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A B S T R A C T

Reliable and accurate day-ahead forecasting of natural gas consumption is vital for the operation of the Energy
sector. Three different forecasting models are developed in this paper: The sigmoid function regression model, the
feed-forward neural network, and the recurrent neural network model. The models were trained, compared, and
validated using gas consumption data from 115 measuring stations in Slovenia and Croatia, which have been in
operation for more than three years. The Genetic optimisation algorithm was used to train the neural networks
and the Levenberg-Marquardt algorithm was used to obtain the parameters of the sigmoid model. The results
show that both neural network models perform similarly, and are superior to the sigmoid model. The models were
prepared for use in conjunction with a weather forecasting service to generate day-ahead or within-day forecasts,
and are applicable to any geographical area. The neural network models achieve mean absolute percentage error
between 5% and 10% in the entire temperature range. The sigmoid model reaches similar accuracy only for
temperatures below 5�C, while for higher temperatures the error reaches up to 30%–40%.
1. Introduction

Modern society is dependent on natural gas as one of the main sources
of energy. Since most natural gas is delivered to end users via pipelines, it
is necessary to predict future gas demand as accurately as possible. The
biggest challenge is to balance supply and demand for end users daily,
with gas consumption having to be forecast accurately within one day
and for the next day.

Attempts to use mathematical models to predict consumption began
in the last century (Herbert (1987)). Since then, a wide range of models
has been proposed by many authors. An overview prepared by Soldo
(2012) shows a wide range of models such as the logistic curve model,
the grey model, statistical models, econometric models, neural network
models, genetic algorithms, mathematical models, the Hubbert curve
model and their combinations. Soldo identified the approaches used by
the researchers based on the forecast area (global, national, individual
consumer), the forecast horizon (hourly, daily, monthly), the gas data
measurements used and the model applied.

If a time series of gas consumption and outdoor temperature
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measurements is available, a forecast model can be developed in two
ways. Focusing on the time series leads to ARIMA type approaches
(Erdogdu (2010)) or to neural networks (Farzaneh-Gord and Rahbari
(2018)), where taking several days’worth of input predicts the output for
the next day. On the other hand, if one focuses on the relationship be-
tween gas consumption and temperature, one finds that it is S-shaped.
The measurements show a constant high gas consumption at low tem-
peratures, an almost linear decrease in consumption at moderate tem-
peratures and a low constant consumption at high temperatures. This
results in models based on S-shaped functions. A general term for
S-shaped functions is the sigmoid function (Forouzanfar et al. (2010)).
Some examples of sigmoid functions used in gas consumption modelling
are the logistic function, the Gompertz function, the hyperbolic tangent
and the arc tangent function.

In recent years, researchers have carried out studies with similar
objectives, most of which have focused on a single country. In China, for
example, Zeng and Li (Zeng and Li, 2016; Zeng, 2017) used a
self-adjusting intelligent grey model to forecast natural gas demand,
while Ma and Liu (2017) focused on the growth of annual natural gas
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consumption. They showed that predicting the behaviour of very large
consumer groups using the grey model is accurate. They confirmed the
well-known fact that predicting the total consumption of many con-
sumers is more reliable than concentrating on a single consumer. Zhao
and Wu (2020) proposed an adjacent accumulation grey model to fore-
casting non-renewable energy consumption in Asia-Pacific Economic
Cooperation. Shaikh et al. (Shaikh and Ji, 2016; Shaikh et al., 2017) used
optimised nonlinear grey models and logistic modelling analysis, while
Zhang and Yang (2015) used the Bayesian model averaging. A model for
short-term natural gas prediction using support vector regression was
developed by Zhu et al. (2015). Bai and Li (2016) proposed a
structure-calibrated support vector regression approach to predict daily
natural gas consumption.

Day-ahead forecasting has been the focus of research by Panapakidis
and Dagoumas (2017), who proposed a model using a combination of
wavelet transform, genetic algorithm, and neural network techniques.
They confirm that accurate forecasts of natural gas demand can be
essential for utilities, energy traders, regulatory authorities and
decision-makers. Short-term forecasting was the focus of the work of Yu
and Xu (2014), who used a combination of optimised genetic algorithm
and neural network techniques to develop a short-term load forecasting
model for natural gas.

Akpinar et al. (2017) used neural networks and the sliding window
approach for day-ahead natural gas demand forecasting. They report that
although coding the training algorithm for neural networks is demanding
and optimising the weights and biases takes considerable CPU time, the
utilisation algorithm is relatively simple, and does not require large
computational resources. The same research group (Akpinar et al., 2016)
proposed forecasting natural gas consumption with hybrid neural net-
works — Artificial bee colony approach, and (Akpinar and Yumusak,
2019) studied forecasting daily and monthly demand for mid-term nat-
ural gas as contract estimations using other statistical methods, and
(Akpinar and Yumusak, 2017) applied a navie approach using a sliding
window. Chen et al. (2018) proposed a novel approach based on a
nonlinear learning ensemble of time series predictions with deep
learning, based on neural networks with long-term short-term memory,
neural networks, a support vector regression machine and optimisation
algorithms. Taspinar et al. (2013) used artificial neural networks (ANN)
to predict the natural gas consumption in Turkey based on data from four
years. Chen et al. (2020) proposed a hybrid forecasting model, Functional
AutoRegressive and Convolutional Neural Network model for Germany.
Szoplik (2015) produced a multi-layer perceptron model that uses data
describing the actual natural gas consumption in Poland. Laib et al.
(2019) confirmed that natural gas consumption can be predicted accu-
rately using Recurrent Neural Networks by studying Algerian natural gas
daily consumption profiles. Karabiber and George (2020) considered
natural gas demand in Denmark, and found that solar radiation as an
input parameter is ineffective in terms of predictive accuracy. Beyca et al.
(2019) developed three models for Istanbul, based on multiple linear
regression, an artificial neural network and support vector regression.
They claim that support vector regression provides reliable and accurate
results in terms of lower prediction errors for time series forecasting of
natural gas consumption compared to the other two approaches.

Since the sigmoid function is nonlinear, a nonlinear fitting algorithm
must be used to determine the model parameters. Siemek et al. (2003)
used the Newton-Gauss algorithm to determine the model constants for
the Hubbert model for modelling gas consumption in Poland. The
Levenberg-Marquardt training algorithm was used to train an artificial
neural network by Ivezic (2006) for gas consumption forecasts in Serbia.

Several other approaches were also used. Gascon and Sancez-Ubeda
(2018) used generalised additive models for short-term natural gas de-
mand forecasting. Aguilera and Ripple (2011) used the Variable Shape
Distribution model to estimate the total stock of conventional gas in the
Asia Pacific. Azadeh et al. (2015) proposed to use an integrated
emotional learning fuzzy inference approach for optimal training of
forecasting models for natural gas demand forecasting models. To
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optimise the natural gas supply in South America Chavez-Rodrigez et al.
(2017) modelled the long-term natural gas dynamics by combining the
LEAP (Long range Energy Alternatives Planning System) simulation
model and the TIMES (The Integrated MARKAL-EFOM1 System) model.

A small number of studies were carried out in Slovenia and Croatia.
Sabo et al. (2011) investigated natural gas consumption in Croatia based
on hourly temperature and gas consumption measurements. Vi�stica et al.
(2015) analysed the deviations between nominated and realised gas
quantities for the balancing group consisting of 36 members in the
Croatian gas market. Poto�cnik et al. (2007) examined the risks associated
with forecasting models, and exposed the Slovenian model of economic
incentives that motivates natural gas distributors to forecast their future
consumption. Poto�cnik and Govekar (2010) presented practical results of
forecasts for the natural gas market, and stressed the importance of
including the right variables in the model and understanding the un-
derlying principles of energy consumption correctly. Poto�cnik et al.
(2014) also considered the short-term natural gas forecast for households
in Croatia. The same research group investigated the influence of solar
radiation on gas forecasting models (Soldo et al., 2014). Karasalihovic
et al. (2003) investigated the Croatian gas market and found a strong
correlation with the Gross Domestic Product. Ravnik and Hriber�sek
(2019) proposed a methodology for short-term forecasts in Slovenia
based on the sigmoid-type model. Hribar et al. (2019) focused on the gas
use of the Slovenian capital Ljubljana by looking at different machine
learning models, such as linear regression, kernel-machine and artificial
neural networks. The recurrent neural network and the linear regression
model proved to be the two most accurate models.

The motivation for developing short-term gas demand forecasts in
countries that import most of their natural gas is twofold. First, to avoid the
additional costs associated with ordering too little or too much gas in the
market, the day-ahead forecast can be used to predict the gas usage in the
next day. Second, since a typical country distributes gas on its territory
across several suppliers, it is important to have a simple algorithm com-
bined with a forecasting method to divide gas provisionally between the
suppliers. With a well-defined forecasting method, published in the legis-
lation, a consistent, fair and reliablemodel for preliminary allocation of gas
consumption is available. Due to their simplicity of having only 4 pa-
rameters defining themodel, sigmoid regressionmodels have been popular
(Ravnik and Hriber�sek, 2019), and were implemented in the legislative
framework. Although they are simple, the predictive power of regression is
expected to be low compared to artificial neural networks.

In this paper we develop models that are geared to day-ahead and
within-day forecasting of gas demand based on gas consumption mea-
surement in Slovenia and Croatia. The predictions are made at the con-
sumer level, and give gas utilities the ability to predict the behaviour of
all customers in their portfolio. Three model types are considered: The
sigmoid-type power law model, the Feed-Forward Neural Network
(FFNN) model and the Recurrent Neural Network model (RNN). We
compare the sigmoid model with the neural network model to determine
the advantages and disadvantages of both approaches, due mainly to the
prediction accuracy, but also with respect to the required computational
resources and ease of implementation. So far, no studies comparing the
characteristics of Slovenian and Croatian gas consumers as presented in
this paper have been conducted, although Slovenia and Croatia are
neighbouring countries.

The original contribution of this paper consists of three parts. First,
we present three models for the short-term (day-ahead and within-day)
prediction of gas consumption. The developed models are compared,
and their advantages are shown. The models can be used internationally
for any gas forecasting study. Secondly, we identify the best models, and
present their effectiveness using a data set consisting of 115 measuring
stations andmore than onemillion daily gas consumption measurements.
Finally, we present the results of the comparison of the Slovenian and
Croatian gas consumption characteristics, and the comparison between
the modelling of individual consumers and the modelling of hydraulic
cells covering a large number of consumers.



Fig. 2. The number of days with data for all of the 115 data sets.
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2. The data set

We developed the models based on daily gas consumption and tem-
perature measurements in Slovenia and Croatia. The Croatian data set
consisted of measurements on 18 hydraulic cell groups in Croatia in the
period 1.1.2015–30.4.2019. These data sets were named D1, … D18.
They correspond to geographical regions with similar climate charac-
teristics, and consist of daily measurements of gas consumption in 126
hydraulic cells. Each hydraulic cell includes several consumers of
different types. The measurements were performed by the Croatian En-
ergy Regulatory Agency. For each group a representative meteorological
station was selected, from which temperature measurements were taken.
The map of locations of hydraulic cells and meteorological stations is
shown in Fig. 1. In total there were 27,782 days with data from Croatia
from 18 groups formed around meteorological stations (see Fig. 2). The
18 Croatian data sets thus represent daily sums of gas consumption for a
large number of individual consumers.

In contrast, in Slovenia, we considered individual consumers. The
consumption data were data obtained from 97 gas measuring stations
located at individual consumers, such as residential houses and small
businesses in the period 3.9. 2009 - 30.5.2013. Based on the location of
the measuring station, the temperaturemeasurements were carried out at
the nearest representative meteorological station. These data sets were
named D19, … D115.

The measurements were taken by the Energy Agency of the Republic
of Slovenia by performing hourly gas consumption measurements at 260
consumers (end users) in Slovenia. At the same time, 18 meteorological
stations recorded climate conditions. For each of the 260 consumers,
32,856 hourly measurements were made during the observation period.
The consumers were chosen in such a way that they represented several
consumer groups, and were representative of their type of activity (e.g.
Agriculture, Civil Engineering, Residential, etc.). The consumer groups
are defined in the standardised Business Registry. Secondly, consumers
were chosen in such a way that they were located in different local
climate regions of the country.

Given the gas consumption dataset, we first performed a statistical
analysis to determine the consumption variation within the dataset. For
each consumer we calculated the average daily consumption and Stan-
dard Deviation. In order to exclude erroneous gas consumption data, the
measurements that exceeded the 7σ interval were eliminated from the
dataset. In total 0.03% of all measurements were rejected. We chose 7σ to
be sure, that the rejected data points did not represent valid measure-
ments. Furthermore, due to equipment failure or other unforeseen cir-
cumstances, all of the consumers did not have a complete four-year
dataset of the measurements available. The majority of the consumers
Fig. 1. Maps of Croatia (left) and Slovenia (right) with location of meteorological sta
where measurements took place are shown.
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had between 70% and 90% of the maximum number (each day with a full
24-h resolution) of measurements. Finally, several consumers used nat-
ural gas for process purposes in a non-temperature dependent manner.
We chose 97 consumers with more than a 1000 days of measurements to
be included in this analysis. The total number of days with measurements
was 119,045. The map of Slovenia, with locations of cities where mea-
surements took place and meteorological stations is shown in Fig. 1. The
number of days with data is shown in Fig. 2.

In (Ravnik and Hriber�sek, 2019) it was shown that, although the
market gas price shows some fluctuations over the measurement period,
we did not observe a strong correlation between price and consumption.
Furthermore, we assumed that the fluctuation of the natural gas price
during the measurement period was small compared to the Gross Do-
mestic Product of Slovenia and Croatia, which is why the natural gas
price was not considered as a variable in the modelling. Although there is
a tendency to reduce heat losses from residential buildings, we believe
that this does not have a significant impact on natural gas consumption.
Thus, we may assume that the consumption characteristics have not
changed during the observation period. For all 115 data sets we used the
last 365 measurement days as the validation data set, and used only the
remaining measurements for model development.

The forecasting task discussed in this paper is a short-term forecast for
one day in the future. Based on the measurements collected on this day,
and on several days before, a forecast is made of gas consumption on a
single day in the future. To put this methodology into practice, we
tions and gas consumers. In Croatia hydraulic cells are shown, in Slovenia cities



J. Ravnik et al. Cleaner and Responsible Consumption 3 (2021) 100040
recommend using the Weather Service with hourly forecasts for all regions
of both countries. In Slovenia and Croatia the gas day is defined as the
period between 6 a.m. on that day and 6 a.m. on the next day. It is,
therefore, possible to use the models developed below as follows. After 6
a.m. the gas consumption measurements of the previous day are available.
In addition, theWeather Service has prepared temperature forecasts for the
following gas day, which allowed the models to be used and the gas con-
sumption forecast to be made. These data can be used to allocate gas
consumption preliminarily between the suppliers. If necessary, the same
model can be used again later in the day, in conjunction with additional
measurements already available. The actual times of day at which the
model is used will depend on the Regulations of a particular country.

The inputs for the forecasting models considered in this paper are the
gas consumption in a gas day and average temperature in a gas day. The
average temperature is calculated by averaging the measured or forecast
hourly temperatures during a gas day. In (Ravnik and Hriber�sek, 2019) a
distinction has been made between weekends, holidays and workdays. It
was concluded that such a distinction does not contribute significantly to
forecasting accuracy, so, in this work, we treat all days equally.

3. The sigmoid model

The sigmoid gas consumption model, which connects the average
outside temperature and gas consumption, is defined using the following
formula (Ravnik and Hriber�sek, 2019):

Pj ¼ max

8>>><
>>>:
Pm

2
6664

A

1þ
�

B
Tj�40

�
C

þ D

3
7775; 0

9>>>=
>>>;

(1)

where Pj is the estimated gas consumption for gas day j, Pm is the average
daily gas consumption of the consumer for which the estimate is made, A,
B, C and D are the model parameters, and Tj is the average gas day
temperature on day j in �C.

Different values of the parameters A, B, C and D result in different
consumption curves. To develop a numerically stable algorithm for
determining the sigmoid curve parameters A, B, C and D, we first nor-
malised the gas consumption in each data set with Pm ¼ 1

N

PN
j¼1P

m
j , where

N is the number of data points in the data set.
The optimal values of parameters A, B, C and D were determined by

nonlinear fit of the sigmoid curve to the data sets minimising the sum of
square differences between the curve and the data points. To find the
parameters we used the Levenberg-Marquardt method (Press et al.
(1997)). The solution was found in an iterative manner using 10�6 as the
convergence criterion. The initial values of parameters were: A ¼ 1,
B¼� 30, C¼ 10, and D¼ 0.1. The list of all parameter values for all data
sets is given in the Appendix. The medians, obtained by considering all
115 data sets, are A ¼ 2.91, B ¼ � 36.46, C ¼ 5.493 and D ¼ 0.153. The
median sigmoid features low and constant gas usage at temperature
above 20�C, an approximately linear increase of usage between 20�C and
0�C, and slowing of increase of usage in the negative temperature range.

When applying the sigmoid curve for gas consumption forecasts, it is
important that the available gas consumption data cover the entire
temperature range typical for a specific geographical region in which the
target consumer is located. With regard to the accuracy of the sigmoid
approximation, it is also important that there is a comparable number of
data points in the low and high temperature range, as only a few data
points would not be able to ensure a representative functional depen-
dence in this temperature range. With the effects of global warming, the
availability of gas consumption data in the low temperature range is
becoming scarce, but this does not mean that severe low-end tempera-
tures are not to be expected in the future. In order to overcome this
problem, consumption data should be used over a longer period of time,
increasing the probability of collecting days with lower temperatures.
4

4. The artificial neural network models

In the following we develop day-ahead forecasting models based on a
feed-forward neural network and recurrent neural network designs.

4.1. The feed-forward neural network

An artificial neural network consists of several layers containing in-
formation and connections between them. It supports any length of input
and output layers. In our case, we selected the output layer as a single value
- the predicted gas consumption Pj. As inputwe could have chosen only one
value - the average temperature on the gas day for which we want to
predict the gas consumption Tj. This would result in a model that would
behave similarly to the sigmoid model presented above, for a known
average temperature the model would predict the gas consumption.
However, since the artificial neural network can take several values as
input, we decided to include the gas consumption and the average tem-
perature on the previous days as well. The reason for this decision is based
on the fact that gas consumption on a given day depends on the average
temperature and gas consumption on the previous days. For example, gas
consumption on a cold day will be lower if the previous days were warm,
and higher if the previous days were cold. In the models presented below,
the size of the input layer is always odd. It consists of the average tem-
perature on the day for which we want to predict the gas consumption Tj,
and pairs of average temperature and gas measurements for n of the pre-
vious days. For example, if the input layer size is 5, it will consist of Tj, Pj�1,
Tj�1, Pj�2, and Tj�2. With such an arrangement it is possible to train the
neural network to recognise patterns in the gas consumption profile of the
consumer and, thus, to predict gas consumption more successfully.

The artificial neural network consists of nodes distributed in layers
(Bell, 2015). The values of the nodes for each layer are stored as vectors,
i.e. ni, where i is the layer number. The zeroth layer n0 represents the
input to the neural network. σi is an activation function used for the layer
i. bi are scalar values called bias. Wi are weight matrices. The number of
rows in Wi is equal to the number of nodes in the ni layer, the number of
columns in theWimatrix is equal to the number of nodes in the ni�1 layer.
In this work, we use the sigmoid σ(x) ¼ (1 þ exp(�x))�1, the hyperbolic
tangent σ(x)¼ tanh(x) and the identity σ(x)¼ x activation functions. The
input is propagated through the network to the output layer by a
sequence of the following algebraic expressions using the weights and
biases of the network. Let the number of layers in the network be k þ 1
and so the output layer is nk. Its value is estimated using

nk ¼ σk
�
bk þ⋯þW4σ3

�
b3 þW3σ2

�
b2 þW2σ1

�
b1 þW1n0

����
(2)

To become useful, the neural network must be trained, i.e. we must
find the optimal values for weights and biases based on the gas con-
sumptionmeasurements available in each data set. We transform the data
set into training pairs. Suppose t0 is the input layer of average temper-
ature and gas consumption measurements in the days before the day for
which we predict gas consumption, and tk is the output layer, i.e., the
measured gas consumption. If t0 is used at the input, the neural network
(2) creates the output nk. We define the error vector for the output layer
as ek ¼ tk � nk where nk is the output of the network, based on the input
n0 ¼ t0. Next, we define the L2 error norm of the neural network for a
single training pair as

L2 ¼ ek � ek (3)

For each data set we posses a certain number of training pairs N, t ðlÞ
0

and t ðlÞ
k , where l denotes the training pair number. Finally, we define the

error of the neural network via the following norm

E ¼ 1
N

XN

l¼1
LðlÞ
2 ¼ 1

N

XN

l¼1

�
t
ðlÞ

k
� n

ðlÞ

k

�
2; (4)
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where nðjÞk is obtained by propagating nðjÞ0 ¼ tðjÞ0 through the network.
When training the network, our task is to minimize E by choosing an
appropriate network structure (number and size of layers and activation
function types), and then finding the optimal weights and biases.

4.2. Recurrent neural network model

When using FFNNs, as described above, we treat all inputs indepen-
dently. Recurrent Neural Networks (RNNs) try to take advantage of the fact
that we are dealing with inputs that are given in a temporal sequence.
RNNs exploit the temporal relationship between inputs and outputs to
produce better forecasts. RNNs are called recurrent because they perform
the same task for each element of a time sequence, with the output
depending on the previous calculations. RNNs can use information in se-
quences of any length, but in practice they are limited to looking back only
a few steps. The following steps are necessary to perform the forecast:

ht�2 ¼ σt�3ðWht�3 þ Uxt�2Þ
ht�1 ¼ σt�2ðWht�2 þ Uxt�1Þ
ht ¼ σt�1ðWht�1 þ UxtÞ
yt ¼ σtVht

(5)

The output yt is generated by using a time series of the inputs xt, xt�1
and xt�2. This is done using a series of hidden layers ht, …, ht�3, activa-
tion functions σt, …, σt�3 and weight matrices U, V and W. The deepest
hidden layer ht�3¼ 0 is normally set to zero. Several choices are available
for the activation functions, such as the sigmoid, hyperbolic tangent or
ReLU. The size of the input is nx and the size of the output is ny. The sizes
of the hidden layers are all the same, nh. The weight matrices have the
following sizes: U(nh, nx), V(ny, nh) and W(nh, nh). They must be deter-
mined using an optimisation strategy based on the available training
data.

4.3. Model quality assessment measures

In order to have a mathematically based assessment of the quality of
the developed models, the square of the sample Pearson correlation co-
efficient, denoted by r2, was employed (Hellwig, 2003):

P ¼ PN
j¼1 Pj; Pm ¼ PN

j¼1 P
m
j ; r2 ¼

�PN
j¼1PjPm

j � NP Pm
�2

�PN
j¼1ðPjÞ2 � NP2

��P
jðPm

j Þ2 � NPm2

�
:

(6)

Here Pj is the forecast gas consumption for a consumer on the day j, while
Pmj is its measured counterpart, and N ¼ 365 is the number of data points
in the validation data set. The coefficient r2 is the square of the covari-
ance of the forecast and measured gas usage divided by the product of
their Standard Deviations. It takes values between 0 and 1, with a higher
value describing a better fit. The validation data set was not used in the
model development, and consisted of the last 365 measurements taken
for each individual data set. To further expose the difference between the
forecast and measured gas usage, we use the relative RMS norm

RMS ¼

0
B@
PN

j¼1

�
Pj � Pm

j

�2

PN
j¼1

�
Pm
j

�2

1
CA

1
2

: (7)

The RMS norm measures the difference between the model forecasts
and measurements, with a smaller value indicating better agreement
between the model and the measurements. Finally, the Mean Absolute
Percentage Error (MAPE) is defined as

MAPE ¼ 100% � 1
N

XN

j¼1
jj1� Pj

Pm
j

(8)

is also used to express the average expected forecast error of a single daily
5

forecast. MAPE gives the difference between the measurements and
forecasts in percentage of the measured value.
4.4. Genetic optimisation strategy

In the study we consider different designs of the neural networks in
terms of the size and content of the input layer and the number and size of
hidden layers. The output is, in all cases, the forecast gas consumption. We
denote the ANNdesigns as ZxW

Y , where Z isF for the feed-forward network
andR for the recurrent network, X is the number of gas measurements on
the previous days used in the input, Y is the number of average tempera-
tures used in the input,W stands for the size and number of hidden layers,
and x for the type of activation function used (s for sigmoid
(1 þ exp(�x))�1 and t for tanh). For example, considering day j, the feed
forward network F s5;5

4 has the following data in the input layer Pmj�1, P
m
j�2,

Pmj�3, Tj, Tj�1, Tj�2, Tj�3, and two hidden layers of size 5 with a sigmoid
activation function. The output of the network is always the predicted gas
consumption for the day j: Pj. The activation function for hidden layers was
the sigmoid or tanh, and for the output layer the identity function.

The total number of weights and biases can be determined from the
structure of the network and, for the networks used in this study, is in the
range between 26 for a network with 3 inputs and 1 hidden layer of size
5, 56 for a network with 9 inputs and 1 hidden layer of size 5, and 76 for a
network with 7 inputs and 2 hidden layers of size 5.

We used the genetic optimisation algorithm to find the optimal values
for weights and biases for each data set and for each neural network
design. Let us consider a gene as a single value of a weight or bias in the
neural network. The entire network is defined as a collection of genes
that we call a chromosome. A population is a collection of M chromo-
somes. Starting from the definition of the L2 norm, we define the
following quantities for the i-th chromosome:

Fi ¼ 1
1þ L2;i

; F ¼
XM

i¼1
Fi; Ci ¼

Xi

j¼1

Fj

F
; (9)

where Fi is the fitness for the i-th chromosome, F is the total fitness, Ci is
the chromosome cumulative probability, and L2,i is the L2 norm (3) of the
i-th chromosome. Genetic optimisation is based on two additional user
defined parameters: The cross over rate ζ and the mutation rate μ. The
selection of fit chromosomes is performed using eq. (9). Crossover be-
tween two fit chromosomes is implemented by choosing genes from both
chromosomes randomly. Mutation changes μ genes randomly.

For the genetic optimisation of weights and biases in the neural
networks we used the population size M ¼ 200, the number of iterations
n ¼ 105, the crossover rate ζ ¼ 0.9 and the mutation rate μ ¼ 0.2. The
search space for weights and biases was (�2.5, …, 2.5).

5. Results

The 115 data sets were modelled with both the sigmoid and the
artificial neural network models. The results are given below.
5.1. Determination of optimal neural network setup

First, we investigated the effect of the structure of the artificial neural
network on the predictive power of the ANNmodels. In Fig. 3 we show the
square of the Pearson sample correlation coefficient for a selected group of
data sets. The data sets have been selected so that some have the expected
gas consumption - average temperature dependence - and others do not. In
the case where the gas is used temperature-dependently, we observe the
values of the square of the Pearson sample correlation coefficient close to
one,meaning that the ANNdescribes the datawell. Looking at the square of
the Pearson sample correlation coefficient plots, we observe that different
ANN designs yield results of the same order of magnitude. Nevertheless,
such comparison reveals the optimal neural network design.



Fig. 3. Comparison of the square of the Pearson sample correlation coefficient obtained using different artificial neural network designs: FFNNs (left) and
RNNs (right).
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In data sets where gas was not used in a temperature dependent
manner (D4,D9 andD15) the neural networks taking only temperature as
input (F5

3 and F 5
5) fail. The other designs are comparable, albeit the

forecasting accuracy is low. The feed forward networks performed better
then recurrent networks in these cases.

We were interested in discovering the neural network design which
preforms best when temperature dependent data are considered.
Considering data sets D1, …, D18 with r2 > 0.9, we compared the neural
network designs in Fig. 4. The comparisons was made in the following
way. For each data set we identified the best neural network design, i.e.
the one with the largest values of square of the Pearson sample correla-
tion coefficient. For each neural network design we present in Fig. 4 the
average difference between the max r2 calculated using all data sets.

Fig. 4 shows that all ANNs perform better than the sigmoid curve
model. Designs that consider only gas consumption or only temperature
perform poorly. A comparison of the recurrent and feed-forward net-
works shows that both can achieve a similar level of accuracy, but the
RNNs seem to be slightly better.

Altogether the best feed forward design is F s5
4 and the best recurrent

design is Rs5
5 . Based on this analysis, we selected these two designs for all
Fig. 4. Comparison of the sigmoid model and different neural network designs. The v
and the best model.

6

further analyses. The feed forward network F s5
4 has the size of the input

layer 7, so in order to forecast gas usage on day j: Pj we require 7 data
points: The average temperature on the same day Tj, as well as the
average temperature and gas usage for the three previous days: Tj�1;Pmj�1,

Tj�2;Pmj�2, Tj�3;Pmj�3. The recurrent network R5
5 uses Tj, …, Tj�4 and uses

Pmj�1;…;Pmj�5. Both use the sigmoid as the activation function.
5.2. Comparison of developed models

Secondly, we modelled all 115 data sets with the sigmoid curve
model, feed forward neural network model F s5

4 and the recurrent neural
network model Rs5

5 . The square of the Pearson sample correlation coef-
ficient and the RMS norms are shown in Fig. 5. Several observations can
be made. The sigmoid curve model and the ANN models behave simi-
larly, resulting in the square of the Pearson sample correlation coefficient
and the RMS norm of the same order of magnitude. Nevertheless, it can
be observed that the artificial neural network models outperformed the
sigmoid model in all cases. Even though the computational resources
required for training the artificial neural network are much larger than
alues on the ordinate reveal the average difference between an individual model



Fig. 5. Comparison of square of the Pearson sample correlation coefficient (left) and the RMS norm (right) for the sigmoid and artificial neural network models for all
115 gas usage measurement data sets. The data sets were sorted to improve the readability of the plots.
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the resources needed to estimate the sigmoid model parameters, they are
still manageable, so we recommend using the artificial neural network
models in practical applications.

Comparing the performance of the feed-forward and recurrent neural
networks, we observe that they performed similarly, with the slight
advantage of the recurrent neural network. The differences in results are
most prominent for data sets which were captured poorly (r2 < 0.9). For
data sets having (r2 > 0.9) we observed an almost identical performance
of the FFNN and RNN.

Examining the square of the Pearson sample correlation coefficient
Fig. 6. Gas usage measurements and model forecasts shown as gas usage versus av
versus measured gas usage (bottom) for data set D61. Results of sigmoid curve mod
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for neural network models (left panel in Fig. 5), we can divide the
developed models into three categories. In the first category we place the
good models (r2 > 0.9), in the second fair models (0.5 < r2 < 0.9) and in
the last category we place poor models (r2 < 0.5). We find more than half
(56%) of the models in the good model category, 37% in the fair model
category, and only 7% of the models in the bad category. The RMS norm
results (right panel in Fig. 5) reveal that the neural network models
outperformed the sigmod model in all data sets.

To examine the origin of the prediction accuracy for all three types of
models, we take a closer look at two data sets that were modelled very
erage gas day temperature plots (top) and time traces (middle) and forecasted
el are in left panels, FFNN in center panels and RNN in right panels.
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successfully or very poorly. In Fig. 6 we take a detailed look at the results of
a single data set, D61, which was modelled very successfully by all three
approaches. The square of the Pearson sample correlation coefficient was
r2 ¼ 0.935 for the sigmoid curve model, r2 ¼ 0.983 for the feed-forward
neural network and r2 ¼ 0.984 for the recurrent neural network model.
Even though the D61 data set had a very typical consumption-versus-
temperature relationship and the sigmoid model captured it well, it was
inferior to both neural network models. The difference was more pro-
nounced when more challenging data sets are considered, for example,
D110 (Fig. 7). In this case we observe that the sigmoid curve model was not
capable of capturing the large gas consumption variation well at a given
temperature. The data set contained up to 500% change in gas consump-
tion at temperatures between 0�C and 10�C, and exhibited non-
temperature dependent behaviour. As a result, the square of the Pearson
sample correlation coefficient for the sigmoid model was r2 ¼ 0.738. Both
neural network models performed much better, reaching r2 ¼ 0.947, and
demonstrating the ability to detect consumption behaviour that is only
partially temperature dependent. Understandably, the performance of the
neural network was worse compared to the D61 dataset.

It is worth pointing out that neural network performance for the non
temperature dependent dataset D110 was better than the sigmoid model
performance on the well behaved dataset D61. When the models devel-
oped in this paper will be used by gas supplier companies they will be
used to forecast gas usage of a very large number of consumers. The
behaviour of the consumers is expected to be primarily temperature
dependent, although some deviations from this behaviour may occur.
The 115 gas measuring stations used in this study were chosen in such a
way that they represent a good sample of gas usage behaviour in Slovenia
Fig. 7. Gas usage measurements and model forecasts shown as gas usage versus av
versus measured gas usage (bottom) for data set D110. Results of sigmoid curve mod
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and Croatia. The model which will be chosen for daily use is expected be
able to forecast gas usage for a wide variety of gas users. The final
example, which undoubtedly proves that neural network models are
superior to the sigmoid model, is shown in Fig. 8, where data set D45 is
analysed. This dataset exhibits two behaviours clearly - a temperature
dependent and a non-temperature dependent behaviour. Analysing it, we
find that the reason for poor performance of the sigmoid model comes
from the fact that gas was used in two different regimes in the temper-
ature range 10�C < T < 15�C. The sigmoid model cannot capture both
regimes at the same time, while the neural network models can. The
neural network models reach r2 ¼ 0.99, which is a very good result.

In this context it should be noted that the performance of the neural
network for the non-temperature dependent data setD110 was better than
the performance of the sigmoid model for the well behaved dataset D61.
If the models developed in this paper are used by gas supply companies,
they will be used to predict gas consumption of a very large number of
consumers. It is expected that the behaviour of the consumers is primarily
temperature dependent, although some deviations from this behaviour
may occur. The 115 gas metering stations used in this study were selected
to provide a good example of gas consumption behaviour in Slovenia and
Croatia. It is expected that the model chosen for daily use will be able to
forecast gas consumption for a wide range of gas consumers. The last
example, which proves beyond doubt that neural network models are
superior to the sigmoid model, is shown in Fig. 8, where the data set D45

is analysed. This data set shows two types of behaviour clearly - one
temperature-dependent and one non-temperature-dependent behaviour.
When we analyse it, we find that the reason for the poor performance of
the sigmoid model is that the gas was used in two different regimes in the
erage gas day temperature plots (top) and time traces (middle) and forecasted
el are in left panels, FFNN in center panels and RNN in right panels.
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10�C < T < 15�C temperature range. The sigmoid model cannot capture
both regimes at the same time, while the neural network models can. The
neural network models reached r2 ¼ 0.99, which is a very good result.

Finally, we analyse mean average percentage errors (8) for the three
developed models. In Fig. 9 we show MAPE of the forecasted gas usage
versus temperature for four data sets, which were modelled successfully
(ANN square of the Pearson sample correlation coefficient r2 > 0.98).
When comparing the sigmoid model and the neural network models, we
find that the ANN errors are lower, and that the difference between the
two modelling approaches is the largest in the mid temperature range
(8�C–18�C). This means that the sigmoid model only works at low tem-
peratures (< 5�C). It is clear that the neural network models are superior
in the entire temperature range. Comparing the feed-forward and
recurrent neural networks, we observe similar performance but notice
that, in most cases the MAPE for the recurrent model are the lowest.
ANNs reach MAPE similar to that reported by Akpinar et al. (Akpinar and
Yumusak, 2017), in the order of 5%–10%.

In Fig. 10 we show the ratio of MAPE of the neural network and the
MAPE of the sigmoid model for all data sets (left panel), and examine its
correlation with the square of the Pearson sample correlation coefficient
(right panel). We observe, since all ratios in the plot are less than one,
that both feed-forward and recurrent neural network models have a
smaller MAPE compared to the sigmoid model. For about one half of the
data sets the neural network error is less than 60% of the sigmoid model
error. For the other half, the improvement of neural network models over
the sigmoid model is smaller, but still there.

The improvement of ANN over the sigmoid model was best for data
sets with a higher square of the Pearson sample correlation coefficient
Fig. 8. Gas usage measurements and model forecasts shown as gas usage versus av
versus measured gas usage (bottom) for data set D45. Results of sigmoid curve mod
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(right panel of Fig. 10), which means that forecasting of well-behaved
temperature-dependent gas consumers is greatly improved when the
sigmoid model is replaced by the neural network model.
5.3. Application of the developed models

Based on the presented results, the following methodology should be
employed to produce day-ahead forecast of gas consumption and pre-
liminary allocation of gas between consumers.

● The gas distribution network in an area should be divided into smaller
regions with similar climate characteristics, for which weather fore-
casts are made regularly and are accessible. For the easiest imple-
mentation, a contract with the Weather Service is advisable, which
enables the automatic exchange of data. The regions can be centred
around meteorological stations, so minimal distance between con-
sumers and temperature measurements is achieved.

● Measurements of gas consumption at individual consumers or at a
hydraulic cell level must be recorded daily for a period of at least
three years. It is recommended to select metering points (reference
consumption points) for various consumers according to the purpose
of their gas consumption.

● We recommend training of a recurrent neural network using this
design: Rs5

5 . After initial training, the gas usage measurements should
continue on reference consumption points, and the network should be
re-trained once per year when new measurements become available.

● The trained neural networks can then be used daily when new tem-
perature forecasts become available. When they are applied for
erage gas day temperature plots (top) and time traces (middle) and forecasted
el are in left panels, FFNN in center panels and RNN in right panels.



Fig. 9. MAPE of the forecasted gas usage expressed in percent versus temperature for four data sets: D5, D11, D13 and D18, which were successfully modelled (ANN
square of the Pearson sample correlation coefficient r2 > 0.98). The error bars represent the 95% confidence interval. The sigmoid model, the feed-forward neural
network F s5

4 and the recurrent neural network Rs5
5 are shown. The poor performance of the sigmoid model in the medium temperature range (8�C–18�C) is obvious.
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individual consumers, the results must be scaled in proportion to the
individual consumer's annual gas usage.

● When the total gas consumption for a hydraulic cell in the gas dis-
tribution network is known, it is necessary to make a preliminary
allocation of the gas consumption of each consumer based on the
application of the models. This provides a unified and equitable way
of determining the preliminary allocation, and, when introduced into
the regulatory framework, ensures smooth operation and helps to
avoid conflicts between gas suppliers. We assume that the total
amount of gas consumed is measured in a hydraulic cell S. Then, this
gas quantity must be divided among the consumers. A forecast is
made for each of the consumers. Let the number of consumers be n
and the predicted gas consumption of the i � th consumers be Pi. Due
Fig. 10. The ratio of the neural network MAPE and sigmoid model MAPE for all data
plot. In the right panel the correlation between MAPE ratio and square of the Pears
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to the inaccuracy of the forecast, we find that the total measured gas
consumption is not equal to the sum of all forecasts for all consumers,Pn

i¼1Pi 6¼ S. We want to compute the preliminary gas consumption
distribution Ai such that

Pn
i¼1Ai ¼ S. To achieve this, the preliminary

gas consumption allocation Ai is calculated using the following
formula:

Ai ¼ PiPn
i¼1Pi

S: (10)

6. Summary

Three different types of day-ahead natural gas consumption forecast
sets is shown in the left panel. Data sets were sorted to improve readability of the
on sample correlation coefficient is shown.
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models have been developed in this paper: The sigmoid regression model,
the feed-forward neural network model and the recurrent neural network
model. The models were developed for 115 different gas metering stations,
which were located in different climate zones (Mediterranean, Alps, Pan-
nonia). The applicability of the developed models depends on the fact that
the gas supply company must have access to the temperature forecast for
the next day for the region where its consumers are located.

The sigmoid regression models are easy to develop, since only a
nonlinear fitting algorithm has to be implemented to determine the
model constants. From an implementation point of view, they are also
easy to integrate into spreadsheet software and are, therefore, readily
available to gas utilities. However, as we have shown in this paper, their
accuracy is lower than the accuracy of models based on artificial neural
networks. The computational resources required for neural network
training are considerable, but they are not a limiting factor for use. In
fact, a gas company would need to train its networks on an annual basis
for perhaps a dozen of its characteristic consumers. Even if this tech-
nology were applied to entire countries, the number of neural networks
to be trained would not exceed a thousand, resulting in annual
computing times in the order of weeks. The use of trained neural net-
works in the daily operation of gas supply companies requires the
development of special software, but the computing resources are small.
Daily forecasts based on neural networks for thousands of consumers can
be generated in a few minutes.

When modelling temperature-dependent gas consumers with neural
network models we have shown a reduction of the forecast error by up to
5 times compared to the sigmoid regression model. For consumers whose
gas consumption is not fully temperature-dependent, the error reduction
is about 2 times. Based on these results, and since the computational
requirements for neural network models are large but manageable, we
11
conclude that the use of neural network-based models is preferable to
sigmoid regression. Looking at MAPE, the ANNs are able to reach an error
of 5%–10% in the entire temperature range for day-ahead forecasting of
temperature-dependent gas consumers. The sigmoid model matches this
accuracy only in the case of low outside temperature (below 5�C), while
at temperatures above this threshold, the error increases to about 30%–

40%. The users, which are only partially temperature-dependent (i.e. the
gas is used for heating as well as for industrial processes), present a
limitation for the use of neural networkmodels. The reason being that the
forecast accuracy is greatly reduced. We observe a reduction of the
square of the Pearson sample correlation coefficient from 0.98 to 0.5 in
such cases. Gas utility companies are advised to instal independent
continuous measurement of industrial users of gas and model only tem-
perature dependent users.

We investigated feed-forward and recurrent neural networks with
different characteristics (number of size and hidden layers and activation
function types). We found that the prediction accuracy of all versions of
the artificial neural networks was of the same order of magnitude. For
purely temperature-dependent data sets the square of the sample Pearson
correlation coefficient was r2 > 0.98. The best results were obtained with
the recurrent neural network with a long input layer, considering the gas
consumption in the last five days, the average gas day temperature in the
last four days, and the predicted average temperature for the next gas day
to estimate the gas consumption for the next day.
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Appendix
Table 1
Values of the A, B, C and D constants for the sigmoid model.

data set A B C D data set A B C D
1
 3.216
 �41.94
 4.265
 0.342
 31
 3.372
 �36.46
 7.532
 0.256

2
 3.659
 �42.58
 3.93
 0.255
 32
 2.874
 �34.01
 6.515
 0.182

3
 2.74
 �37.19
 5.464
 0.297
 33
 1.551
 �30.43
 8.56
 0.399

4
 0.428
 �16.77
 4.281
 0.66
 34
 3.383
 �34.89
 7.115
 0.131

5
 4.585
 �45.35
 4.437
 0.263
 35
 �1.677
 �2.17
 0.403
 2.227

6
 2.965
 �40.58
 4.629
 0.351
 36
 3.448
 �34.43
 4.925
 �0.099

7
 1.9
 �30.67
 7.865
 0.477
 37
 2.064
 �31.85
 8.236
 0.265

8
 4.062
 �40.35
 4.231
 �0.019
 38
 2.725
 �31.14
 8.317
 0.004

9
 0.045
 �30.15
 �1937.688
 0.975
 39
 2.659
 �37.04
 6.685
 0.28

10
 121.76
 �337.07
 2.23
 0.441
 40
 19.335
 �63.69
 4.875
 �0.021

11
 3.588
 �40.35
 4.528
 0.228
 41
 2.414
 �34.82
 5.468
 0.139

12
 2.556
 �31.49
 6.982
 0.308
 42
 3.511
 �38.89
 4.499
 �0.148

13
 3.653
 �39.68
 4.254
 0.163
 43
 2.744
 �34.39
 5.138
 �0.047

14
 4.05
 �41.67
 4.46
 0.192
 44
 3.089
 �36.33
 5.288
 0.002

15
 0.231
 �24.28
 48.011
 0.882
 45
 2.327
 �32.59
 6.312
 0.029

16
 3.524
 �41.02
 4.644
 0.257
 46
 3.148
 �37.1
 5.987
 0.062

17
 1.326
 �31.05
 8.581
 0.7
 47
 4.588
 �45.94
 4.091
 0.201

18
 3.582
 �38.15
 5.055
 0.17
 48
 0.424
 �18.76
 4.472
 0.651

19
 3.295
 �33.19
 8.134
 0.023
 49
 3.064
 �34.91
 5.26
 �0.118

20
 3.179
 �34.3
 7.126
 0.108
 50
 2.264
 �34.82
 6.244
 0.196

21
 2.451
 �30.87
 7.293
 0.113
 51
 3.826
 �41.11
 5.078
 0.167

22
 3.042
 �34.16
 6.526
 0.023
 52
 2.798
 �36.23
 6.102
 0.144

23
 2.816
 �32.42
 9.864
 0.119
 53
 2.529
 �35.92
 5.377
 0.064

24
 4.327
 �46.67
 4.413
 0.476
 54
 2.91
 �33.98
 5.068
 �0.087

25
 5.356
 �41.98
 4.455
 0.059
 55
 2.315
 �34.86
 5.448
 0.206

26
 2.734
 �32.68
 6.188
 �0.086
 56
 4.532
 �44.65
 4.047
 0.099

27
 2.992
 �33.91
 7.594
 0.129
 57
 2.099
 �32.12
 5.628
 0.129

28
 3.114
 �32.71
 6.028
 �0.017
 58
 3.016
 �36.97
 4.102
 0.042

29
 1.989
 �30.89
 5.66
 0.231
 59
 2.709
 �34.44
 6.294
 0.133

30
 4.573
 �39.1
 7.28
 0.239
 60
 3.205
 �39.32
 4.647
 0.163
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Table 2
Values of the A, B, C and D constants for the sigmoid model, continued. The median for each parameter is also shown.

data set A B C D data set A B C D
12
61
 3.019
 �39.27
 5.3
 0.252
 89
 3.598
 �39.01
 5.493
 0.035

62
 2.445
 �39.17
 7.319
 0.336
 90
 1.771
 �32.55
 6.547
 0.245

63
 4.002
 �46.3
 3.749
 0.195
 91
 2.931
 �35.77
 5.319
 0.035

64
 2.188
 �31.59
 5.493
 �0.081
 92
 4.114
 �39.78
 6.467
 �0.054

65
 2.542
 �35.13
 4.776
 0.108
 93
 6.692
 �49.9
 4.492
 �0.016

66
 1.887
 �29.51
 6.739
 0.045
 94
 4.534
 �43.96
 5.198
 0.176

67
 3.517
 �40.05
 4.356
 0.084
 95
 2.877
 �35.75
 6.131
 �0.009

68
 0.078
 �20.73
 �46.298
 0.993
 96
 2.152
 �35.22
 6.973
 0.371

69
 2.017
 �45.81
 4.564
 0.657
 97
 2.705
 �36.11
 4.954
 0.1

70
 5.189
 �40.47
 6.909
 �0.055
 98
 5.443
 �43.53
 7.279
 0.103

71
 0.069
 �23.06
 266.852
 0.949
 99
 3.269
 �38.06
 6.521
 0.046

72
 2.146
 �36.68
 6.409
 0.347
 100
 2.484
 �40.15
 7.647
 0.434

73
 3.198
 �43.34
 8.3
 0.551
 101
 3.161
 �40.83
 7.129
 0.309

74
 2.61
 �39.75
 6.337
 0.374
 102
 1.97
 �33.85
 5.596
 �0.008

75
 3.588
 �39.92
 4.616
 0.046
 103
 2.481
 �35.53
 7.171
 0.084

76
 2.113
 �32.43
 4.519
 0.153
 104
 2.583
 �37.46
 5.043
 0.105

77
 4.912
 �40.52
 5.366
 �0.073
 105
 2.191
 �36.97
 12.617
 0.299

78
 2.387
 �35.39
 6.878
 0.193
 106
 2.142
 �35.93
 5.4
 0.205

79
 2.775
 �36.62
 7.123
 0.093
 107
 2.664
 �36.18
 6.962
 0.064

80
 3.442
 �38.36
 4.035
 �0.194
 108
 2.773
 �39.32
 5.561
 0.191

81
 2.811
 �34.97
 5.353
 0.018
 109
 0.489
 �31.93
 6.556
 0.772

82
 2.908
 �36.1
 5.446
 0.072
 110
 3.632
 �40.19
 9.045
 0.047

83
 0.036
 �23.81
 4819.742
 0.975
 111
 2.15
 �36.78
 5.488
 0.265

84
 2.352
 �36.18
 7.761
 0.291
 112
 5.076
 �47.46
 3.165
 �0.285

85
 3.839
 �42.48
 4.613
 0.172
 113
 2.997
 �41.64
 5.091
 0.186

86
 2.972
 �37.03
 7.154
 0.048
 114
 90.686
 �110.75
 4.224
 0.31

87
 3.57
 �38.24
 8.803
 0.136
 115
 3.301
 �38.72
 8.525
 0.133

88
 3.004
 �35.87
 7.25
 0.005
 median
 2.91
 �36.46
 5.493
 0.153
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