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SUMMARY

In this paper acceleration and computer memory reduction of an algorithm for the simulation of laminar
viscous flows and heat transfer is presented. The algorithm solves the velocity–vorticity formulation of
the incompressible Navier–Stokes equations in 3D. It is based on a combination of a subdomain boundary
element method (BEM) and single domain BEM. The CPU time and storage requirements of the single
domain BEM are reduced by implementing a fast multipole expansion method. The Laplace fundamental
solution, which is used as a special weighting function in BEM, is expanded in terms of spherical
harmonics. The computational domain and its boundary are recursively cut up forming a tree of clusters
of boundary elements and domain cells. Data sparse representation is used in parts of the matrix, which
correspond to boundary-domain clusters pairs that are admissible for expansion. Significant reduction of
the complexity is achieved.

The paper presents results of testing of the multipole expansion algorithm by exploring its effect on
the accuracy of the solution and its influence on the non-linear convergence properties of the solver. Two
3D benchmark numerical examples are used: the lid-driven cavity and the onset of natural convection in
a differentially heated enclosure. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Development of numerical algorithms capable of simulating fluid flow and heat transfer has a
long-standing tradition. A vast variety of methods was developed and their characteristics were
examined. In this paper we present a boundary element method (BEM)-based numerical technique,
which is capable of simulating laminar flow and heat transfer in 3D. The BEM uses the fundamental
solution of the differential operator and Green’s theorem to rewrite a partial differential equation
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into an equivalent boundary integral equation. After discretization of only the boundary of the
problem domain, a fully populated system of equations emerges. The number of degrees of freedom
is equal to the number of boundary nodes. This reduction in the dimensionality of the problem is
a major advantage over the volume-based methods. Fundamental solutions are known for a wide
variety of differential operators [1], making BEM applicable for solving a wide range of problems.

Unfortunately, integral equations of nonhomogeneous and non-linear problems, such as fluid
flow, include a domain term. In this paper, we solve the velocity–vorticity formulation of incom-
pressible Navier–Stokes equations. The formulation joins the Poisson type kinematics equation
with diffusion-advection-type equations of vorticity and heat transport. These equations are nonho-
mogenous and non-linear. In order to write discrete systems of linear equations for such equations,
matrices of domain integrals must be evaluated. Such domain matrices, since they are full and
unsymmetrical, require a lot of storage space and algebraic operations with them require a lot of
CPU time. Thus, the domain matrices present a bottleneck for any BEM-based algorithm effectively
limiting the maximal usable mesh size through their cost in storage and CPU time.

The dual reciprocity BEM [2] is one of the most popular techniques to eliminate the domain
integrals. It uses expansion of the nonhomogenous term in terms of radial basis functions. Several
other approaches that enable construction of data sparse approximations of fully populated matrices
are also known. Hackbusch and Nowak [3] developed a panel clustering method, which also
enables approximate matrix vector multiplications with decreased amount of arithmetical work.
A class of hierarchical matrices was introduced by Hackbusch [4] with the aim of reducing the
complexity of matrix–vector multiplications. Bebendorf and Rjasanow [5] developed an algebraic
approach for solving integral equations using collocation methods with almost linear complexity.
Ravnik et al. [6] developed a wavelet compression method and used it for compression of single
domain BEM in 2D.

The algorithm proposed in this paper tackles the domain integral problem using two techniques:
a fast multipole method (FMM)-based single domain BEM is employed for the solution of the
kinematics equation and subdomain BEM is used for diffusion-advection-type equations.

In the subdomain BEM, integral equations are written for each subdomain (mesh element)
separately. We use continuous quadratic boundary elements for the discretization of function and
discontinuous linear boundary element for the discretization of flux. By the use of discontinuous
discretization of flux, all flux nodes are within boundary elements where the normal and the flux
are unambiguously defined. The corners and edges, where the normal is not well defined, are
avoided. The singularities of corners and edges were dealt with special singular shape functions
by Ong and Lim [7] and by the use of additional nodes by Gao and Davies [8]. By the use
of a collocation scheme, a single linear equation is written for every function and flux node in
every boundary element. By using compatibility conditions between subdomains, we obtain an
over-determined system of linear equations, which may be solved in a least-squares manner. The
governing matrices are sparse and have similar storage requirements as the finite element method.
Subdomain BEM was applied on the Laplace equation by Ramšak and Škerget [9] and on the
velocity–vorticity formulation of Navier–Stokes equations by Ravnik et al. [10, 11].

The second part of the algorithm uses (FMM)-based single domain BEM. FMM is used to provide
a sparse approximation of the fully populated BEM domain matrices. The storage requirements of
the sparse approximations scale linearly with the number of nodes in the domain, which is a major
improvement over the quadratic complexity of the full BEM matrices. The technique eliminates
the storage and CPU time problems associated with the application of BEM on nonhomogenous
partial differential equations.
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The origins of the FMM can be found in a fast algorithm for particle simulations developed
by Greengard and Rokhlin [12]. The algorithm decreases the amount of work required to evaluate
mutual interaction of particles by reducing the complexity of the problem from quadratic to linear.
Ever since, the method was used by many authors for a wide variety of problems using different
expansion strategies. Recently, Bui et al. [13] combined FMM with the Fourier transform to study
multiple bubbles dynamics. Gumerov and Duraiswani [14] applied the FMM for the biharmonic
equation in 3D. The boundary integral Laplace equation was accelerated with FMM by Popov
et al. [15]. In contrast to the contribution of this paper, where the subject of study is the application
of FMM to obtain a sparse approximation of the domain matrix, the majority of work done by other
authors dealt with coupling BEM with FMM for the boundary matrices. Only recently, Ravnik
et al. [16] compared wavelet and fast multipole data sparse approximations for boundary-domain
integral equations of Poisson type.

The rest of the paper is organized as follows: the second section gives the governing equations, the
third section presents the numerical solution, the fourth section analyses the results of simulations
and the last section summarizes the main findings.

2. GOVERNING EQUATIONS

Incompressible fluid flow and heat transfer are governed by laws of conservation of mass,
momentum and energy. A system of partial differential equations, known as the Navier–Stokes
equations, links the velocity, pressure and temperature fields. In this paper, we are considering an
alternative approach: the velocity–vorticity formulation of Navier–Stokes equations. This system
of partial differential equations consists of the kinematics equation, the vorticity transport equation
and the energy equation linking the velocity, vorticity and temperature fields.

The kinematics equation is a vector elliptic partial differential equation of Poisson type and links
the velocity and vorticity fields for every point in space and time. It is equivalent to the Biot–Savart
law, which connects the electric current and magnetic field density. For an incompressible fluid
the kinematics equation can be stated as

∇2v+∇×x=0 (1)

where we must bear in mind that both velocity, v, and vorticity, x=∇×v, fields are divergence
free. We will nondimensionalize all quantities by

v→ v
v0

, g→ g
g0

, r→ r
L

, x→ xL
v0

, t→ v0t

L
, T → T −T0

�T
(2)

where L is a characteristic length scale, t is time, T is temperature, r is a position vector,
g0=9.81m/s2 and �T is the characteristic temperature difference.

The kinetic aspect of fluid movement is governed by the vorticity transport equation. Buoyancy
is modelled with the Boussinesq approximation. Density variations with temperature �(T )=�0[1−
�T (T −T0)] are considered only in the buoyancy term and defined by the thermal volume expansion
coefficient �T and the temperature difference. Using these assumptions we write the vorticity
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transport equation as

�x
�t

+(v ·∇)x= (x·∇)v+ 1

Re
∇2x− Ra

PrRe2
∇×T g (3)

with Reynolds, Prandtl and Rayleigh numbers defined as

Re= v0L

�0
, Pr= �0

�0
, Ra= g0�T�TL3

�0�0
(4)

where �0 is viscosity and �0 is diffusivity. Equation (3) equates the advective vorticity transport
on the left-hand side with the vortex twisting and stretching term, the diffusion term and the
buoyancy term on the right-hand side. We further assume that no internal energy sources are
present in the fluid. We will not deal with high velocity flow of highly viscous fluid; hence, we
will neglect irreversible viscous dissipation. With this, the internal energy conservation law, written
with temperature as the unknown variable, reads as

�T
�t

+(v ·∇)T = 1

RePr
∇2T (5)

The partial differential equations (1), (3) and (5) form a non-linear system for the unknown velocity,
vorticity and temperature fields. The problem is in a given domain uniquely defined by specifying
the Reynolds, Prandtl and Rayleigh numbers and the appropriate boundary conditions.

3. NUMERICAL METHOD

We will apply a combination of subdomain BEM and single domain BEM for the solution of
the governing equations. The Dirichlet and/or Neumann boundary conditions for velocity and
temperature are given. They are used to obtain solutions of the kinematics equation (1) for domain
velocity values and energy equation (5) for domain temperature values. The boundary conditions
for vorticity, which are needed to solve the vorticity transport equation (3), are unknown. We will
use the fast multipole single domain BEM on the kinematics equation to obtain the remaining
unknown boundary vorticity values. The outline of the algorithm is as follows

• initialization, calculate integrals and fast multipole expansion terms
• begin non-linear loop

◦ calculate boundary vorticity values by solving the kinematics equation (1) by fast multipole
single domain BEM (Section 3.1)

◦ calculate domain velocity values by solving the kinematics equation (1) by subdomain
BEM (Section 3.4)

◦ solve the energy equation (5) using the new velocity field for domain temperature values
by subdomain BEM (Section 3.3)

◦ solve vorticity transport equation (3) by subdomain BEM for domain vorticity values using
the boundary values from the solution of the kinematics equation and new velocity and
temperature fields (Section 3.2)

◦ check convergence—repeat steps in the non-linear loop until convergence of all field func-
tions is achieved
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• end non-linear loop
• output results

The steps of the algorithm are explained in detail in the following subsections.

3.1. Fast multipole single domain BEM

Consider an arbitrary domain � with a position vector r∈R3 and its boundary �=��. The integral
form of the kinematics equation without derivatives of the velocity and vorticity fields takes the
following form (for derivation, see Ravnik et al. [17] Equations (19)–(24)):

c(n)v(n)+
∫

�
v ∇u� ·nd�=

∫
�
v×(n×∇)u� d�+

∫
�
(x×∇u�)d� (6)

where n is the collocation point, u� =1/4�|r−n| is the fundamental solution of the Laplace
equation and n is the unit normal. In order to use the kinematics equation to obtain boundary
vorticity values, we must rewrite Equation (6) in a tangential form by multiplying it with a normal
in the source point n(n):

c(n)n(n)×v(n)+n(n)×
∫

�
v∇u� ·nd� = n(n)×

∫
�
v×(n×∇)u� d�

+n(n)×
∫

�
(x×∇u�)d� (7)

This approach has been proposed by Škerget and used in 3D by Žunič et al. [18] and Ravnik
et al. [10]. In order to write a linear system of equations for the unknown boundary vorticity
values, we set the source point into every boundary node of the whole computational domain.

In this paper we use meshes made up of hexahedral domain elements and parallelepipedial
boundary elements. Shape functions are used to describe function variation in elements. Quadratic
interpolation is achieved by using 27 nodes per hexahedra and domain shape functions�i . Boundary
shape functions �i having nine nodes are used within each boundary element.

To be able to write a discrete form of the kinematics equation, the following integrals must be
calculated:

[H ] =
∫

�
�i∇u� ·nd�, [Ht ]=

∫
�

�i (n×∇)u� d� (8)

[D] =
∫

�
�i∇u� d� (9)

The square brackets denote integral matrices. Each collocation point location yields one row in
these matrices. The collocation point is placed into every boundary node, making the number of
rows of matrices (8) and (9) equal to the number of boundary nodes. Since the integrals (8) are
boundary integrals the number of columns of matrices [H ] and [Ht ] are also equal to the number
of boundary nodes. The domain matrices [D] have the number of columns equal to the number of
all nodes.

A discrete form of Equation (7) is

[n]×[H ]{v}=[n]×({v}×[Ht ])+[n]×({x}×[D]) (10)
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where the curly brackets denote vectors of nodal values, [n] is the matrix of nodal values of
n(n) and the calculated c(n) are added to the diagonal terms of the [H ] matrix. In order to use
Equation (10) to calculate boundary vorticity values, it must be rearranged so that the boundary part
of domain matrices [D�] is moved to the left-hand side and all other matrices form the right-hand
side:

[n]×({x�}×[D�])=−[n]×[H ]{v}+[n]×({v}×[Ht ])+[n]×({x�}×[D�]) (11)

The domain matrices [D�] on the right-hand side take up most storage space and their multiplication
with vectors take up most CPU time. The number of elements in [D�] is equal to nb ·nd , where
nb is the number of boundary nodes and nd is the number of domain nodes. Using the FMM we
will set up an approximation of the domain matrices [D′

�]≈[D�] whose complexity will scale as
O(nd).

Let us consider the domain integrals in Equation (9), which must be calculated in order to set
up [D�]. Since for each collocation point n integrals for all domain cells must be evaluated, we
are obviously faced by a problem of quadratic complexity. The FMM, described below, is used to
reduce this complexity.

3.1.1. Series expansion. The FMM is based on the fact that it is possible to separate the variables
(i.e. the collocation point n and the domain integration point r) of the integral kernel of Equation (9)
by series expansion. The gradient of the Laplace fundamental solution of Equation (9) is expanded
into a spherical harmonics series in the following manner:

∇u� = ∇ 1

4�|r−n| =
∞∑
l=0

l∑
m=−l

(−1)m

2l+1

1

�l+1 Y
−m
l (��,��)∇[r lYm

l (�r ,�r )]

=
∞∑
l=0

l∑
m=−l

(−1)m

2l+1

1

�l+1 Y
−m
l (��,��){lY m

l (�r ,�r )r
l−2r+r l∇Ym

l (�r ,�r )} (12)

where Ym
l are spherical harmonics in polar coordinate system; r= (r,�r ,�r ) and n= (�,��,��).

The gradient of spherical harmonics is expressed using associated Legendre polynomials Pm
l as

∇Ym
l (�,�) =

√
2l+1

4�

(l−m)!
(l+m)!∇{Pm

l (cos �)eim�}

=
√
2l+1

4�

(l−m)!
(l+m)!∇

{
Pm
l (cos �)

�eim�

��
∇�−sin(�)

�Pm
l (cos �)

�cos �
∇�

}
(13)

The associated Legendre polynomials are evaluated using recurrence relations as described in Press
et al. [19]. The derivatives of associated Legendre polynomials are obtained using the following
recurrence relation:

�Pm
l (x)

�x
= lx Pm

l (x)−(l+m)Pm
l−1(x)

x2−1
(14)
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The derivatives of the polar angles written in Cartesian coordinate system are

∇� =
√
x2+ y2

x2+ y2+z2

(
zx

x2+ y2
,

zy

x2+ y2
,−1

)

∇� = 1

x2+ y2
(−y, x,0)

(15)

In order for the series (12) to converge we must have r/�<1. This condition is not satisfied
for all n and r combinations in an arbitrary domain. However, since the integral kernel depends
only on the distance between the collocation and domain points, we may swap n and r in order to
meet the convergence criteria. Furthermore, it is also possible to move the origin of the coordinate
system so that the series convergence is improved.

Using the above expansion, the domain integrals of Equation (9) may now be written with
separate variables as

[D�]≈[D′
�]=

L∑
l=0

l∑
m=−l

Fm
l (n)

∫
�
Gm

l (r)d� (16)

where F and G represent the above-derived relationships. We are able to approximately calculate
each entry in the domain matrices with the above sum. The number of expansion terms nexp=
(L+1)2 in the series controls the accuracy of the approximation.

Using the series (16) instead of the direct evaluation of the integral kernel does not by itself
bring a reduction in memory. Only when (16) is used on a cluster of collocation points and domain
cells it is possible to form a data sparse approximation of a part of the domain matrix. The clusters
are formed and organized in a hierarchical tree-like structure, which is described below.

3.1.2. Cluster trees. Let us consider a cluster of nr nearby collocation points and a cluster of
nc nearby domain cells, as illustrated in Figure 1. These correspond to an nr ×nc matrix block,
which is a part of the domain matrix. Since the variables in Equation (16) are separated, it is
possible to evaluate two lower-order matrix blocks (nr ×nexp) and (nexp×nc) instead of the full
matrix block (nr ×nc). In the first lower-order matrix block expansion terms F are evaluated for all
collocation points. In the second one integrals of expansion terms G are evaluated for all domain
cells. Multiplication of the two lower-order matrix blocks gives the full nr ×nc matrix block up
to an expansion error, which is defined by the number of terms in the expansion. But this is never
done; namely we store the two lower-order matrices instead of the full matrix. This technique
saves memory if the amount of data that must be stored in the two lower-order matrices is smaller
than the amount of data in the full matrix block, i.e.

2(nrnexp+ncnexp)<nrnc (17)

the factor 2 on the left-hand side is due to the fact that spherical harmonics are complex and
must be stored as such, while real values are stored in the full matrix. As long as the collocation
node cluster and the domain cells cluster are far apart from each other the integral kernels are
slowly varying functions; thus, we can expect a low number of expansion terms to yield a suitable
approximation. When the clusters are nearby, they should be smaller and a larger number of
expansion terms must be used. When the clusters coincide, i.e. the collocation nodes are a part
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Figure 1. A problem domain shown with a cluster of collocation points n and a cluster of domain cells.

of the integration cells, the kernels are singular. Such cluster pairs are called inadmissible and the
corresponding matrix block is evaluated in full, not approximated with two lower-order matrices.

In order to be able to build a sparse approximation of the whole domain matrix, we must divide
the collocation points and domain cells into clusters. We constructed a tree of collocation point
clusters and a tree of clusters of domain cells. The trees were constructed in a recursive hierarchical
manner. The problem domain was enclosed by a parallelepiped. All collocation points and all of
the domain cells are within this root parallelepiped. They make up root clusters of both trees. The
parallelepiped is cut in half by a plane, breaking the root clusters into two. The cutting process
is repeated recursively, thus, the clusters on each level have less and less collocation points and
domain cells. Each branch in the tree of clusters has two child branches corresponding to the
cluster’s domain being cut in half. The cutting planes are parallel to the coordinate system axes,
a sequence of x− y, x−z and y−z is used. Thus, three cuts are needed to cut a cube into eight
equal parts. The cutting sequence is stopped, when the number of collocation nodes and domain
cells in the cluster is so small that condition (17) can no longer be satisfied.

With both cluster trees in place, the next step is to pair them; thus, a tree of pairs of clusters
can be formed. Each branch of the collocation tree is paired with each branch of the domain
cells tree on the same level and with each branch of the domain cells tree on the next level, thus
forming branches on the tree of pairs of clusters. For each pair a decision is taken based on the
admissibility criterion whether a sparse approximation for this cluster pair is possible or not. If
the pair is admissible, the branch on the tree becomes an admissible leaf, where the two low-order
matrices will be calculated. If the admissibility criterion is not reached until the last level of the
tree, such cluster pairs are inadmissible and will be calculated in full and not with the sparse
approximation.

3.1.3. Admissibility criterion. The admissibility criterion is devised as follows. Let us consider
one branch of the tree of pairs of clusters, which has a cluster of collocation points and a cluster of
domain cells. First, we try to find an origin of the coordinate system in nodes within the domain
cells of the cluster. We choose such origin that the ratio r/� is minimal for all pairs of collocation
nodes and domain cells so that the series will converge as fast as possible. If the minimal ratio
is greater than one, series expansion for this pair of clusters is not possible. Thus this pair is not
admissible. Second, if the r/� ratio is less than one, we calculate the number of expansion terms
needed to have the accuracy of calculation of the integral kernel less than the user’s prescribed
criteria 	. If the number of expansion terms is low enough, so that condition (17) is fulfilled,
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Figure 2. Matrix structure of a cubic mesh (123 cells, 253 nodes). Filled areas show inadmissible matrix
blocks; white areas are admissible matrix blocks obtained using an admissibility criterion of 	=10−4.

this cluster pair is admissible. At this point the tree of pairs of clusters gets a leaf—no further
branching is necessary.

To illustrate the algorithm, a cubic domain is considered meshed by 123 domain cells having
in total 253 nodes. Admissible and inadmissible blocks are shown in Figure 2.

3.1.4. Implementation. A set of routines was written to form a hierarchical tree structure with eval-
uated matrices on each of the admissible or inadmissible leaves. They are capable of constructing
an approximation of the domain matrices [D′

�], which are used to evaluate the right-hand side of
the discrete kinematics system of equations (11). The advantages of using the approximation [D′

�]
instead of the fully populated [D�] are summarized in the following points.

• Since we have taken careful care of the fact that the amount of data required to store matrices
in all admissible leaves is smaller than data storage of their fully populated counterparts,
we know that the memory required to store the FMM sparse approximation of the domain
matrices [D′

�] will be less than the memory required to store [D�].
• Evaluation of the two lower-order matrices for each admissible leaf is computationally less

expensive than the computation of their full matrix block counterpart. First, there are less
matrix elements to evaluate; second, one of the low-order matrices holds values only (see
Equation (16)) and not integrals. The elements of the second low-order matrix are integrals
of slowly varying functions; thus, less effort is needed to evaluate them.

• We are approximating three domain matrices, each holding integrals of one component of the
gradient of the fundamental solution. Since one of the low-order matrices in admissible leaves
holds values independent of r, they are also independent of the gradient direction. Thus, only
one set of these matrices, which is common for all three directions, needs to be stored. This
saves additional data storage space.

3.2. Subdomain BEM solution of the vorticity transport equation

The subdomain BEM is used to solve the vorticity transport equation for domain vorticity values.
Boundary vorticity values obtained by the FMM single domain BEM solution of the kinematics
equation are used as Dirichlet boundary conditions. The flows considered in this paper are steady;
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thus, we may write �x/�t=0. The boundary-domain integral form of the steady vorticity transport
equation (3) is (Wrobel [1]):

c(n)x(n)+
∫

�
x∇u� ·nd� =

∫
�
u�qd�+Re

∫
�
u�{(v ·∇)x−(x·∇)v}d�

+ Ra

PrRe

∫
�
u�∇×T gd� (18)

where u� is the fundamental solution for the diffusion operator. Equation (18) is rewritten in a
way that omits the derivatives of field functions (full derivation is given in Ravnik et al. [11]). The
integral vorticity transport equation in Cartezian tensor notation is

c(n)
 j (n)+
∫

�

 j∇u∗ ·nd�

=
∫
�
u∗q j d�+Re

∫
�
n ·{u∗(v
 j −xv j )}d�−Re

∫
�
(v
 j −xv j )·∇u∗ d�

− Ra

PrRe

∫
�
(u�Tg×n) j d�− Ra

PrRe

∫
�
(T∇×u�g) j d� (19)

where q j is the j th component of vorticity flux. In the subdomain BEM method we make a mesh
of the entire domain � and name each mesh element a subdomain. Equation (19) is written for
each of the subdomains. In order to obtain a discrete version of (19) we use shape functions to
interpolate field functions and flux across the boundary and inside of the subdomain. In this paper
we used hexahedral subdomains with 27 nodes, which enable continuous quadratic interpolation
of field functions. The boundary of each hexahedron consists of six boundary elements. On each
boundary element we interpolate the flux using discontinuous linear interpolation scheme with
four nodes. By using discontinuous interpolation we avoid flux definition problems in corners and
edges.

The collocation point is placed into all function and flux nodes of each subdomain. Since
neighbouring subdomains share nodes, compatibility conditions between subdomains are used
and the resulting systems of linear equations are over-determined. After taking into account the
boundary conditions, we solve them using a least-squares solver (Paige and Saunders [20]). All
integrals depend only on the shape of subdomains and as such may be calculated only once, prior
to the start of the non-linear iterative process.

3.3. Subdomain BEM solution of the energy equation

A subdomain BEM is used to solve the energy equation for domain values of temperature.
The energy equation (5) is a diffusion convection partial differential equation exactly like the
vorticity transport equation without the vortex twisting and stretching and buoyancy terms. The
boundary conditions are Dirichlet or Neumann type and are prescribed by the user. The solution of
Equation (5) is thus obtained in the same manner as the solution of the vorticity transport equation.
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The boundary-integral equation is

c(n)T (n)+
∫

�
T∇u� ·nd� =

∫
�
u�qT d�+RePr

∫
�
n ·u�vT d�

−RePr
∫

�
Tv ·∇u� d� (20)

where qT is the temperature flux. After discretization the integrals are stored in sparse matrices
and the system of linear equations is solved in a least-squares manner [20].

3.4. Subdomain BEM solution of the kinematics equation

The kinematics equation is solved for domain velocity values by subdomain BEM. The integral
form (6) is used. Dirichlet-type boundary conditions are prescribed on the boundary of the domain.
A discrete system of linear equations is written for each subdomain. After taking into account
the compatibility conditions, an over-determined system is obtained for each velocity component.
They are solved in a least-squares manner [20] for the unknown velocity field in the domain.

4. NUMERICAL EXAMPLES

4.1. Lid-driven cavity

Flow in a 3D lid-driven cavity is one of the standard benchmark test cases used in the development
of flow solvers. The domain and the boundary conditions are unambiguously defined and do not
change with the Reynolds number. The flow exhibits a wide variety of phenomena, such as eddies,
complex 3D patterns and instabilities (Shankar and Deshpande [21]). The research of lid-driven
cavity flow started with the observations of Koseff and Street [22], who were able to observe the
inherent 3D nature of flow phenomena in the cavity.

The simulation was performed on a unit cube (0,0,0)×(1,1,1). We named the walls in the
following manner: left wall x=0, right x=1, top z=1, bottom z=0, front y=0 and back y=1.
No-slip velocity boundary conditions are employed on all walls except for the top wall, where a
constant velocity in x direction is prescribed v= (1,0,0). Dirichlet-type boundary conditions are
used for the vorticity transport equation. Vorticity on the boundary is obtained by the solution
of the kinematics equation for all directions and walls, except for 
x =0 on the left and right
walls, 
y =0 on the front and back walls and 
z =0 on the top and bottom walls. The boundary
conditions are sketched in Figure 3.

Simulations were run on a mesh of 123 elements with 15 625 nodes. The elements were concen-
trated towards the eight corners. The mesh is coarse enough that it enables simulations with and
without approximation of the domain matrices.

The Reynolds number for this test case is defined with the length of cavity’s edge and the top
wall velocity. We ran simulations at Re=100, Re=400 and Re=1000.

We set up the cluster trees with an admissibility condition of 	=10−4 and ran simulations
with 4, 9, 16 and 25 expansion terms in FMM series. A simulation without using the FMM
approximation of domain matrices was run as well. We compared velocity profiles within the
cavity in the y=0.5 plane with the results of Yang et al. [23] on Figure 4. We observe good
agreement between benchmark results and present results obtained without FMM approximation
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Figure 3. Geometry and boundary conditions of the lid-driven cavity (left) and
natural convection (right) test cases.
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Figure 4. Velocity profiles through the y=0.5 plane in the lid-driven cavity test case. Solution obtained
using the full domain matrices (full) are compared with solutions obtained with FMM approximations
with different numbers of expansion terms and the benchmark results of Yang et al. [23]. The admissibility

criterion was 	=10−4. Re=100 (top left), Re=400 (top right) and Re=1000 (bottom).
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Figure 5. Vorticity magnitude |x| contours along the walls of the cavity. Left
Re=100, middle Re=400 and right Re=1000.

for all Reynolds number values considered. When FMM approximation is used, the accuracy of
results increases with the increasing number of expansion terms. Increasing non-linearity of the
problem severely affects the accuracy of the simulations. We observe that good agreement with the
benchmark is obtained with less expansion terms in the case of low Reynolds number and more
terms are needed for the same accuracy at higher Reynolds number values. Thus, the non-linearity
of flow phenomena requires careful setting of the number of expansion terms.

The moving lid induces a primary vortex inside of the cavity. The size of the vortex increases
with Reynolds number. Secondary vortices appear in the corners of the cavity, their position and
strength changing with Reynolds number. Figure 5 shows the development of vorticity on the
walls of the cavity with increasing Reynolds number. The vorticity is generated at the wall and
transported into the flow by diffusion and advection. The highest vorticity values are found along
the moving lid. When the Reynolds number is increased, the high vorticity area spreads along the
centres of other walls as well.

4.2. Natural convection in an inclined enclosure

Consider a cubic enclosure filled with air (Pr=0.71) subjected to a temperature difference on two
opposite walls, while the rest of the walls are adiabatic. The fluid next to the hot wall will be
heated and due to its decrease in density buoyancy will carry it upwards. An inverse phenomenon
will occur along the cold wall; the fluid there will be colder and denser and thus it will travel
downwards. This phenomenon is natural convection and occurs frequently in nature and is present
in many industrial applications. The fluid movement is steady up to a critical Rayleigh number,
above which vortices are formed along the hot and the cold walls and transported through the
flow field by convection and diffusion. Further increase in temperature difference leads through
oscillatory behaviour to turbulent natural convection [17]. The phenomenon is defined by the type
of fluid, temperature difference and the layout of the enclosure.

The layout of the problem is shown in Figure 3. The temperature T =−0.5 will be prescribed
at x=0 and T =0.5 at x =1. The other four walls are adiabatic, i.e. there is no temperature flux
through them. Since we consider a closed enclosure, no-slip velocity boundary conditions v=0
are applied on all walls.

We set RePr=1 and simulated natural convection for Ra=103 . . .106 and for inclination angles
ϑ=0◦, ϑ=30◦ and ϑ=60◦. Cluster trees were formed using the admissibility criteria 	=10−4

and 	=10−5 for a mesh with 123 elements and 15 625 nodes.
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The heat flux through the side walls is used to compare present results with the benchmark.
The flux is presented using the Nusselt number value. The Nusselt number value, defined in our
geometry by

Nu=
∫ 1

0

∫ 1

0

(
�T
�x

)
x=0

dzdy (21)

is a nondimensional measure of wall heat flux. Additionally, we define the data ratio, D, as the
ratio of the amount of data required to store the FMM approximations of domain matrices to the
amount of data required to store the full domain matrices. Naturally, the data ratio increases with
the increasing number of FMM expansion terms.

Table I presents Nu values and numbers of non-linear iterations for 	=10−4, ϑ=0◦ case. The
results of simulation using FMM approximation are compared with simulations using full matrices
and benchmark results of Lo et al. [24] and Tric et al. [25]. When a large number of expansion
terms is used in the FMM approximation of the domain matrices, we obtain almost identical results
as in the full domain matrix case. When less expansion terms are used, the error is larger. The
error also increases when a problem with greater non-linearity is considered, i.e. the temperature
difference between the walls is increased. The influence of different numbers of expansion terms
on the number of iterations required to reach convergence is not very large. Especially at low
Rayleigh number values the number of iterations remains constant. On the other hand, in the worst
case scenario, when the largest Rayleigh number was simulated using only four expansion terms,
the code diverged. The conclusion drawn from this analysis is that the number of terms required
for a successful simulation depends on the non-linearity of the problem. More terms should be
used for strongly non-linear problems. These conclusions are confirmed by examining the results
of the inclined enclosure test cases: ϑ=30◦ in Table II and ϑ=60◦ in Table III.

Comparing the Nusselt number value, which is an integral measure, does not reveal all differences
in the flow fields. For the case of 	=10−4, ϑ=0◦ we plotted velocity and temperature profiles
through the y=0.5 plane in Figure 6 for Ra=103 and Ra=104 and in Figure 7 for Ra=105 and
Ra=106. The figures reveal very good agreement between profiles of 9 or more expansion terms

Table I. Natural convection, 	=10−4, ϑ=0◦. Nusselt number values and number of non-linear iterations are
shown for Rayleigh number values Ra=103, . . . ,106. Present results with and without FMM approximation

are compared with benchmark results of Lo et al. [24] and Tric et al. [25].
Nusselt number Number of iterations

Ra Ra

No. of terms D 103 104 105 106 103 104 105 106

4 0.365 1.0734 2.1254 4.8944 / 109 104 827 /
9 0.434 1.0713 2.0606 4.3924 8.9973 108 104 820 1332
16 0.530 1.0710 2.0547 4.3405 8.6926 108 104 819 1250
25 0.654 1.0711 2.0560 4.3455 8.7076 108 104 819 1262
Full 1.0711 2.0564 4.3462 8.7118 108 104 819 1270
[24] 1.0710 2.0537 4.3329 8.6678
[25] 1.0700 2.0542 4.3370 8.6407
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Table II. Natural convection, 	=10−4, ϑ=30◦.

Nusselt number Number of iterations

Ra Ra

No. of terms D 103 104 105 106 103 104 105 106

4 0.365 1.0448 1.6262 3.2699 / 104 101 791 /
9 0.434 1.0434 1.5928 2.9350 5.4770 103 101 789 1034
16 0.530 1.0431 1.5895 2.9008 5.2215 103 101 790 963
25 0.654 1.0432 1.5902 2.9034 5.2294 103 101 790 962
Full 1.0432 1.5904 2.9042 5.2342 103 101 790 962
[24] 1.0432 1.5894 2.9014 5.2133

Table III. Natural convection, 	=10−4, ϑ=60◦.

Nusselt number Number of iterations

Ra Ra

No. of terms D 103 104 105 106 103 104 105 106

4 0.365 1.0133 1.1611 1.4212 / 100 98 776 /
9 0.434 1.0127 1.1534 1.3676 1.5891 99 98 770 922
16 0.530 1.0126 1.1523 1.3610 1.5547 99 98 770 888
25 0.654 1.0126 1.1524 1.3610 1.5541 99 98 770 888
Full 1.0126 1.1524 1.3612 1.5545 99 98 770 887
[24] 1.0127 1.1524 1.3623 1.5585

for the case of Ra�105. In the case of Ra=106 only profiles of 16 and 25 expansion terms are in
good agreement with the full domain matrix solution. As the mesh is more dense at the walls of
the enclosure, the profiles are more accurately close to the walls yielding a good Nusselt number
value.

In order to examine the influence of the admissibility criterion, we repeated the simulations of
the ϑ=0◦ case with cluster trees obtained with 	=10−5. The number of leaves in the boundary-
domain cluster tree was 2745 as compared with 2378 in the case of 	=10−4. The increase in the
number of leaves is due to the fact that smaller clusters are required to achieve the prescribed higher
accuracy. The results presented in terms of the Nusselt number value are given in Table IV. We
observe that setting a stricter admissibility criterion resulted in converged results in the Ra=106

case with four terms in the FMM series. In general a stricter admissibly criterion on a larger number
of expansion terms can be used to improve the accuracy of the results. However, comparing the
data ratios and accuracy of results in Tables I and IV, we observe that a worse data ratio is achieved
for the same accuracy when using 	=10−5. We recommend increasing the number of terms in
the series according to the non-linearity of the problem and leaving the admissibility criterion at
	=10−4.

Influence of the inclination angle on the flow field is examined in Figure 8. Here we plot
temperature contours on the y=0.5 plane for Ra=106. We observe that temperature stratification
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Figure 6. Velocity and temperature profiles through the centre of the enclosure (on the y=0.5 plane)
in the natural convection test case, ϑ=0◦. Solution obtained using the full domain matrices (full) are
compared with solutions obtained with FMM approximations with different numbers of expansion terms.

The admissibility criterion was 	=10−4. Top row Ra=103 and bottom row Ra=104.

occurs in the centre of the enclosure regardless of the inclination angle. The temperature gradient
at the wall is highest at ϑ=0◦ and lower at higher inclination angles. This is the cause of the
highest wall heat flux in the ϑ=0◦ case and lower wall heat flux in inclined cases.

5. CONCLUSIONS

We developed a BEM-based numerical algorithm, which was used to simulate incompressible fluid
flow and heat transfer by solving the velocity–vorticity formulation of Navier–Stokes equations.
Two techniques were combined: the subdomain BEM and the FMM-based single domain BEM.
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Both techniques ensure sparse discrete systems of linear equations making BEM applicable to
non-linear and nonhomogenous problems. Spherical harmonics series and a hierarchical cluster
tree structure were used for the construction of the FMM domain matrix approximations.

The algorithm was tested by solving two benchmark examples: lid-driven cavity and natural
convection in an inclined enclosure. Comparison of results between benchmark solution, solution
obtained without FMM approximation and solution with different number of terms in FMM series
was preformed. As the number of terms in the FMM is increased, the results converge to the
benchmark. We showed that by using nine terms in the expansion results are virtually identical
to the results without FMM approximation for Ra�400 in the lid-driven cavity case and Ra�105

in the natural convection case. For higher Reynolds and Rayleigh numbers (Re=1000, Ra=106)

0 0.25 0.5 0.75 1

-40 -20 0 20 40

-60

-40

-20

0

20

40

60

0

0.2

0.4

0.6

0.8

1

full
25
16
9
4

0 0.25 0.5 0.75 1

-0.5

-0.25

0

0.25

0.5

full
25
16
9
4

0 0.25 0.5 0.75 1

-0.5

-0.25

0

0.25

0.5

full
25
16
9

0 0.25 0.5 0.75 1

-100 -50 0 50 100

-200

-100

0

100

200

0

0.2

0.4

0.6

0.8

1

full
25
16
9

Figure 7. Velocity and temperature profiles through the centre of the enclosure (on the y=0.5 plane)
in the natural convection test case, ϑ=0◦. Solution obtained using the full domain matrices (full) are
compared with solutions obtained with FMM approximations with different numbers of expansion terms.

The admissibility criterion was 	=10−4. Top row Ra=105 and bottom row Ra=106.
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Table IV. Natural convection, 	=10−5, ϑ=0◦.

Nusselt number Number of iterations

Ra Ra

No. of terms D 103 104 105 106 103 104 105 106

4 0.542 1.0721 2.1003 4.7317 10.5246 108 104 811 3438
9 0.602 1.0710 2.0540 4.3321 8.6512 141 148 808 863
16 0.686 1.0710 2.0550 4.3382 8.6750 108 104 808 769
25 0.794 1.0711 2.0564 4.3473 8.7179 108 104 808 651
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Figure 8. Temperature contours in the centre of the enclosure (on the y=0.5 plane)
for Ra=106 and three inclination angles.

16 terms must be used. For a general problem, we conclude that the number of terms used in the
FMM series must be increased when a problem’s non-linearity is increased.
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