. Flux is interpolated over the boundary elements as
q¼∑ϑiqi using discontinuous linear interpolation scheme, avoid-
ing the definition problems in corners and edges. By applying the
described interpolation the following form of the equation (17)
can be written:

cð θ
!

ÞCð θ
!

Þþ∑
b

Z
Γb

φiCi∇
!� un n! dΓ ¼∑

b

Z
Γb

unϑiqi n
! dΓ

þRe Sc∑
b

Z
Γb

n! unð v!ΦiCiÞ
n o

dΓ

�Re Sc∑
e

Z
Ωe

ð v!ΦiCiÞ � ∇
!

undΩ

�Re Sc∑
e

Z
Ωe

un3ΦiCi�4ΦiC
n
i þΦiC

n�1
i

2Δt
dΩ ð19Þ

with i denoting the node number.
After the following integrals are calculated:

½H� ¼
Z
Γ
φi∇
!

un � n! dΓ; ½G� ¼
Z
Γ
ϑiu

ndΓ;

½ A!�¼
Z
Γ
φi n
!undΓ; ½D!�¼

Z
Ω
Φi∇

!
undΩ ½B� ¼

Z
Ω
unΦi dΩ: ð20Þ
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Eq. (19) is transformed into the matrix form:

cð θ
!

ÞCð θ
!

Þþ½H� Cf g ¼ ½G� qC
� �þRe Sc½ A!� v!C

n o
þRe Sc½D!� v!C

n o

�Re Sc½B� 3fCg�4fCngþfCn�1g
2Δt

 !
ð21Þ

or in the component form

cð θ
!

ÞCð θ
!

Þþ½H� Cf g ¼ ½G� qc
� �þRe Scð½Ax� vxCf g

þ½Ay� vyC
� �þ½Az� vzCf gÞ

�Re Scð½Dx� vxCf gþ½Dx� vxCf gþ½Dx� vxCf gÞ

�Re Sc½B� 3fCg�4fCngþfCn�1g
2Δt

 !
: ð22Þ

Square brackets in Eq. (22) denote integral matrices and each
source point yields one row in these matrices. Because there are
26 function nodes on the boundary of each subdomain (the 27th
node is inside the subdomain) there are 26 rows in the matrices
½H� and ½ A!�. Matrices ½D!� have 27 columns since there are 27
nodes for function interpolation in total in every subdomain.
Similarly there are 24 columns in the matrix ½G� since there are
24 nodes for flux interpolation on the surface of each subdomain.

The Gaussian quadrature algorithmwas used for calculating the
integrals, which were evaluated in the local coordinate system.
A weighted summation of up to 48 integration points on each
coordinate axis was used. Free coefficient cð θ

!
Þ is calculated

indirectly. Rigid body movement u¼1, q¼0 is considered and thus
the sum of all ½H� matrix elements for each source point is 0. This
fact is considered in cð θ

!
Þ calculations and these values are added

to the diagonal terms of the ½H� matrix. The system is solved in a
least squares manner [15].

The accumulated mass in the adsorption process is calculated
with Eq. (4) with integration of species fluxes for each boundary
element, and a consequent summation in (6). Since the distribu-
tion coefficients k are assigned to a boundary element they have to
be appropriately distributed to the local nodal values in order to be
able to set the correct boundary conditions for the species
concentration. The local nodal values of kðtÞ were computed using
a weighted average of all boundary elements that share the chosen
node. The weights in the averaging procedure were the area of
each boundary element.

4.1. Numerical algorithm

Computation of the adsorption process in the honeycomb
channel is based on the derived subdomain based BEM algorithm.
Since the channel aspect ratio is very large, the fully developed
flow profile was selected for the whole domain and the velocity
field was calculated using the analytical expression (1). In the case
of mass transfer, the Dirichlet boundary conditions for species
concentration at the channel walls, Eq. (7), enabled dynamical
adaptation according to the accumulated adsorbate mass on the
channel walls. With prescribed concentration boundary conditions
and the fully developed flow conditions at the outflow the solution
of the species concentration equation (22) gives values of species
concentration inside the domain and values of the species fluxes
on the channel walls. Once the fluxes are known, computation of
accumulated adsorbate mass according to Eq. (6) is done, followed
by re-computation of distribution coefficients according to Eq. (8).
By obtaining the new boundary concentration values, the compu-
tation of the next time step is possible.

The outline of the algorithm can therefore be summarized as

1. initialization, computation of domain and boundary integrals,
2. begin time loop,

3. computation of domain velocity values by solving analytical
expression (1),

4. subdomain BEM based solution of the species concentration
equation (22), using the known velocity field, for boundary
fluxes and domain concentration values,

5. calculation of the adsorption equilibrium for each boundary
element with Eq. (5),

6. computation of the mass flux of adsorbate species with Eq. (4),
7. calculation of the distribution coefficient for each boundary

element with Eq. (8),
8. transformation of element assigned values of the distribution

coefficient to the boundary node based values,
9. calculation of the new boundary conditions for the species

concentration on the wall with Eq. (7),
10. end time loop.

5. Results

The adsorption process in a channel of a honeycomb adsorber
was experimentally analyzed in [23], where a numerical solution
implementing method of lines is also provided. The published
results served as a validation test case for determination of the
accuracy of our numerical algorithm. In order to have the same
model equations the Dubinin–Radushkevich equation for the
adsorption equilibrium was selected. The applied equilibrium
curve is depicted in Fig. 4.

The computational mesh and time step sensitivity analysis
were performed with 6�6 and 8�8 elements in the cross section
and 278, 378 and 580 elements in the longitudinal direction.
Convergence analysis for the Sherwood number, derived from
equating the diffusion mass flux density normal to the wall with
the convective mass transfer, defined as

Sh¼ 1
C�Cin

� ∂C
∂n

� d ð23Þ

where C is a local concentration, n a normal vector pointing
outside of the domain and d is the width of the channel, is
depicted in Fig. 5 for the test case of Re¼2.92 and Sc¼1.34.
Accuracy analysis and computational time considerations led
to the decision that the most suitable computational mesh was
the 8�8�378 element mesh with 546 215 nodes, as it produces
concentration distributions without non-physical oscillations (see,
for example, such results for the coarsest mesh in Fig. 5) with
relatively low computational demands.

C [kg/m3]

q 
[k

g/
m

3 ]

0 0.005 0.01 0.015

50

100

150

200

250

Fig. 4. Equilibrium according to Dubinin–Radushkevich equation.
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According to the selected computational mesh, the time step
value analysis was performed, with results shown in Fig. 6 for the
case of Re¼2.92 and Sc¼1.34 and a preselected position and time
instant in the channel. As can be expected, the Sherwood number
value increases in front of the concentration front, and then
decreases in the bulk of the concentration front, as the accumu-
lated mass on the adsorbent decreases the ability of the adsorbent
to adsorb the adsorbate molecules. The smooth transition in the
Sherwood number distribution along the x-axis is the result of the
appropriate model for the boundary conditions, set by Eq. (7).
The largest time step value, that led to accurate computational
results, was Δt ¼ 0:25 s. In terms of the local values of the CFL
(Courant Friedrichs Lewy) number the value for the Δt ¼ 0:25 s
was CFL¼6.65. As the concentration front progresses downstream,
the adsorption process is affected by this movement. Precisely, the
adsorption front, denoted by the highest adsorption fluxes and
highest Sh number values, moves downstream, as depicted in
Fig. 7.

The most important parameter of the adsorption process in a
honeycomb adsorber for the engineering use is the breakthrough
curve of adsorbate concentration. It is denoted as the time needed
for the adsorbate bulk from entering and exiting the channel, and
the same can also be concluded for the motion of the adsorption

front. This information is crucial for determination of the appro-
priate time intervals of the adsorption cycle and of the beginning
of the regeneration cycle or replacement of the adsorbent. Since
the breakthrough curve in a honeycomb adsorber is very steep the
information about the breakthrough time is the crucial parameter
in the design of the adsorption process. Comparison of the break-
through curve from the performed BEM simulations with experi-
mental results of [23] for the 200 cpsi–5 cm–5 cm monolith is
depicted in Fig. 8. Taking into account that the thermal effects and
the diffusion transport inside the adsorbent layer were not
considered, a very good agreement is obtained for the nonsta-
tionary simulation with computed 15 000 time steps.

In order to analyze the developed numerical algorithm the
wall concentration Cw, the distribution coefficient k and the local
Sherwood number values were also analyzed. Fig. 7 shows local
values of the Sherwood number, proving that the concentration
front travels through the honeycomb channel at a constant
speed. Concentration front of the adsorbate species develops its
shape almost instantly at the beginning of the channel and grows
in length almost insignificantly during its passage through the
channel length. Fig. 9 shows in detail the local values of the
Sherwood number, the wall concentration Cw and the distribution
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Fig. 5. Computational mesh density analysis with the Sherwood number value
distribution along the wall centreline.
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coefficient kðtÞ in the region of the mass transfer zone (concentra-
tion front). The speed of the concentration front propagation in
the channel is vfront ¼ 0:00001887 m=s (case of Re¼2.92 and
Sc¼1.34). Fig. 9 also shows that local values of the Sherwood
number decrease much faster in the direction of the inflow than
they grow to the maximum value from the outflow direction. Also,
the mass transfer and the adsorption processes are occurring in
the region with an approximate length of 4 mm or roughly 8% of
the entire length of the channel. Local values of wall concentration
Cw and distribution coefficient k(t) are very similar with the
difference that the concentration curve lags behind the distribu-
tion coefficient curve.

When considering industrial applications of honeycomb adsor-
bers one has to take into account different flow rates that adsorber
could be subjected to. Since honeycomb adsorbers are designed
for the laminar flow regime the flow rates and hence average
velocities in a channel are relatively low. In order to test the
adsorption performance under varying flow rate conditions simu-
lations of cases with Reynolds number values 2.92, 5 and 10 were
performed. In Fig. 10 the breakthrough curves, representing the
average outflow concentration of adsorbate Cout, for cases with
different Reynolds number values are compared. As could be
expected two distinct characteristics can be observed. The break-
through occurs faster for flows with higher Reynolds number and

one can conclude that the time needed for the complete break-
through of adsorbate (Cout ¼ Cin) is linearly dependable on the flow
Reynolds number value. The other main observed characteristic is
that due to the higher speed of the flow the concentration front
becomes longer and thus the breakthrough curve becomes flatter.
This is especially obvious by comparison of the breakthrough
curves for the cases of Re¼10 and Re¼2.92.

The influence of the Reynolds number value on the mass
transfer in the region of the concentration front where the
adsorption process is occurring can also be clearly observed when
comparing the local values of the Sherwood number along the
middle of the upper wall of the honeycomb channel, Fig. 11. In
order to compare the local values of the Sherwood number the
results are shown in one position and are originating from
different time instants. It can be seen that the increase in the
Reynolds number value causes an increase of the Sherwood
number values, hence higher mass transfer rates, accelerating
the adsorption process toward the adsorption equilibrium.
The other significant effect of the higher Reynolds number value,
also observed in Fig. 11, is the increase of the lengths of the mass
transfer zone. In the case of Re¼2.92 this zone is approximately
4 mm long, and in the case of Re¼10 it extends up to 10 mm.
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This fact also explains the flattening of the breakthrough curves
with increasing Reynolds number values, Fig. 10.

Finally, the increase in the flow rate and the widening of
the active adsorption area has to be accounted for properly by
the concentration boundary conditions. As previously discussed,
the boundary condition (7) with definition of the distribution
coefficient (8) implicitly considers the local concentration condi-
tions, and the distribution of the kðtÞ values for different time
instants, depicted in Fig. 12, proves this fact. With increasing the
Reynolds numbers' value the region of mass transfer is longer,
effectively widening the area where the distribution coefficient
changes its value from 0 to 1.

6. Conclusions

The main aim of the presented work was the development of
BEM based mass transfer computational scheme, with the adsorp-
tion process dynamics incorporated in the boundary conditions
for adsorbate concentration on the adsorbent walls. The presented
approach allows a dynamic adaptation of the concentration
boundary conditions, effectively leading to a physically more
accurate computation of mass fluxes to the adsorbent walls. The
latter are computed implicitly by the BEM based solution of the
diffusion–convection transport equation for the adsorbate species,
which presents a clear advantage over other domain type approx-
imation methods, where the concentration derivatives and hence
mass fluxes are computed as a post processing step. The presented
numerical scheme was combined with the adsorption equilibrium
model in the form of Dubinin–Radushkevich equation, however
the equilibrium model can easily be replaced by a more advanced
model. The latter option is currently in the process of investiga-
tion, with incorporation of the Simplified Local Density equili-
brium model [7].
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