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In this paper we present a fluid–structure interaction analysis of shell structures with compartments
partially filled with a liquid. The compound shell was a simplified model of a fuel tank. The shell is
considered to be thin and Kirghoff–Lave linear theory hypotheses are applied. The liquid is ideal and
incompressible. Its properties and the filling levels may be different in each compartment. The shell
vibrations coupled with liquid sloshing under the force of gravity were considered. The shell and sloshing
modes were analysed simultaneously. The coupled problem is solved using a coupled BEM and FEM in-
house solver. The tank structure is modeled by FEM and the liquid sloshing in the fluid domain is
described by BEM. The method relies on determining the fluid pressure from the system of singular
integral equations. For its numerical solution, the boundary element method was applied. The boundary
of the liquid computational domain is discretized by nine-node boundary elements. The quadratic
interpolation of functions and linear interpolation of flux are involved. The natural frequencies were
obtained for the cylindrical double tank with two compartments.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Fuel tanks and containers for storage of oil and other dangerous
liquids are extensively used in different engineering areas such as
aerospace industry, chemical and oil–gas industry, power machine
building and transport. These reservoirs operate under excess
process loads, and are filled with oil, flammable or toxic liquids.

The influences of both shell and fluid on each other must not be
neglected in stress–strength analysis of these structural elements.
Therefore, the interaction between the sloshing liquid and the
shell structure has been a challenging field of research in many
engineering applications.

Liquid sloshing is an interesting physical phenomenon of
enormous practical interest that has far reaching applications in a
wide field of technologies and engineering disciplines. It occurs in
moving tanks with contained liquid masses such as rocket tanks,
marine and space vehicles as well as in seismically excited storage
tanks, dams, reactors, and nuclear vessels. The book of Ibrahim [1]
gives a detailed summary of the theory and fundamentals of
sloshing under widely various conditions.

Many different types of model tests at different scales and with
different objectives were proposed and performed in the last years
in this research area. Since the launch of the early high-efficient
lnikova).
rockets in 1957, controlling liquid fuel slosh during a vehicle
launch has been a major design concern. Moreover, with today's
large and complex spacecrafts, a substantial mass of fuel is
required to place them into orbit and to perform orbital man-
euvers. The mass of fuel contained in the tanks of a geosynchro-
nous satellite amounts to approximately 40% of its total mass as it
was shown by Sidi [2]. When the fuel tanks are only partially filled,
large quantities of fuel move inside the tanks under translational
and rotational accelerations and generate the fuel slosh dynamics.
Slosh control of propellant is a significant challenge to spacecraft
stability. Robinson et al. [3] and Space Exploration Technologies
Corp. [4] proved that in several cases mission failure has been
attributed to slosh-induced instabilities.

As the propellant level decreases throughout a mission, the
effects of sloshing forces on the remaining fuel become more
prominent. When the fuel tank is full or nearly so, the fuel lacks
the open space to slosh. But, in the latter stages of the mission,
when most of the fuel has been consumed, the fuel has sufficient
volume to slosh and possibly disturb the flight trajectory. This
sloshing can ultimately lead to wobble in a spinning spacecraft
and self-amplifying oscillations that can result in failure of sepa-
rate parts or the whole structure. The dynamics of a fluid inter-
acting with the walls of its container is complicated and challen-
ging to predict. The effects of sloshing are significant and in some
cases remain prominent even when the propellant volume

www.sciencedirect.com/science/journal/09557997
www.elsevier.com/locate/enganabound
http://dx.doi.org/10.1016/j.enganabound.2016.02.006
http://dx.doi.org/10.1016/j.enganabound.2016.02.006
http://dx.doi.org/10.1016/j.enganabound.2016.02.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2016.02.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2016.02.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2016.02.006&domain=pdf
mailto:estrel@ipmach.kharkov.ua
http://dx.doi.org/10.1016/j.enganabound.2016.02.006


J. Ravnik et al. / Engineering Analysis with Boundary Elements 67 (2016) 13–2514
represents only 0.3% of the total spacecraft mass as reported by
Vreeburg [5].

In order to suppress sloshing a variety of methods have been
proposed, simulated and tested. The effects of baffle on sloshing
frequency have been studied by Biswal et al. [6]. The mathematical
technique used here is based on the velocity potential function;
the problem was solved using finite-element analysis.

The motion of liquid within a partially filled tank was investi-
gated by Ranganathan et al. [7] by representing the fluid slosh
through an equivalent mechanical system using a pendulum
analogy model. The model parameters were computed based on
inviscid fluid flow conditions and the dynamic fluid slosh forces
arising due to the dynamics of the vehicle during a given man-
euver were computed using the equivalent mechanical system.

Liquid sloshing in partially filled horizontal cylindrical tanks
with circular cross sections is a common problem in the road
transportation industry that has been extensively studied for many
years [8–10]. A recent review on liquid sloshing in horizontal
cylindrical tanks was presented by Hasheminejad et al. [11].

In order to restrain the fluid sloshing motion a common tech-
nique is to place additional sub-structures called baffles or
separators within the tank, as it was demonstrated by Strandberg
[8]. Thus, we must consider the problem of sloshing in so-called
double tanks or tanks with the compartments.

The issue of suppression of sloshing behavior using baffles goes
back to late 50s when lots of experimental and theoretical studies
were concerned with the effect of baffles on the sloshing in fuel
containers of space vehicles [12,13].

Since then, numerous authors have tackled the subject.
Strandberg [8] performed an experimental investigation of
dynamic performance and stability of horizontal circular tank. He
also studied the overturning limit for half-full elliptical containers
with various baffle configurations and concluded that the vertical
baffle must be preferred in comparison with the un-baffled or
horizontally baffled elliptical container. Evans et al. [14] used the
method of eigenfunction series to explore the effect of a thin
vertical baffle in a fluid-filled rectangular tank on fluid frequencies.
This technique was subsequently extended to consider circular
containers having internal baffles by Watson et al. [15]. A mathe-
matical model was developed for the ship rolling motion with free
surface liquids on board by Armenio et al. [16]; numerical and
experimental results for a rectangular tank with a vertical bottom-
mounted internal baffle were presented here. Modaressi-Tehrani
et al. [17] used the FLUENT software to develop a three-
dimensional nonlinear model of a partly-filled cylindrical tank
with and without baffles to investigate the significance of resulting
destabilizing forces and moments. The main objective of Sidi [2]
was to analyze multi-excitation effects on a cylinder divided by
plate on two compartments on the base using BEM and FEM
numerical analysis. Diverse multi-exciting forces were applied on
this base plate with different frequencies whereas, independently
calculated results were superimposed to provide consolidated
result.

A semi-analytical approach was presented by Wang [18,19] to
obtain both natural frequencies and vibration modes of ideal liquid
sloshing and the sloshing response of liquid in a rigid cylindrical
container with multiple annual rigid baffles subjected to lateral
excitations. The complicated liquid domain was divided into sev-
eral simple sub-domains. Based on the superposition principle, the
analytical solutions of the liquid velocity potential corresponding
to each liquid sub-domain were obtained by the method of
separation of variables. Analysis of transient lateral slosh in a
partially-filled cylindrical tank with different designs of long-
itudinal partial baffles was performed by Kolaei et al. [20] by using
a coupled multimodal and boundary-element method. Shahravi
et al. [21] proposed a method to model the influence of different
baffle geometries on liquid sloshing. It has been shown that the
natural frequencies and the dynamic response of the liquid are
drastically changed if the free liquid surface in a cylindrical con-
tainer is covered with some rigid structural parts. Liquid sloshing
in a cubic tank with multiple baffles was investigated numerically
in detail by Xue et al. [22] under different external excitation
frequencies. Wachowski1 et al. [23] noted that tank sloshing
mainly occurs due to maneuvers like stop-and-go traffic or park-
ing; sloshing that is generated depends on the tank geometry,
filling level, fuel type and excitation and it leads to the three dif-
ferent types of slosh noise: splash, hit and clonk. Kandasamy et al
[24] presented the analysis of effectiveness of different baffle
designs in limiting the maneuver-induced transient sloshing in a
partly-filled tank. Xue et al. [25] and Eswaran et al. [26] performed
the theoretical and experimental research devoted to sloshing
problems in a rectangular liquid tank with a perforated baffle. The
horizontal ring and vertical blade baffles and their damping effects
were investigated by Maleki et al. [27]. After comparing the tank
without baffles with the one with baffles, Yan et al. found [28] that
the sloshing mode, basic frequencies and free surface shape are all
affected by the baffles.

Range of applicability of the linear fluid slosh theory for pre-
dicting sloshing vibrations and stability of tank was described by
Ibrahim [1], Armenio et al. [16] and Yan et al. [28]. In these papers
it was shown that the linear slosh model yields more accurate
prediction of dynamic slosh than the pendulum models and it is
significantly more computationally efficient than the nonlinear
CFD model. Liu et al. [29] adopted finite difference method which
solves Navier–Stokes equations to study 2D and 3D viscous and
inviscid liquid sloshing in rectangular tanks and verified the
results with the linear analytical solution and experimental data. It
was demonstrated by [18,28,29] that suppositions about inviscid,
incompressible liquid and its irrotational flow are applicable for
small amplitude excitations where the wave breaking and the
influence of non-linearities do not influence the overall system
response significantly. This model can also be used for initial
design calculations and in engineering problems regarding to
cargo vehicle dynamics, dynamics of road tankers, vehicle fuel
tank described in [9,20,23,24,27–29]. So we accept these suppo-
sitions hereinafter.

Modeling of sloshing in tanks and reservoirs, as an imprecise
and complicated engineering event, has an unfinished evolution
history. The above review clearly indicates that there exists a
massive body of literature on liquid sloshing in rectangular or
upright cylindrical containers with various baffle configurations.
With respect to all the numerical work, which has been done, it is
fair to say that there is still no fully efficient numerical method to
deal with the sloshing in fluid–structure interactions in two-
compartmental tanks. Indeed, it appears that, from computa-
tional point of view, it is very difficult to account for all the dif-
ferent physical effects at the same time.

In this work, we propose a method of fluid–structure interac-
tion analysis for tanks with compartments partially filled with
liquids, that allows us to include elasticity of shell walls, different
liquid properties in each compartment, gravity force and to esti-
mate influence of these factors on frequencies of tank vibration. In
this paper the free vibration analysis of an elastic cylindrical shell
is coupled with liquid sloshing. We use the combination of
reduced finite and boundary element methods. The analysis con-
sists of several stages where each stage represents a separate task.
The frequencies and modes of empty shell vibrations are defined
in the first stage. Displacement vector, that is the solution of the
hydrodynamic problem, is sought as a linear combination of nat-
ural modes of empty shell. We define the frequencies and free
vibrations modes of fluid-filled elastic shell without including the
force of gravity. Then, we obtain the frequencies and free
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vibrations modes of liquid in rigid shell under force of gravity. Two
latter problems are solved using reduced BEM. Then we come to
the problem of coupled analysis of liquid sloshing and structural
vibrations.
2. Problem statement

Let us consider the coupled problem of a shell structure with
two compartments partially filled with the liquid (Fig. 1). In this
study, we consider the cylindrical shell with elastic bottom and
baffle. The contained liquid is assumed inviscid and incompres-
sible. We suppose that liquid properties and filling levels may be
different in each compartment.

Hereinafter we denote the surface of an empty tank as S. The
domains occupied with liquid we denote asΩ1 andΩ2 for first and
second compartments. The wetted boundaries of these domains
are S1 and S2 and free surfaces are S10 and S20 accordingly.

Suppose that the flow induced by vibrations of the shell are
irrotational and consider small shell and fluid vibrations. Let the
unknown vector-function of the shell displacements be denoted
by U. A system of governing equations of motion of elastic shell
with the liquid in the operator form is given by

LðUÞþMð €UÞ ¼ P ð1Þ

where L, М are operators of elastic and mass forces of the shell;
U¼(u1, u2, u3) is the displacement vector, P is the liquid pressure.

The liquid densities in compartments are ρ1 and ρ2 respec-
tively. Filling levels in compartments will be denoted as h1 and h2.
Please note that the fluid velocity potential functionΦ satisfies the
Laplace equation.

For velocity potential Φ we obtain a mixed boundary value
problem for Laplace equation in double domain Ω1[Ω2. Herein-
after we denote the normal displacement component of tank
structure as w, i.e. w¼ U;nð Þ.

Then the kinematical boundary condition of continuous fluid
motion on the wetted shell surface S can be represented as
Fig. 1. Fluid-filled double tank. The right panel show the compu
follows:

∂Φ
∂n

¼ ∂w
∂t

;

where n is an external unit normal to wetted surface, S¼S1[S2.
Let functions ς1 t; x; y; zð Þ and ς2 t; x; y; zð Þ describe the shapes

and positions of free surfaces in the first and second compart-
ments. These surfaces are denoted as S10; S20 in Fig. 1. On free
surfaces, the following formulae for pressure components are valid
[1]:

p1�p10 ¼ �ρ1
∂Φ
∂t þgζ1
� �

; p2�p20 ¼ �ρ2
∂Φ
∂t þgζ2
� �

.
Here g is the gravity acceleration.
To determine the function Φ the following boundary value

problem in the double domain Ω1[Ω2 is formulated with free-
surface boundary conditions (kinematical and dynamical) and
non-penetration condition on wetted parts [11,30]:

ΔΦ¼ ∂2Φ
∂x2

þ∂2Φ
∂y2

þ∂2Φ
∂z2

¼ 0;
∂Φ
∂n S ¼

∂w
∂t

;
∂Φ
∂n

����
����
S10

¼ ∂ζ1
∂t

;
∂Φ
∂n

����
S20

¼ ∂ζ2
∂t

;
∂Φ
∂t

þgζ1

����
s10

¼ 0;
∂Φ
∂t

þgζ2

����
s20

¼ 0 ð2Þ

Here w indicates the normal component of shell deflection.
So it is necessary to solve Eqs. (1) and (2) simultaneously

including the boundary conditions for shell structure and using
the next presentation for the dynamical components of the liquid
pressure on tank walls:

pl ¼ ðP;nÞ ¼
�ρ1

∂Φ
∂t ; MA∂Ω1;

�ρ2
∂Φ
∂t ; MA∂Ω2

(

It leads to the system of differential equations.
3. Mode superposition method

We will seek the natural modes of vibration for a double tank
interacting with the fluid in the form

u¼
XN
k ¼ 1

ckuk :ð3Þ
tational mesh used for BEM solution of inviscid fluid flow.
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Here functions ukðx; y; zÞ are natural vibration modes of the
empty tank, ckðtÞ are unknown factors depending on time t only.
The own modes of an empty tank are defined on the cylindrical
part of shell structure, its bottom and baffle.

Let us note that the following relationships are fulfilled [31]:

LðukÞ ¼Ω2
kMðukÞ; ðMðukÞ;ujÞ ¼ δkj; ðLðukÞ;ujÞ ¼Ω2

kδkj ð4Þ

where Ωk is the k-th frequency of the empty shell vibrations. The
above relations show that the empty shell’s modes of vibration
must be orthonormalized with respect to the mass matrix.

Let also introduce the denominations

uj ¼
u1
j ; MAS1;

u2
j ; MAS2:

8<
:

We will hereinafter seek the function Φ as a sum of two
potentials Φ¼Φ1þΦ2. For the potential Φ1 we define the fre-
quencies and free vibrations modes of fluid-filled elastic shell
without including the force of gravity. To determineΦ1 we have to
use the series

Φ1 ¼
XN
k ¼ 1

_ckϕ1k

Here time-dependent factors ckðtÞ were defined in (3). To
determine ϕ1k we have the following boundary value problems:

∇2ϕ1k ¼ 0;
∂ϕ1k

∂n

����
S
¼wk; ϕ1k S10 ¼ 0; ϕ1k

�� ��
S20

¼ 0 ð5Þ

Here wk indicates the normal component of the mode uk,
i.e.wk ¼ uk;nð Þ.

It follows from Eq. (5) that the problem for the double domain
is reduced to boundary value problems for two single domains

∇2ϕi
1k ¼ 0; MAΩi;

∂ϕi
1k

∂n

����
Si

¼wi
k;MAΩi; ϕi

1k j Si0 ¼ 0 ð6Þ

Here S¼ S1þS2; S1; S2 are wetted parts of double tank surface
of two compartments, S10; S20 are free surfaces, w1

k ;w
2
k are normal

component of the mode uk in the first and second compartments.
Functions ϕ1

1kand ϕ2
1kare solutions of problems (6) for i¼1 and

i¼2 accordingly.
Then for potential Φ1 we obtain the next representation:

Φ1 ¼

XM1

k ¼ 1

_сkϕ
1
1k; MA ∂Ω1;

XM2

k ¼ 1

_сkϕ
2
1k; MA∂Ω2:

8>>>>><
>>>>>:

For evaluating the potential Φ2 we will obtain the frequencies
and free vibrations modes of liquid in rigid shell under force of
gravity. Before determining the function Φ2, let us consider the
auxiliary problems for two fluid-filled compartments [30]

∇2Ψ i ¼ 0;
∂Ψ i

∂n

���� Si ¼ 0;
∂Ψ i

∂n

����
Si0

¼ ∂ςi
∂t

;
∂Ψ i

∂t
þgζi j Si0 ¼ 0 ð7Þ

Considering harmonic vibrations and omitting indexes, we
have supposed that Ψ ¼ψeiχt . Therefore, we have eigenvalue
problems to solve in each compartment. Let us denote as ϕ1

2k; χ
1
k

; ϕ2
2k; χ

2
k the modes and frequencies for first and second com-

partments respectively. We have differentiated the fourth equation
in relationship (7) with respect to t and then substituted the
expression for ∂ζi

∂t from the third one of Eq. (7). Thus, the following
relations are valid on free surfaces of compartments:

∂ϕ1
2k

∂n ¼ χ1
kð Þ2
g ϕ1

2kjS10 ;
∂ϕ2

2k
∂n ¼ χ2

kð Þ2
g ϕ2

2kjS20 ,
Then the potential Φ2 is represented in the form

Φ2 ¼

XM1

k ¼ 1

ḃkϕ
1
2k; MA ∂Ω1;

XM2

k ¼ 1

d ̇kϕ
2
2k; MA∂Ω2:

8>>>>><
>>>>>:

Here M1 and M2 are quantities of sloshing modes in first and
second compartments.

Finally, the total velocity potential Φ takes the form

Φ¼

XN
k ¼ 1

_ckϕ
1
1kþ

XM1

k ¼ 1

_bkϕ
1
2k; MA Ω1;

XN
k ¼ 1

_ckϕ
2
1kþ

XM2

k ¼ 1

_dkϕ
2
2k; MAΩ2:

8>>>>><
>>>>>:

ð8Þ

When functions ϕ1
1k;ϕ

2
1k;ϕ

1
2k;ϕ

2
2k are known, we have the next

relationship to determine the pressure on the wetted parts:

pl ¼
�ρ1

XN
k ¼ 1

€ckϕ
1
1kþ

XM1

k ¼ 1

€bkϕ
1
2kþ

 !
;MA∂Ω1;

�ρ2

XN
k ¼ 1

€ckϕ
2
1kþ

XM2

k ¼ 1

€dkϕ
2
2kþ

 !
;MA∂Ω2:

8>>>>><
>>>>>:

The total potential Φ satisfies the Laplace equation and non-
penetration boundary condition (first and second relations in Eq.
(2)). These results allow us to obtain the following expressions for
free-surface shapes in both compartments as following:

ς1 ¼
XN
k ¼ 1

ck
∂ϕ1

1k

∂n
þ
XM1

k ¼ 1

bk
∂ϕ1

2k

∂n
; ς2 ¼

XN
k ¼ 1

ck
∂ϕ2

1k

∂n
þ
XM2

k ¼ 1

dk
∂ϕ2

2k

∂n
ð9Þ

Noted that Φ also satisfies the conditions

∂Φ
∂n

����
S10

¼ ∂ζ1
∂t

;
∂Φ
∂n

����
S20

¼ ∂ζ2
∂t

as a result of representations (8) and (9).
Satisfying the conditions

∂Φ
∂t

þgζ1js10 ¼ 0;
∂Φ
∂t

þgζ2js20 ¼ 0

on free surfaces S10; S20, one can obtain the next equalities

XN
k ¼ 1

€ckϕ
1
1kþ

XM1

k ¼ 1

€bkϕ
1
2kþg

XN
k ¼ 1

ck
∂ϕ1

1k

∂n
þ
XM2

k ¼ 1

bk
∂ϕ1

2k

∂n

 !
¼ 0; ð10Þ

XN
k ¼ 1

€ckϕ
2
1kþ

XM2

k ¼ 1

€dkϕ
2
2kþg

XN
k ¼ 1

ck
∂ϕ1

1k

∂n
þ
XM2

k ¼ 1

dk
∂ϕ1

2k

∂n

 !
¼ 0 ð11Þ

To these equations we need to add the Eq. (1) written in the
following form:

L
XN
k ¼ 1

ck tð Þuk

 !
þM

XN
k ¼ 1

€ck tð Þuk

 !
¼ P;nð Þ ð12Þ

Please note that ϕi
1kjSi0 ¼ 0, i ¼ 1,2. Using expressions for Φ, pl,

ς1 t; x; y; zð Þ and ς2 t; x; y; zð Þ, substituting them into (eqs. (10)-12)
and performing dot products, we have obtained the following
system of ordinary differential equations

cjðtÞΩ2
j þ €cjðtÞ ¼ �ρ1

XN
k ¼ 1

€ckðtÞ ϕ1
1k;u

1
j

� �
þ
XM1

k ¼ 1

€bkðtÞ ϕ1
2k;u

1
j

� � !
�

ð13Þ

�ρ2

XN
k ¼ 1

€ckðtÞ ϕ2
1k;u

2
j

� �
þ
XM2

k ¼ 1

€dkðtÞ ϕ2
2k;u

2
j

� � !
;
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α1j
€bjðtÞþþg

XN
k ¼ 1

ckðtÞ
∂ϕ1

1k

∂n
;ϕ1

2j

 !
þα1jbjðtÞ χ1

j

� �2
¼ 0; j¼ 1; :::;M1;MAS10;

α2j
€djðtÞþþg

XN
k ¼ 1

ckðtÞ
∂ϕ1

1k

∂n
;ϕ1

2j

 !
þα2jdjðtÞ χ1

j

� �2
¼ 0; j¼ 1; :::;M2;MAS20:

Here we have

αkj ¼ ϕk
2j;ϕ

k
2j

� �
; k¼ 1;2:

In doing so we have multiplied the Eq. (12) by functions uk, and
(Eqs. (10) and 11) by functions ϕ1

2k and ϕ2
2k respectively.

To evaluate the free vibration frequencies we will seek the
solution of system (13) in the form

bk tð Þ ¼ BkexpðiωtÞ; ck tð Þ ¼ CkexpðiωtÞ; dk tð Þ ¼DkexpðiωtÞ:
Then we obtain the next eigenvalue problem to define fre-

quencies ω and modes X ¼ Ck; Bk; Dkð ÞT :
�ω2MþG
� �

X ¼ 0

where

M¼
Eþρ2P ρ2B

1 ρ2B
2

0 E 0
0 0 E

0
B@

1
CA;G¼

Ω 0 0
gG1 H1 0
gG2 0 H2

0
B@

1
CA

Gi ¼ gikj
n o

; gikj ¼
∂ϕi

1k

∂n
;
ϕi

2j

αij

 !
; k¼ 1;Mi; j¼ 1;N

Bi ¼ bijk
n o

; bijk ¼ ϕi
2k;u

i
j

� �
; j¼ 1; ::;N; k¼ 1; :::;Mi

Here Ω, H1, H2 are diagonal matrixes with squares of fre-
quencies as diagonal elements for free vibrations of empty tank,
liquid sloshing in first and second tank compartments accordingly.
4. BEM solution of velocity potential Φ1

The velocity potential ϕ1k for the k-th eigen-frequency of tank
oscillation is governed by the Laplace equation

∇2ϕ1k ¼ 0 ð14Þ
with boundary conditions (5), where the wall normal displace-
ment is w¼ uz at the bottom and w¼ ur at the cylindrical part of
tank shell structure in cylindrical coordinate system.

In the framework of the boundary element method the Eq. (14)
may be rewritten into the following integral form in the following
way [32]

c M0ð Þϕ1k M0ð Þþ
Z
Γ
ϕ1k Mð Þð∇!u�; n!ÞdS

¼
Z
Γ

qk; n
!� �

u�dS; qk; n
!� �

¼ ∂ϕ1k

∂n
; Γ ¼ Si [ Si0 ð15Þ

where M0 is the source or collocation point, n! is a unit normal to
the boundary, pointing out of the domain and u� is the funda-
mental Laplace solution u� ¼ 4π U M�M0j jð Þ�1; c M0ð Þ is the geo-
metrical factor defined as c M0ð Þ ¼ α=4π, where α is an inner angle
with origin in collocation point M0.

The boundary of the computational domain is discretized by
boundary elements Γ ¼P

b
Γb. Each boundary element consists of

9 nodes for quadratic interpolation of functions and 4 nodes for
linear interpolation of flux. Velocity potential is interpolated over
the boundary elements as ϕ1k ¼

P
Liϕk;i. The flux is interpolated

over the boundary elements as qk ¼
P

L0iqk;i, using discontinuous
linear interpolation scheme, avoiding the definition problem in
corner points. By applying the described interpolation, the
following form of Eq. (15) can be written as:

c M0ð Þϕ1k M0ð Þþ
X
b

Z
Γb

Liϕk;ið∇
!

u�; n!ÞdS¼
X
b

Z
Γb

L0iqk;i; n
!� �

u�dS

with i denoting the node number. After the following integral are
calculated,

H½ � ¼
Z
Γ
Lið∇

!
u�; n!ÞdS; G½ � ¼

Z
Γ
L0iu

�dS

the Eq. (15) is transformed into the matrix form

c M0ð Þϕ1k M0ð Þþ H½ � ϕ1k

� �¼ G½ � qk
� �

:ð16Þ
The square brackets in Eq. (16) denote integral matrixes and

each source point yields one row in these matrices. Gaussian
quadrature algorithmwas used for calculation the integrals, which
were evaluated in local coordinate system. A weighted summation
of up to 48 integration points on each coordinate axis was used. In
the case when the source point is located within the element,
where integration takes place, such integrals are singular. The
calculation of the singular integral and the estimation of the free
coefficient c M0ð Þ are performed indirectly. Rigid body movement
ϕ¼ 1; q¼ 0 is considered and thus the sum of all [H] matrix
elements for each source point is zero. This fact is used to indir-
ectly estimate the diagonal terms of the [H] matrix and avoid
integration of the singular integrals. After application of boundary
conditions the system may be solved for unknown boundary
values of velocity potential or its normal derivative. This method is
based on the BEM fluid flow solver developed by Ravnik et al. [33].
5. BEM solution of velocity potential Φ2

To determine the potential Φ2 we have to obtain auxiliary
functions ψk. Let us denote by ψ1k the values of ψk on the wetted
surface S1 and by ψ0k the values of ψk on the free surface S0. We
will seek harmonic functions ϕ2k as the sums of potentials of
single and double layers [32], i.e., we will use the direct boundary
element method formulation.

Using the BEM direct formulation and skipping for convenience
the index k, we can write the following system of singular integral
equations

2πψ1þ∬S1ψ1
∂
∂n

1
r

� �
dS1�κ2

g∬S0ψ0
1
rdS0þ∬S0ψ0

∂
∂z

1
r

� �
dS0 ¼ 0;

�∬S1ψ1
∂
∂n

1
r

� �
dS1�2πψ0þκ2

g∬S0ψ0
1
rdS0 ¼ 0:

Suppose that

ψ ¼ψ r; zð Þ cos αθ ð17Þ
We obtain for each harmonic the following system of singular

integral equations

∬S1ψ
∂
∂n

1
rðP; P0Þ

	 

dS1 ¼

Z
r
ψ ðzÞΘðz; z0ÞrðzÞdΓ; ð18Þ

∬S0ψ
1

rðP; P0Þ

	 

dS0 ¼

Z R

0
ψ ðρÞΦðP; P0Þρdρ:

Here kernels Θ z; z0ð Þ and Φ P; P0ð Þ are defined as

Θ z; z0ð Þ ¼ 4ffiffiffiffiffiffiffiffiffiffi
aþb

p 1
2r

r2�r20þ z0�zð Þ2
a�b

Eα kð Þ�Fα kð Þ
" #

nr

(

þz0�z
a�b

Eα kð Þnzg
)

Φ P; P0ð Þ ¼ 4ffiffiffiffiffiffiffiffiffiffi
aþb

p Fα kð Þ:



Fig. 2. Cylindrical shell partially filled with a liquid.
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To reach the numerical solution of the system of singular
integral equations, the boundary element method with constant
approximation of unknown density on elements was used [30].
Integration by the fluid volume is reduced to integrals along the
shell meridian and along the radius of the liquid free surface. It is
the basic advantage of our method based on the combination of
boundary integral equations method, FEM, BEM and expansion
into Fourier series. It should be noted that the only FEM analysis
requires 3D modeling to solve this coupled problem. That leads to
essentially more computer time and it does not allow using
effectively such methods in computer monitoring problems.

Let introduce the next integral operators:

Aψ1 ¼ 2πψ1þ∬S1ψ1
∂
∂n

1
rðP;P0ÞdS1;Bψ0 ¼∬S0ψ0

1
rdS0;Cψ0

¼∬S0ψ0
∂
∂z

1
r

	 

dS0

Dψ1 ¼ �∬S1ψ1
∂
∂n

1
P�P0j jdS1;Fψ0 ¼∬S0ψ0

1
r
dS0 ð19Þ

Then the boundary value problem (18) takes the form

Aψ1 ¼
κ2

g
Bψ0�Cψ0; P0AS1; Dψ1 ¼ 2πEψ0�

κ2

g
Fψ0; P0AS0

After excluding function ψ1 from these relations, we obtain a
below stated eigenvalue problem; its solution gives the natural
modes and frequencies of liquid sloshing in rigid tank

ðDA�1CþEÞψ0�λðDA�1BþFÞψ0 ¼ 0; λ¼ χ2

g
:

Numerical solution of the system of integral 18(18) and eva-
luation of integral operators in 19(19) was obtained by BEM with
constant approximation of unknowns ϕ and q inside elements.

It would be noted that internal integrals in (Eqs. (18) and 19)
are complete elliptic integrals of first and second kinds. As the first
kind elliptic integrals are non-singular, one can successfully use
standard Gaussian quadratures for their numerical evaluation. For
second kind elliptic integrals we have used the approach based on
the characteristic property of the arithmetic geometric mean AGM
(a,b) (see [34]). The above-mentioned characteristic property
consists in following:Z π

2

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 cos 2θþb2 sin 2θ

p ¼ π
2AGM a; bð Þ:

To define AGM(a,b) there exist the simple Gaussian algorithm,
described below

a0 ¼ a; b0 ¼ b; a1 ¼
a0þb0

2
; b1 ¼

ffiffiffiffiffiffiffiffiffiffi
a0b0

p
; ::::anþ1 ¼

anþbn
2

;

bnþ1 ¼
ffiffiffiffiffiffiffiffiffiffi
anbn

p
; :::

AGM a; bð Þ ¼ lim
n-1

an ¼ lim
n-1

bn: ð20Þ

It is a very effective method to evaluate the elliptic integrals of
the second kind. Convergence ε¼ an�bn

�� ��o10�8 achieved after
6 iterations (namely, n¼ 6 in (20)).

We have the effective numerical procedures for evaluation of
inner integrals, but integral (Eqs. (18) and 19) involve external
integrals of logarithmic singularities and thus the numerical
treatment of these integrals will also have to take into account the
presence of this integrable singularity. Here integrands are dis-
tributed strongly non-uniformly over the element and standard
integration quadratures fail in accuracy. Thus we treat these
integrals numerically by special Gauss quadratures [32,35] and
applying technique proposed by Naumenko and Strelnikova [36].

In order to obtain the second set of basic functions we consider
the liquid sloshing in the rigid cylindrical shell. We use the ana-
lytical solution [1] of this problem that can be expressed in the
form

χ2
k

g
¼ μk

R
tanh μk

h
R

	 

; k¼ 1;2; :::;ϕ2k

¼ J0
μk

R
r

� �
cosh

μk

R
z

� �
cosh�1 μk

R
h

� �
ð21Þ

in order to test the proposed numerical algorithm. Here h is the
filling level and R is the radius of cylindrical shell.

Noted that in 21(21) values μk are roots of the equation

dJ0 xð Þ
dx

¼ 0;

where J0 xð Þ is Bessel function of first kind, χk; ϕ2k are frequencies
and modes of liquid sloshing in the rigid cylindrical shell.

Consider the circular cylindrical shell with a flat bottom and
having the following parameters: the radius is R¼1 m, the thick-
ness is hs¼0.01 m, the length L¼2 m, the fluid density ρl ¼ 1000
kg/m3. The filling level of the fluid is h¼0.8 m. The geometry of the
tank is shown in Fig. 2.

The numerical solution was obtained by using BEM as it was
described beforehand. In the present numerical simulation we
used 60 boundary elements along the bottom, 60 elements along
the wetted cylindrical part and 100 elements along the radius of
the free surface. Fig. 3 shows the first three modes of liquid
sloshing at the free surface in the rigid cylindrical shell.

Table 1 below provides the numerical values of the first five
natural frequencies of liquid sloshing for nodal diameter α¼0. The
obtained numerical results are compared with those received
using formulae (21).



Fig. 3. Axisymmetrical modes of liquid sloshing in cylindrical shell.

Table 1
Comparison of analytical and numerical results

n¼1 n¼2 n¼3 n¼4 n¼5

BEM 3.815 7.019 10.180 13.333 16.480
Analytical solution 3.815 7.016 10.173 13.324 16.470

Fig. 4. Numerically (points) and analytically (lines) obtained modes.

Fig. 5. Sloshing modes on the vertical wall.
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Fig. 6. Axially symmetric modes of vibration of the double tank at filling level h¼0.75 m, (a) n¼1 (b) n¼2.

Fig. 7. Axially symmetric modes of vibration of the double tank at filling level h¼0.75 m, (a) n¼8 (b) n¼10.
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Figs. 4 and 5 also demonstrate good agreement between
numerical and analytical data.

In Fig. 4 the distribution of first three axisymmetrical sloshing
modes on the free surface is shown. The solid lines denote modes
obtained by analytical expression (21) at z¼h. Fig. 5 demonstrates
the distribution of these modes on the rigid vertical wall of the
shell. The lines pointed with circles and squares denote numerical
solutions. Numbers 1,2,3 correspond to the first, second and third
modes of liquid sloshing. It would be noted that the accuracy ε¼
10�4 has been achieved here.



Fig. 8. Axially symmetric modes of vibration of the double tank at filling level h¼1.5 m, (a) n¼1 (b) n¼2.

Fig. 9. Axially symmetric modes of vibration of the double tank at filling level h¼1.5 m, (a) n¼8 (b) n¼10.
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The obtained results have demonstrated the good agreement
between numerical and analytical data. So the effectiveness of
proposed method has been proved.
6. Numerical results of double tank vibration analysis

Here we analyze the effects of installing the baffle, the filling
level and coupling effects of the shell structure and sloshing
vibrations on the frequencies and modes of the double tank.
Let us consider the double tank with compartments partially
filled with the fluid. The geometry of the tank is shown in Fig. 1
and the parameters are following: the radius is R ¼1.5 m, the
thickness is hs¼0.01 m, the length L¼6 m, Young’s modulus
E¼2 �105 MPa, Poisson’s ratio ν¼0.3, the material’s density is
ρ¼7800 kg/m3, the fluid density in both compartments
ρ1¼ρ2¼1000 kg/m3. The filling level of the fluid is denoted as h
(Fig. 1). It is equal in both compartments h1¼h2¼h.

In numerical simulations we consider different values as
h¼0.75 m, h¼1.5 m and h¼2.75 m. The shell is assumed to be



Fig. 10. Axially symmetric modes of vibration of the double tank at filling level h¼2.75 m, (a) n¼1 (b) n¼2.

Fig. 11. Axially symmetric modes of vibration of the double tank at filling level h¼2.75 m, (a) n¼8 (b) n¼10.
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pin-connected over its contour and boundary conditions are fol-
lowing: ur ¼ uz ¼ uθ ¼ 0 to z¼0 and r¼R. The modes and fre-
quencies of empty shell were obtained using FEM as it was
described by Ventsel et al. [31].

The axisymmetric forms of vibrations were under considera-
tion. The number of natural modes of empty shell was equal to 20.
Here in FEM we used 20 cubic elements along bottom and baffle
and 20 elements along cylindrical part.

Functions ϕ1k were calculated by method developed in [33]
and based on BEM. The simulation of top and bottom compart-
ments was done separately. Boundary conditions were obtained by
interpolation of structural analysis. The computational mesh



Table 2
Frequencies of empty and fluid-filled tanks without baffles

Empty
elastic
tank

h ¼1.5 m h ¼3.0 m h ¼5.50 m

nS nL Fluid-fil-
led tank

nS nL Fluid-fil-
led tank

nS nL Fluid-filled
tank

1 5.0010 1 5.0024 1 5.0048
2 6.7709 2 6.7709 2 6.7709
3 8.1568 3 8.1568 3 8.1568
4 9.1334 4 9.1334 4 9.1334
5 10.378 5 10.378 5 10.378

34.47 1 1,2 29.243 1 1,2 22.661 1 1,2 15.432
134.2 2,1 102.863 2,1 89.719 2,1 79.719
300.7 3,2 272.63 3,2,1 238.42 3,2,1 178.42
408.2 4,3,2 407.69 4,3 404.00 4,3 392.00

Table 3
Frequencies of the double tank vibrations.

n C1 C2 B1 B2 Empty tank Fluid-filled tank

1 0.01 0.00 0.97 0.00 5.00103
2 0.00 0.01 0.00 0.97 5.00173
3 0.01 0.00 0.97 0.00 6.77016
4 0.00 0.02 0.00 0.97 6.78022
5 0.82 0.24 0.21 0.01 33.4493 7.03487
6 0.28 0.85 0.01 0.31 34.4767 7.29735
7 0.06 0.00 0.95 0.00 8.15270
8 0.00 0.08 0.00 0.947 8.15270
23 0.82 0.54 0.23 0.01 130.329 39.39860
24 0.51 0.85 0.01 0.31 134.221 40.76115
25 0.91 0.2 0.07 0.01 292.025 107.45330
26 0.2 0.947 0.028 0.08 300.718 110.89764
27 0.82 0.50 0.21 0.01 516.812 223.56725
28 0.52 0.85 0.01 0.31 533.886 224.72695

Fig. 12. Axially symmetric sloshing modes of vibration of the double tank, (a) 1st mode (b) 2nd mode (c) 3rd mode (c) 4th mode.
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Fig. 13. Axially symmetric coupled modes of vibration of the double tank, (a) 5th mode (b) 6th mode (c) 23rd mode (d) 28th mode.

Fig. 14. Distribution of the baffle deflection over the tank radius for 4th
sloshing mode.

Fig. 15. Distribution of the cylindrical wall deflection over the tank length for 23rd
coupled mode.
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(Fig. 1) had 3584 elements with 14,338 function nodes and 14,336
flux nodes. Here we used quadratic interpolation of functions and
linear interpolation of flux.

In present numerical simulation to obtain functions ϕ2k we
used 60 linear boundary elements along bottom, 60 linear ele-
ments along wetted cylindrical part and 60 linear boundary ele-
ments along the radius of free surface. The numbers of eigen liquid
sloshing modes were M1¼M2¼20 for both compartments. The
sloshing modes were obtained by method described above.

Figs 6–11 demonstrate the mode shapes of liquid vibration
corresponding to 1st, 2nd, 8th and 10th modes of the liquid in the
double tank at different filling levels. These results were obtained
by method described in [33].

For comparison we consider the cylindrical shell without baffle
but with the same dimensions and material properties. We suppose
that filling level of the liquid in this shell was equal to h¼ h1þh2.

Table 2 provides the numerical values of natural frequencies of
vibrations for empty and fluid-filled cylindrical tanks without
baffle in increasing order. Here coefficients nS, nL indicate numbers
of modes of the shell and liquid involved in coupled vibrations.
Table 3 provides the numerical values of the natural frequencies
of vibrations for empty and fluid-filled double tank. Here coeffi-
cients C1, C2, B1, B2 indicate the mode of vibration. Coefficients C1, C2
are regarded to shell walls vibrations in first and second compart-
ments, and coefficients B1, B2 corresponds to modes of liquid
sloshing in first and second compartments accordingly.

These results demonstrated that the frequencies of tanks with
and without baffles are essentially different. Installing the baffle
leads to a decrease of the frequencies of vibrations. The supposi-
tion about the spectrum separation of frequencies of the elastic
shell filled with the liquid and sloshing frequencies in the rigid
shell with the same geometrical characteristics and filling level as
for the elastic one is not valid in presence of baffles.

Fig. 12 demonstrates the first 4 modes of the double tank
vibrations at filling level h¼1.5 m. These modes are predominantly
sloshing ones as it was shown in Table 3. So the low frequencies
correspond to liquid sloshing without deformations of the
tank walls.

Fig. 13 demonstrates the coupled shell and sloshing modes at
filling level h¼1.5 m. The 5th mode corresponds to the coupled
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liquid and bottom vibrations and 6th one corresponds to the cou-
pled liquid and baffle vibrations. The 23rd mode is the mode of the
cylindrical wall vibrations only, and the 28th mode corresponds to
the coupled vibrations of cylindrical parts, the baffle and the liquid
sloshing in second compartment.

Separately, distributions of the deflections of the tank baffle
and cylindrical wall are displayed in Figs. 14 and 15. These results
demonstrate that deformations of the tank baffle and bottom are
more essentially then that of the cylindrical wall.

The results obtained here allow us to analyze the effect of
baffles at the coupled liquid and shell vibrations. It has been
showed that the natural frequencies of the tank structure are
essentially changed at installing the baffle. It was demonstrated
that the sloshing and shell vibrations can not be considered
separately. Simulation results showed the effectiveness of this
numerical procedure. The presented approach may be also applied
to the different geometry of container
7. Conclusions

The numerical procedure based on the coupling finite element
formulation and boundary element method is developed for
numerical analysis of fluid–structure interaction for a double tank.
We introduce the representation of the velocity potential as the
sum of two potentials, one of them corresponds to problem of the
fluid free vibrations in the rigid shell and another one corresponds
to problem of elastic shell with fluid without including the grav-
itational component. Integration by the fluid volume is accom-
plished using BEM based fluid flow solver. The spectrum of fre-
quencies for double tank was analysed.
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