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a b s t r a c t

Awavelet transform based BEM numerical scheme is used for Large Eddy Simulation of turbulent natural
and forced convection of air flowing over a solar thermal collector. The collector is enclosed by vertical
fins forming an open shallow cavity. The numerical scheme employs the velocity–vorticity formulation of
Navier–Stokes equations using LES turbulence model where boundary element and finite element
methods are combined. Grids with up to 2�105 nodes are used in simulations lasting for 6�104 time
steps. Three inflow air velocities are considered corresponding to Reynolds number value up to 2� 104.
Temperature difference between air and collector of about 50 K is considered. Heat transfer from the
thermal solar collector is studied via the average Nusselt number value, its time series and its
relationship to the values of Reynolds and Rayleigh numbers. The results show that the largest heat
losses occur behind the fin due to shedding of large vortices that transport hot air away from the
collector. Heat losses decrease along the central part of the collector and feature another smaller peak
just before the air hits the fin on the opposite side of the collector.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Recent developments in the area of advanced engineering
analysis are mainly connected with development of novel compu-
tational tools, based on numerical solution of complex physical
phenomena. Turbulent fluid flow with heat transfer is a typical
example of a problem, where the use of classical engineering
approaches in form of scale-up assumptions and resulting empiri-
cal models fall short when encountering complex heat transfer
geometries. Whereas empirical correlations are developed mainly
for simple geometries, such as a flat plate or a cylinder, even a
slight perturbation to such a geometry puts the applicability of the
empirical correlation, for example for the Nusselt number, under
question. The same holds when characteristic velocity field should
be determined in a form of a single velocity value, an example
when forced convection is under investigation. Such a relatively
simple example is flow over a cavity, where a cavity could be
described as a flat plate bounded by two finite vertical walls.

Flows over cavities are encountered in many engineering appli-
cations. Flows over solar thermal collectors [1–4] and flow in street

canyons [5] are only two of many such examples. Solar thermal
collectors enclosed by vertical fins form an open shallow cavity
capturing hot air above the collector and thus reducing heat transfer.

Several studies dealing with flow and heat transfer in and over
an open shallow cavity are available in the literature. Research
started with cavities of aspect ratio (height of the wall versus
width of the cavity) of one [6,7]. Chan and Tien [8] continued their
research on open shallow cavities. Bilgen [9] studied natural
convection, radiation and conduction heat transfer in a shallow
cavity configuration of a passive solar massive wall systems with
fins attached to the heated surface.

Gomes [1] performed experiments on flows over solar thermal
collectors to show that heat transfer can be significantly altered,
when the collector is enclosed into a cavity. The same problemwas
numerically studied by Zdanski and co-workers [2–4]. Even
though the flow over a solar thermal collector is always three-
dimensional, Zdanski used a 2D approximation. Such an approx-
imation is used in this paper as well.

Mesalhy et al. [10] studied the flow over a shallow cavity
heated with constant heat flux from the bottom side both
experimentally and numerically. In the numerical simulation the
standard k–ϵ turbulence model was used to account for the
turbulent fluctuations. Variations of cavity aspect ratio and Rey-
nolds number have been studied. They reported that a single
elongated eddy has been formed for aspect ratio lower than 7.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/enganabound

Engineering Analysis with Boundary Elements

http://dx.doi.org/10.1016/j.enganabound.2014.01.018
0955-7997 & 2014 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: jure.ravnik@uni-mb.si (J. Ravnik),

matjaz.hribersek@uni-mb.si (M. Hriberšek), leo@uni-mb.si (L. Škerget).

Engineering Analysis with Boundary Elements 45 (2014) 20–28



Author's personal copy

As the aspect ratio increases the flow impinges with the cavity
floor creating two eddies, one beside the upstream cavity side and
the second beside the downstream cavity side.

Polat and Bilgen [11] numerically examined conjugate heat
transfer in inclined open shallow cavities. A thick wall facing the
opening was heated by a constant heat flux, sides perpendicular to
the heated wall were insulated and the opening was in contact
with a fluid at constant temperature and pressure. Conjugate heat
transfer by conduction and natural convection was studied by
numerically solving equations of mass, momentum and energy.
They reported that heat transfer is an increasing function of the
aspect ratio up to a critical Rayleigh number above which the
relationship changes and it becomes a decreasing function of
aspect ratio.

Recently, Alloui and Vasseura [12,13] studied flow and heat
transfer of nanofluids and micropolar fluids in shallow cavities.
The critical Rayleigh number for the onset of supercritical convec-
tion of nanofluids is predicted explicitly. Analytical studies are
compared with numerical experiments.

Most available studies use either a laminar setting or employ a
Reynolds averaged Navier Stokes equations (RANS) approach to
turbulence modelling. Due to the known RANS limitations when
flows with adverse pressure gradients are encountered and
recirculation regions are an important part of the flow field, we
decided to use the Large Eddy Simulation approach for solving
turbulent flow over an open cavity, where accurate predictions of
recirculating flow regions are of main importance for correct
computation of heat transfer phenomena. Salat et al. [14] com-
pared the results of modelling turbulent natural convection at high
Rayleigh number value between experimental data, 2D LES, 2D
DNS and 3D LES computations. They reported that only minor
differences are observed between the 2D and 3D results and
concluded that a 2D calculation could be used as a first approx-
imation for general flow structure in cavities at Rayleigh number
value about 1010. Peng and Davidson [15] performed a LES study of
turbulent buoyant flow in a 1 : 1 enclosure at Ra¼ 1:59� 109

using a dynamic Smagorinsky model as well as the classical
Smagorinsky model with Van Driest damping.

In the present work both forced and natural convection in a
flow over a shallow cavity were studied. The shallow cavity was
used as a model of a solar thermal collector, composed of the flat
floor and two side walls (fins). Heat transfer within the cavity was
studied for the incoming air flowing parallel to the cavity floor.

The planar Large Eddy Simulation (LES) is used with the
velocity–vorticity formulation of the incompressible Navier–
Stokes equations. The velocity–vorticity formulation of the
Navier–Stokes equations in combination with the boundary ele-
ment method is a promising concept for numerical solution of
fluid flow problems. Solution of the flow kinematics equation is
obtained by the boundary element method (BEM) and provides
boundary vorticity values, leading to a well posed vorticity trans-
port equation. It is written in a form directly applicable for the first
kind boundary value problems. Velocity–vorticity LES has been
investigated by Tenaud et al. [16] and Mansfield et al. [17], each
using a different solution technique for computation of boundary
vorticity values. We propose to use BEM because of its unique
advantage for solving the boundary vorticity values directly.

For the solution of the domain values Škerget et al. [18] and
Ramšak and Škerget [19] proposed a subdomain BEM technique.
Although the subdomain technique results in sparse matrices, it
still requires a considerable amount of computer memory and CPU
time. These requirements were reduced by Žunič et al. [20] who
proposed using FEM for the solution of the domain and was able to
simulate 2D laminar flows in velocity–vorticity formulation. In
order to be able to perform a LES simulation, a wavelet compres-
sion algorithm is introduced on fully populated matrices, resulting

from the BEM calculation of boundary vorticity, to further decrease
the computer memory and CPU time requirements of the coupled
BEM–FEM algorithm. A discrete wavelet transform for vectors of
arbitrary length, developed by Ravnik et al. [21] as well as the
BEM–FEM coupling algorithm developed by Ravnik et al. [22], was
used.

2. Velocity–vorticity based Large Eddy Simulation

In this work we assume an incompressible viscous Newtonian
fluid with constant material properties: density ρ, viscosity ν and
thermal diffusivity α¼ λ=ρcp. The continuity equation (mass con-
servation law) within this approximation, ∇

!� v!¼ 0, requires the
velocity field v! to be solenoidal, i.e. divergence free. In order to
write the Navier–Stokes equations buoyancy is modelled within
the Boussinesq approximation. Density variations with tempera-
ture ρðTÞ ¼ ρ0½1�βT ðT�T0�Þ are considered only in the buoyancy
term and defined by the thermal volume expansion coefficient βT
and the temperature difference.

The well established [23,24] LES approach is to filter the
equations of continuity, momentum and heat transport and
rewrite them in a form, having the same terms as the original
equation with an additional term, describing the difference
between the two equations, i.e. the dissipation effects. However,
we will use velocity–vorticity based LES, where the vorticity
transfer equation is filtered instead of the momentum transfer
equation. Similar to Richardson's energy cascade, Taylor's [25]
vorticity transfer hypothesis also proposes transfer of vorticity
from the large scales towards the small scales and its dissipation
by the small scales.

In this work, we employ the velocity–vorticity formulation of
the Navier–Stokes equations. Vorticity ω! is defined as the curl of
the velocity ω!¼ ∇

!� v!. In this formulation the continuity
equation is used to transform the vorticity definition into a
kinematics equation:

∇2 v!þ ∇
!� ω!¼ 0; ð1Þ

which relates the velocity and vorticity fields for every point in
space and time. Both the vorticity and velocity fields must be
solenoidal, in order for this equation to be fulfilled.

Similarly, the momentum conservation equation is replaced by
the vorticity transport equation:

∂ω!
∂t

� ∇
!� ð v!� ω!Þ¼ � Ra

PrRe2
∇
!� T g!� 1

Re
∇
!� ∇

!� ω!: ð2Þ

The non-dimensional form of equations is used. Here Re¼ v0h=ν is
the Reynolds number, Pr¼ νρcp=λ is the Prandtl number and

Ra¼ gβTΔTh3=να is the Rayleigh number. The form of vorticity
transfer equation (2) is appropriate for LES filtering. The applica-
tion of the filter to Eq. (2) filters all field functions in linear terms.
Special consideration is needed for the nonlinear term

∇
!� ð v!� ω!Þ, which requires an introduction of a residual vorti-

city vector τ!ω
that represents the difference of a filtered product

and a product of filtered quantities τ!ω ¼ v!� ω!� v!� ω!. The
filtered equation (2) reads as

∂ω!
∂t

� ∇
!� ð v!� ω!Þ¼ � Ra

PrRe2
∇
!� T g!� 1

Re
∇
!� ∇

!� ω!þ ∇
!� τ!ω

;

ð3Þ
where we have, due to clarity of notation, omitted the bars
indicating that all field functions have been filtered. By comparing
non-filtered equation (2) with the filtered equation (3) we see that

the difference is only in the residual vorticity vector term ∇
!� τ!ω

.
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Thus the residual vorticity vector τ!ω
represents the dissipation of

vorticity by the small scales according to the turbulent vorticity
transfer theory of Taylor [25].

The filtered form of the energy conservation law, i.e. the heat
transport equation is

∂T
∂t

þð v!� ∇!ÞT ¼ 1
RePr

∇2T� ∇
!� τ!h

; ð4Þ

where the residual temperature vector τ!h
is defined as the

difference between the filtered product of temperature and

velocity field minus the product of filtered fields τ!h ¼ T v!�T v!.
Numerous LES studies used the Smagorinsky [26] and vorticity

based [17] models for modelling the dissipative effect of subgrid
scales. Both types of models model the contribution of subgrid
scales via the turbulent viscosity hypothesis. We are modelling the
subgrid scales with analogy to molecular transfer of kinetic energy
to heat; the process which is defined by viscosity. The residual
heat vector is modelled using the gradient hypothesis. Here we are
introducing a non-dimensional subgrid scale viscosity νsgs and
subgrid diffusivity αsgs by

τ!ω ¼ �νsgs∇
!� ω!; τ!h ¼ �αsgs∇

!
T : ð5Þ

Using the residual vorticity vector (5) and after doing some
algebraic manipulations, we arrive at the final form of the filtered
vorticity transport equation. In this paper the solution of the
vorticity��velocity based LES was obtained in planar geometry.
In planar geometry the kinematics equation (1) connects the
velocity components vx; vy to the scalar vorticity field ω;
ω!¼ ð0;0;ωÞ. Pointing gravity in the negative y direction, the
filtered vorticity transport equation can be written as

∂ω
∂t

þð v!� ∇!Þω¼ 1
Re

þνsgs
� �

∇2ω� Ra

PrRe2
∂T
∂x

þ ∇
!
ω � ∇!νsgs: ð6Þ

Inserting the residual heat vector (5) into diffusion advection
equation for temperature (4) we obtain

∂T
∂t

þð v!� ∇!ÞT ¼ 1
RePr

þαsgs

� �
∇2Tþ ∇

!
T � ∇!αsgs ð7Þ

Several models for the subgrid scale viscosity have been
proposed. For vorticity transport equation (6) the enstrophy based
model given by Mansour [27,28] was used: νsgs ¼ ðCΔÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω!� ω!

p
.

A sharp spectral filter is used; thus the filter width equals
Δ¼ ðΔxΔyÞ1=2. It is known [29] that turbulent oscillations die out
in the vicinity of walls. Therefore, the residual vorticity vector (5)
must also limit to zero when approaching a solid wall. Damping of
the filter width is used to achieve zero residual tensor and vector
at the wall [29]. We employed Van Driest type damping dvd to
bring the subgrid scale viscosity to zero in the vicinity of solid
walls:

dvd ¼ 1�e �yþ =25½ �; νsgs ¼ ðCΔdvdÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω!� ω!

q
: ð8Þ

On the basis of experimental observations the turbulent visc-
osity of isotropic turbulence was found to be comparable with the
turbulent diffusivity for the complete turbulent spectrum, their
relationship being close to linear:

αsgs ¼
1
Prt

νsgs; ð9Þ

where Prt is the empirically defined turbulent Prandtl number.

3. Coupled wavelet BEM��FEM solution algorithm

The solution of the vorticity��velocity based LES was
obtained in planar geometry. In planar geometry the kinematics

equation (1) connects the velocity components vx; vy to the scalar
vorticity fieldω. Our complete system of equations is thus made of
two scalar Poisson type kinematic equations for both velocity
component equations (1) and of the diffusion advection equations
for temperature (7) and vorticity (6). Having the Dirichlet type
velocity boundary conditions on all walls, the wavelet based
boundary element method is used to calculate boundary vorticity
[21]. The following integral form of the kinematics equation is
used

cðξÞ v!ðξÞþ
Z
Γ
v!ð n!� ∇!Þu⋆ dΓ

¼
Z
Γ
v!� ð n!� ∇

!Þu⋆ dΓþ
Z
Ω
ðω!� ∇

!
u⋆Þ dΩ; ð10Þ

where u⋆ is the fundamental solution of the Laplace
equation (u⋆ ¼ ð1=2πÞlnð1=rÞ in 2D), n! is the unit normal, ξ is
the source point and cðξÞ is the geometrical factor.

With the boundary vorticity values as the unknowns, the
discrete (matrix�vector) form of equation (10) is [22]

½DΓ �fωΓg ¼ ð½C�þ½H�Þfvtgþ½Ht �fvng�½DΩ\Γ �fωΩ\Γg: ð11Þ

The matrices are fully populated and unsymmetrical. Storage and
algebraic operation with these matrices requires large amount of
onboard memory and CPU time. To tackle this problem we
employed a wavelet transform technique for rectangular matrices
developed by Ravnik et al. [21]. Wavelet transform of all rows and
columns of matrices is calculated and afterwards small matrix
elements may be neglected. Thus, a sparse matrix is obtained and
the boundary vorticity values may be calculated efficiently.

After the calculation of the boundary vorticity values the kine-
matic equations (1) are solved again for domain velocities. Explicit
BEM or FEM can be used. With the new velocity field the
temperature transport equation (7) is solved to obtain a new
temperature field. Finally, the vorticity transport equation (6) is
solved using the new boundary vorticity, domain velocities and
temperatures. Both transport equations are solved by FEM. The
procedure is repeated until convergence criteria is fulfilled (RMS
difference between vorticity fields in subsequent iterations is used).

Both the vorticity transport equation (6) and temperature
transport equations (7) are of the diffusion��advection type.
Here we describe a FEM solution of a general form of equations.
Let the unknown scalar field function (vorticity or temperature) be
denoted by u. First of all the partial time derivative has to be
approximated by the following second order approximation

∂u
∂t

� 3u�4unþun�1

2Δt
; ð12Þ

where u is the field function to be calculated in the next time step,
un is the field function in the present time step, and un�1 is the
previous time step field function. The time step size is Δt. Having
the approximation of the time derivative in mind, one can state
the general diffusion advection equation in the form

βuþCi
∂u
∂xi

¼D∇2uþ∂Gi

∂xi
þM ð13Þ

with β, Ci;D;Gi and M functions of time and location. Einstein
summation notation is employed with i¼1,2 . The classical
Garlekin FEM procedure is employed. One calculates integrals over
each domain cell Ωc using interpolation functions Nk, (k¼ 1…nd)
as weighting functions:
Z
Ωc

βNku dΩþ
Z
Ωc

CiNk
∂u
∂xi

dΩ

¼
Z
Ωc

DNk∇2u dΩþ
Z
Ωc

Nk
∂Gi

∂xi
dΩþ

Z
Ωc

MNk dΩ: ð14Þ
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After discretization, the resulting linear system of equations is
solved by the BICGSTAB solver [30].

The numerical algorithm used is described in more detail in
Ravnik et al. [22].

4. Shallow cavity

The solar thermal collector enclosed in a form of an open cavity
is sketched in Fig. 1. The collector is partially bounded by fins –

vertical walls which are 1/8 of the width of the collector.
Considering the width of the collector to be 32 cm, the walls are
h¼ 4 cm high. The height h is considered to be the characteristic
length scale of the problem and used to calculate Reynolds,
Rayleigh and Nusselt numbers.

Air (Pr¼0.71) of temperature T0 ¼ 300 K flows across the
cavity. The bottom wall (the solar thermal collector) of the cavity
is heated due to the absorption of the incoming irradiative heat
from the sun. The process of absorption of heat radiation is not
dealt with in the present study. In order to simplify the problem,
an assumption is made that the bottom heated wall has a constant
temperature. We assume a constant temperature along the bottom
wall as T1 ¼ T0þΔT . The air enters the domain from the left
having a uniform velocity profile of v0. This velocity and the height
of the cavity are used in definition of the Reynolds number.

The temperature difference between the bottom wall and incom-
ing air, ΔT , is used in the Rayleigh number definition. Table 1 lists
Reynolds and Rayleigh numbers and other non-dimensional para-
meters relevant for our simulations. Theoretically obtained Sma-
gorinsky LES constant of C¼0.1 and turbulent Prandtl number of
Prt¼0.6 were used.

The heat transfer through the bottomwall is represented by the
Nusselt number Nu. The local Nusselt number is defined as the
temperature gradient calculated at the wall. The average Nusselt
number for the whole bottom wall is calculated by integration of
the local Nu across the wall:

Nu¼ 1
8h

Z 8h

0

∂T
∂y

dx: ð15Þ

Heat flux is obtained by multiplying the Nusselt number and
q0 ¼ λΔT=h¼ 34:4 W=m2.

Simulation were performed at Ra¼ 3� 105, which corresponds
to 52.6 K temperature difference between the air temperature at
the inflow and the bottom wall temperature. Three inflow velo-
cities were considered: v0 ¼ 2:02 m=s, 4.03 m/s, 8.07 m/s, which
relate to Reynolds numbers Re¼5000, Re¼ 104 and Re¼ 2� 104,
respectively. At the lowest inflow air speed computational mesh
SC-25440 with 105 nodes was used. A finer mesh SC-33900 with
1:36� 105 nodes was used with 4.03 m/s inflow. At the highest
inflow velocity, the fine mesh SC-44900 with 2�105 nodes was
employed. Details of the mesh structure are given in Table 2.

The vertical fins, which enclose the collector, help keep hot air
above the collector and work towards decreasing heat losses.
A collector without vertical fins can be modelled as a hot flat plate
with cold air flowing over it. In order to compare results of the
numerical simulation, we calculated heat losses of such a flat plate
exposed to cold air flowing over it. Temperature difference and the
flow velocity were the same as used in numerical experiments. We
assume that the solar collector is mounted on a roof, thus a turbulent
boundary layer develops already before the flow reaches the flat
plate collector. Based on the boundary layer theory, the following
expression can be used to calculate the heat flux from the flat plate:

qfp ¼ αΔT ; α¼ 2
λ
8h

0:037
v08h
ν

� �0:8

Pr1=3: ð16Þ

4.1. Re¼ 5000;Ra¼ 3� 105

Simulation was performed using a time step of Δt ¼ 10�2

without a subgrid model. Total number of time steps was 12,500
which relates to 2.475 s in our chosen geometrical setup. Struc-
tures in the flow are large enough that our mesh is able to describe
them all. When flow enters the cavity vortical structures are
formed behind the edge of the cavity. Structures are similar to
the well known backward facing step flow. A primary vortex
develops behind the cavity wall. Since in the case of solar
collectors the length of the collector is much larger than the
height of the cavity, the primary vortex does not encompass the
entire collector. Instead, we observe vortex shedding. Vortices are

Fig. 1. Geometry and boundary conditions for flow over a shallow cavity. At inflow
1 uniform velocity profile is prescribed with constant temperature v!¼ ðv0 ;0Þ,
T ¼ T0. No slip velocity boundary condition is used on solid walls 2–6. Walls 2 and
6 are kept at constant temperature T0, walls 3 and 5 are adiabatic ∇

!
T � n!¼ 0.

Bottom wall 4 is kept at a constant temperature T1 ¼ T0þΔT . At outflow a
convective [31,32] outflow boundary condition is used. Developed flow profile is
assumed to be on the top wall ∇

!
T � n!¼ 0 and ∇

!
vx � n!¼ 0, vy¼0.

Table 1
Reynolds and Rayleigh numbers for a shallow cavity having h¼ 0:04 m, T0 ¼ 300 K,

ν¼ 16:1� 10�6 m2=s, βT ¼ 1=T0, λ¼ 0:026198 W=mK and Prandtl number

Pr¼0.71. Rayleigh number used in our simulations was Ra¼ 3� 105, which
corresponds to ΔT ¼ 52:6 K and which makes q0 ¼ λΔT=h¼ 34:4 W=m2.

Re v0 (m/s) t0 ¼ h=v0 (s)

5000 2.02 0.0198
10,000 4.03 0.0099
20,000 8.07 0.0049

Table 2
Computational grids used to simulate flow over a shallow cavity. Nine-nodal Lagrange quadratic internal cells and three-nodal boundary elements were used.

Mesh No. elements along edges No. boundary elements No. internal cells Total no. nodes

1 2 3 4 6

SC-25440 40 12 40 300 24 832 25,440 102,593
SC-33900 40 12 50 350 48 1000 33,900 136,601
SC-49900 50 24 63 400 70 1214 49,900 200,813

J. Ravnik et al. / Engineering Analysis with Boundary Elements 45 (2014) 20–28 23
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lifted into the flow and transported by convection across the
domain. On the right-hand side of the domain we also observe
formation of vortices, which are carried by the flow across the
sharp cavity edge out of the domain. Furthermore, behind the
sharp edge a large number of smaller vortices are observed. Those
are immediately convected out of the domain and do not affect the
heat transfer from the bottom wall.

Fig. 2 shows temperature contours for three time instants.
In the same figure, a graph of the Nusselt number across the
bottom wall is displayed. We can observe high heat transfer
(and hence high Nusselt number) in areas of the bottom
wall where temperature gradients are high. Such areas move
along the wall as the flow carries the vortices across the
domain.

Fig. 2. Nondimensional temperature contours and Nusselt number along the bottom wall for Re¼ 5000;Ra¼ 3� 105. Three time instants were chosen, which show the
formation and shedding of a vortex. There were 1200 time steps between the time instants, which relate to 1200� 10�2 � 0:0198 s¼ 0:24 s.

J. Ravnik et al. / Engineering Analysis with Boundary Elements 45 (2014) 20–2824
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Fig. 3 displays the time averaged Nusselt number across the
bottom wall of the cavity (across the solar collector). We observe
that the heat transfer is the largest on the left hand side, behind
the cavity wall, and the smallest in the central part of the cavity.
Another peak in heat transfer is observed on the right hand side,
just before the cavity wall. In the same figure, time trace of Nusselt
number averaged across the bottom wall is presented. We see that
the heat transfer periodically oscillates and does not deviate much
from the average value. Time averaged value is given in Table 3.
Comparing the heat losses of the enclosed collector with the flat

plate model, we observe that the vertical fins significantly reduce
the heat transfer.

4.2. Re¼ 104;Ra¼ 3� 105

Next we increased the inflow air velocity by a factor of two,
thus effectively raising the Reynolds number to Re¼ 104. Corre-
spondingly we decreased the time step to Δt ¼ 5� 10�3. Simula-
tion was performed without a subgrid model and with a
Smagorinsky subgrid model with Van Driest damping. Without

Fig. 3. Average Nusselt number across the bottom wall (right); time trace of averaged Nusselt number (left) Re¼ 5000;Ra¼ 3� 105. No subgrid model was used.

Table 3
Time averaged heat transfer – expressed with Nusselt number and heat flux q¼Nu � q0. We present a comparison between simulation without a subgrid model (C¼0) and
simulation with Smagorinsky subgrid model with Van Driest damping along solid walls LESvd. Boundary layer theory based value for a flat plate collector is also presented for
comparison.

v (m/s) C¼0 LESvd Flat plate (Eq. (16))

Nu q (W/m2) Nu q (W/m2) qfp (W/m2)

2.02 19.2 220.4 1369
4.03 30.2 1039 29.9 1029 2380
8.07 45.5 2611 35.4 2031 4147

Fig. 4. Average Nusselt number across the bottom wall (right); time trace of averaged Nusselt number (left) Re¼ 104 ;Ra¼ 3� 105. No subgrid model was used.

J. Ravnik et al. / Engineering Analysis with Boundary Elements 45 (2014) 20–28 25
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the subgrid model simulation had 11,000 time steps lasting for
0.544 s, with the subgrid model the number of time steps was
16,000 and the total time was 0.792 s.

Comparison of time averaged heat transfer (shown in Table 3)
reveals that the use of the subgrid model in this case has negligible
effect on the average heat transfer. Both simulations predict the
same average Nusselt number. In comparison with the flat plate
collector, we observe that the heat losses of the enclosed collector
are about one-half of the losses of a collector, which does not have
vertical fins.

Time traces of the Nusselt number and its time average across
the bottom wall are shown for both simulations in Figs. 4 and 5.
Similar to the low Reynolds number case described above, the
highest heat transfer occurs behind the left cavity wall. Looking at
the time traces we observe that Nusselt number oscillations

include higher frequencies, which indicates the presence of small
scale structures in the flow field.

4.3. Re¼ 2� 104;Ra¼ 3� 105

Finally, the inflow velocity was increased to 8.07 m/s corre-
sponding to Re¼ 2� 104. Time step of Δt ¼ 10�3 was used.
Simulation without a subgrid model lasted for 0.3 s having
60,000 time steps. Simulation with subgrid model was run for
0.1 s having 20,000 time steps.

Fig. 6 shows vorticity contours and streamlines for one time
instant. One readily observes the formation of vortices along the
whole length of the bottom wall. Time traces and time averaged
Nusselt numbers are shown in Figs. 7 and 8 as well as in Table 3.

Fig. 5. Average Nusselt number across the bottom wall (right); time trace of averaged Nusselt number (left) Re¼ 104 ;Ra¼ 3� 105. Smagorinsky subgrid model was used
with Van Driest damping.

Fig. 6. Vorticity contours (top) and streamlines (bottom) for Re¼ 2� 104 ;Ra¼ 3� 105. Smagorinsky subgrid model with Van Driest damping is used.
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We observe a high difference in heat transfer for both simula-
tions. Simulation without the subgrid model reports higher values
of heat transfer. In comparison with RANS simulation, performed
by Zdanski et al. [4], we can confirm that our simulation using the
subgrid model gives a better prediction of the heat transfer.

In comparison with the flat plate collector, we observe that the
heat losses of the enclosed collector are about one-half of the
losses of a flat plate collector.

5. Conclusions

The coupled boundary element–finite element algorithm for
planar velocity–vorticity LES was used to simulate flow and heat
transfer from a solar thermal collector. The collector was enclosed
by fins creating an open shallow cavity for air flowing over it. Heat
transfer from the bottom wall of the cavity (the collector) was
studied for different air flow velocities. Unsteady LES simulations
were performed having up to 60,000 time steps.

We presented time traces of average Nusselt number as well as
averaged Nusselt number along the bottom wall. We have found
that the highest heat flux from the collector can be in all cases

found behind the vertical fin. Heat flux there is up to three times
higher than in the central part of the collector. The reason for this
phenomenon is the shedding of large vortices behind the fin,
which effectively carry the hot air away from the collector.

Looking at the time evolution of the heat flux in self-similar
flow regime we observe heat flux oscillations of about 710% in
the case of Rer104 and of about 720% at Re¼ 2� 104

Comparison of simulations with and without the subgrid scale
model was made. Results were equivalent for low Reynolds
number, while at higher Re simulation without subgrid scale
model over predicted the heat transfer.

When average heat losses of an enclosed collector are com-
pared with a flat plate collector, one observes that the flat plate
collector heat losses are significantly larger. At low wind speed the
ratio of heat loss of a flat plate collector and enclosed collector is
about five. At higher speeds the ratio drops to about two. These are
important conclusions when considering engineering design of
solar collectors, as the use of empirical correlations, valid for only
partially similar geometries, leads to unrealistic values of design
parameters, in our case heat losses to the surroundings. Applying
an advanced turbulence modelling technique – the LES – enables
realistic determination of complex recirculating flow field inside

Fig. 7. Average Nusselt number across the bottom wall (right); time trace of averaged Nusselt number (left) Re¼ 104 ;Ra¼ 3 � 105. No subgrid model was used.

Fig. 8. Average Nusselt number across the bottomwall (right); time trace of averaged Nusselt number (left) Re¼ 2� 104 ;Ra¼ 3� 105. Smagorinsky subgrid model was used
with Van Driest damping.
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the cavity, the key factor in accurate prediction of turbulent heat
transfer from the solar collector.
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