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Abstract

A natural convection phenomenon is studied in cubic and parallelepipedal inclined enclosures. The simulation of coupled laminar
viscous flow and heat transfer is performed using a novel algorithm based on a combination of single domain Boundary element method
(BEM) and subdomain BEM. The algorithm solves the velocity–vorticity formulation of the incompressible Navier–Stokes equations
coupled with the energy equation using the Boussinesq approximation. The subdomain BEM is used to solve the kinematics equation,
the vorticity transport equation and the energy equation. The boundary vorticity values, which are needed as boundary conditions for
the vorticity transport equation, are calculated by singe domain BEM solution of the kinematics equation. Simulation results are com-
pared with benchmark results for a cubic inclined enclosure for Rayleigh number values 103

6 Ra 6 105. The results for an inclined
enclosure with width to height ratio 1:2 are also presented.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Over the last few decades buoyancy-driven flows have
been widely investigated. Enclosures differentially heated
on two opposite sides under different inclination angles
with respect to gravity are usually the target of research.
Natural convection in a parallelepipedal enclosure is pres-
ent in many industrial applications, such as cooling of elec-
tronic circuitry, nuclear reactor insulation and ventilation
of rooms.

Research of the natural convection phenomena started
with the two dimensional approach and has been recently
extended to three dimensions. A benchmark solution for
two dimensional flow of an incompressible fluid in a square
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differentially heated enclosure was presented by Davies [1].
He used the stream function-vorticity formulation. Vier-
endeels et al. [2,3] used a multigrid method to obtain a solu-
tion of a compressible fluid in a square enclosure for
Rayleigh numbers between Ra ¼ 102 and Ra ¼ 107. Škerget
and Samec [4] confirmed these results using a compressible
2D boundary element method (BEM) formulation. Weis-
man et al. [5] studied the transition from steady to unsteady
flow for compressible fluid in a 1:4 enclosure. They found
that the transition occurs at Ra � 2� 105. Ingber [6] used
the vorticity formulation to simulate flow in both square
and 1:8 differentially heated enclosures. Tric et al. [7] stud-
ied natural convection in a 3D cubic enclosure using a
pseudo-spectra Chebyshev algorithm based on the projec-
tion–diffusion method with spatial resolution supplied by
polynomial expansions. Lo et al. [8] also studied a 3D cubic
enclosure under five different inclinations # ¼ 0�; 15�; 30�;
45�; 60�. They used a differential quadrature method to
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solve the velocity–vorticity formulation of Navier–Stokes
equations employing higher order polynomials to approxi-
mate differential operators.

Simulations as well as experiments of turbulent flow
were also extensively investigated. Hsieh and Lien [9] con-
sidered numerical modelling of buoyancy-driven turbulent
flows in enclosures using RANS approach. 2D DNS was
performed by Xin and Le Quéré [10] for an enclosure with
aspect ratio 4 up to Rayleigh number, based on the enclo-
sure height, 1010 using expansions in series of Chebyshev
polynomials. Ravnik et al. [11] confirmed these results
using a 2D LES model based on combination of BEM
and FEM using the classical Smagorinsky model with
Van Driest damping. Peng and Davidson [12] performed
a LES study of turbulent buoyant flow in a 1:1 enclosure
at Ra ¼ 1:59� 109 using a dynamic Smagorinsky model
as well as the classical Smagorinsky model with Van Driest
damping.

A wide variety of methods have been used to simulate
the natural convection phenomena. In this work we are
presenting a novel algorithm, which is able to simulate
3D laminar viscous flow coupled with heat transfer by solv-
ing the velocity–vorticity formulation of Navier–Stokes
equations using BEM. The velocity–vorticity formulation
is an alternative form of the Navier–Stokes equation,
which does not include pressure. The unknown field func-
tions are the velocity and vorticity. In an incompressible
flow, both are divergence free. Daube [13] pointed out that
the correct evaluation of boundary vorticity values is essen-
tial for conservation of mass. Thus, the main challenge of
velocity–vorticity formulation lies in the determination of
boundary vorticity values. Several different approaches
have been proposed for the determination of vorticity on
the boundary. Wong and Baker [14] used a second-order
Taylor series to determine the boundary vorticity values
explicitly. Daube [13] used an influence matrix technique
to enforce both the continuity equation and the definition
of the vorticity in the treatment of the 2D incompressible
Navier–Stokes equations. Liu [15] recognised that the
problem is even more severe when he extended it to three
dimensions. Lo et al. [8] used the differential quadrature
method. Škerget et al. [16] proposed the usage of single
domain BEM to obtain a solution of the kinematics equa-
tion in tangential form for the unknown boundary vorticity
values and used it in 2D. This work was extended into 3D
using a linear interpolation by Žunič et al. and using qua-
dratic interpolation by Ravnik et al. [17] for uncoupled
flow problems. In this work, we will extend our method
presented in Ravnik et al. [17] for coupled fluid flow – heat
transfer problems.

We will use single domain BEM for determination of
boundary vorticity. All other equations will be solved by
subdomain BEM [18]. Subdomain BEM solution of a par-
tial differential equation, unlike the single domain BEM,
leads to a sparse system of linear equations. A sparse sys-
tem enables fast algebraic operations and does not require
a lot of storage. Other methods of improving the efficiency
of single domain BEM were proposed as well, e.g. methods
based on the expansion of the integral kernel [19], dual rec-
iprocity method [20] or compression of single domain full
matrices [21,11].

In the next section of the paper we describe the natural
convection phenomena, in the third section we write the
governing equations of coupled viscous flow and heat
transfer and in the fourth section describe our BEM based
numerical solution. In the fifth section we present the
results of simulations.

2. Natural convection in an inclined enclosure

Consider an enclosure filled with fluid subjected to a
temperature difference on two opposite walls, while the rest
of the walls are adiabatic. The fluid next to the hot wall will
be heated and due to its decrease of density buoyancy will
carry it upwards. An inverse phenomenon will occur along
the cold wall, the fluid there will be colder and denser and
thus it will travel downwards. This phenomenon is natural
convection and occurs frequently in nature and is present
in many industrial applications. The fluid movement is
steady up to a critical Rayleigh number, above which vor-
tices are formed along the hot and the cold walls. Further
increase of temperature difference leads through oscillatory
behaviour to turbulent natural convection [22]. The phe-
nomenon is defined by the type of fluid, temperature differ-
ence and the layout of the enclosure.

In this work we will consider air as the working fluid, for
which density q0, viscosity m0 and diffusivity a0 will be con-
sidered constant. The Prandtl number will be set to
Pr ¼ m0=a0 ¼ 0:71. Let the distance between the hot and
cold walls be the width of the enclosure W. We will nondi-
mensionalize all quantities, velocity~v, vorticity ~x ¼ ~r�~v,
temperature T, time t, position vector ~r in the following
manner:

~v! ~v
v0

; ~g ! ~g
g0

; ~r! ~r
W

; ~x! ~xW

v0

;

t! v0t
W

; T ! T � T 0

DT
; v0 ¼

a0

W
; ð1Þ

where g0 ¼ 9:81 m=s2;DT is the temperature difference be-
tween the hot and cold walls and T 0 ¼ ðT hot þ T coldÞ=2.
The gravity force works in the negative z direction. The
enclosure will be inclined for an angle # from the gravity
direction in such a way that the hot wall will be located
above the cold wall. The enclosure will be W wide, D deep
and H high. The computational domain extents are
ð0; 0; 0Þ � ð1;D=W;H=WÞ. The coordinate system axes
lie along the edges of the enclosure. With this, the gravity
vector is related to the inclination angle by

~g ¼ ð� sin#; 0;� cos#Þ: ð2Þ

The temperature T ¼ �0:5 will be prescribed at x ¼ 0 and
T ¼ 0:5 at x ¼ 1. The other four walls are adiabatic, i.e.
there is no temperature flux through them. Since we con-
sider a closed enclosure, non-slip velocity boundary



Fig. 1. Sketch of an inclined enclosure with width W, depth D and height
H. Natural convection is induced by keeping two opposite walls at
constant (hot and cold) temperatures, while the other four walls are
presumed to be without temperature flux, i.e. adiabatic.

J. Ravnik et al. / International Journal of Heat and Mass Transfer 51 (2008) 4517–4527 4519
conditions~v ¼ 0 are applied on all walls. The layout of the
problem is shown in Fig. 1.

3. Governing equations

The velocity–vorticity formulation of Navier–Stokes
equations consists of the kinematics equation and the vor-
ticity transport equation. The kinematics equation is a vec-
tor elliptic partial differential equation of Poisson type and
links the velocity and vorticity fields for every point in space
and time. It is equivalent to the Biot–Savart law, which con-
nects the electric current and magnetic field density. The
same connection that links the electric current and magnetic
field density links velocity and vorticity fields in fluid flow
[23]. For an incompressible fluid it can be stated as

r2~vþ ~r� ~x ¼ 0; ð3Þ

where we must bear in mind, that both velocity and vortic-
ity fields are divergence free.

The kinetic aspect of fluid movement is governed by the
vorticity transport equation. Buoyancy is modelled within
the Boussinesq approximation. Density variations with
temperature qðT Þ ¼ q0½1� bT ðT � T 0�Þ are considered only
in the buoyancy term and defined by the thermal volume
expansion coefficient bT and the temperature difference.
Using this assumptions we may write the vorticity trans-
port equation as:

o~x
ot
þ ð~v � ~rÞ~x ¼ ð~x � ~rÞ~vþ Prr2~x� PrRa~r� T~g; ð4Þ

with Rayleigh Ra number defined as:

Ra ¼ g0bT DTW3

m0a0

: ð5Þ

Eq. (4) equates the advective vorticity transport on the left
hand side with the vortex twisting and stretching term, the
diffusion term and the buoyancy term on the right hand
side. We further assume that no internal energy sources
are present in the fluid. We will not deal with high velocity
flow of highly viscous fluid, hence we will neglect irrevers-
ible viscous dissipation. With this, the internal energy con-
servation law, written with temperature as the unknown
variable, reads as:

oT
ot
þ ð~v � ~rÞT ¼ r2T : ð6Þ

The partial differential equations (3), (4) and (6) form a
nonlinear system for the unknown velocity, vorticity and
temperature fields. The problem is in a given domain un-
iquely defined by specifying the Prandtl and Rayleigh
numbers.

4. Numerical method

We will apply a combination of subdomain BEM and
single domain BEM for the solution of the governing equa-
tions. The Dirichlet and/or Neumann boundary conditions
for velocity and temperature are given. They are used to
obtain solutions of the kinematics equation (3) for domain
velocity values and energy equation (6) for domain temper-
ature values. The boundary conditions for vorticity, which
are needed to solve the vorticity transport equation (4), are
unknown. This is not entirely true, since we are dealing
with an enclosure with non-slip velocity boundary
conditions, we know, that xj ¼ 0 at walls where
xj ¼ const; xj ¼ x; y; z. We will use the single domain
BEM on the kinematics equation to obtain the remaining
unknown boundary vorticity values. The outline of the
algorithm is as follows:

� initialization, calculate integrals;
� begin nonlinear loop;

– calculate boundary vorticity values by solving the
kinematics equation (3) by single domain BEM,

– calculate domain velocity values by solving the kine-
matics equation (3) by subdomain BEM,

– solve the energy equation (6) using the new velocity
field for domain temperature values by subdomain
BEM,

– solve vorticity transport equation (4) by subdomain
BEM for domain vorticity values using the boundary
values from the solution of the kinematics equation
and new velocity and temperature fields,

– check convergence – repeat steps in the nonlinear
loop until convergence of all field functions is
achieved,
� end nonlinear loop;
� output results.
4.1. Subdomain BEM

The subdomain BEM will be used to solve the vorticity
transport equation for domain vorticity values, the energy
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equation for domain temperature values and the kinemat-
ics equation for domain velocity values. In the following
subsections we describe solution of each of the three
equations.
4.1.1. Subdomain BEM solution of the vorticity transport

equation

Let us consider a domain X with a position vector
~r 2 R3. The boundary of the domain is C ¼ oX. In this
work we are simulating a natural convection phenomena
up to Ra 6 105. The flow field in this case is steady, thus
we may write o~x=ot ¼ 0. The boundary-domain integral
form of the steady vorticity transport equation (4) is [24]

cð~hÞ~xð~hÞ þ
Z

C

~x~ruH �~ndC

¼
Z

C
uH~qdCþ 1

Pr

Z
X

uHfð~v � ~rÞ~x� ð~x � ~rÞ~vgdX

þ Ra
Z

X
uH~r� T~g dX; ð7Þ

where ~h is the source or collocation point, ~n is a vector
normal to the boundary, pointing out of the domain and
uH is the fundamental solution for the diffusion operator:

uH ¼ 1

4pj~h�~rj
: ð8Þ

cð~hÞ is the geometric factor defined as cð~hÞ ¼ a=4p, where a
is the inner angle with origin in~h. If~h lies inside of the do-
main then cð~hÞ ¼ 1; cð~hÞ ¼ 1=2, if ~h lies on a smooth
boundary. Vorticity on the boundary ~xð~rÞ or vorticity flux
on the boundary~qð~rÞ ¼ ~r~xð~rÞ �~n are prescribed as bound-
ary conditions.

Both domain integrals on the right hand side of Eq. (7)
include derivatives of the unknown field functions. In the
following we will use algebraic relations to move the deriv-
ative from the unknown field function to the fundamental
solution. Let us first write the first domain integral alone
for jth component of vorticity only:

1

Pr

Z
X
fð~v � ~rÞxj � ð~x � ~rÞvjguHX: ð9Þ

Due to the solenoidality of the velocity and vorticity fields,
we may use ð~x � ~rÞvj ¼ ~r � ð~xvjÞ and ð~v � ~rÞxj ¼ ~r � ð~vxjÞ
to transform equation (9) into

1

Pr

Z
X
f~r � ð~vxj � ~xvjÞguH dX: ð10Þ

In order to move the derivative towards the fundamental
solution, the following algebraic relation ~r � fu	ð~vxj�
~xvjÞg ¼ u	~r � ð~vxj � ~xvjÞ þ ð~vxj � ~xvjÞ � ~ru	 is used to
obtain two integrals

1

Pr

Z
X

~r � fu	ð~vxj � ~xvjÞgdX� 1

Pr

Z
X
ð~vxj � ~xvjÞ � ~ruH dX:

ð11Þ
The first integral may be converted to a boundary integral
using a Gauss divergence clause. Thus, the final form of the
first domain integral of Eq. (7) for jth vorticity component
without derivatives of field functions may be stated as:

1

Pr

Z
C

~n � fu	ð~vxj � ~xvjÞgdC� 1

Pr

Z
X
ð~vxj � ~xvjÞ � ~ru	 dX:

ð12Þ
In order to remove the derivative of temperature from the
second domain integral of Eq. (7), we make use of the fol-
lowing algebraic relation: ~r� ðuHT~gÞ ¼ uH~r� T~gþ
T~r� uH~g, which gives

þRa
Z

X

~r� ðuHT~gÞdX� Ra
Z

X
T~r� uH~g dX: ð13Þ
With the aid of the Gauss clause we are able to transform
the first domain integral of Eq. (13) into a boundary
integral:

�Ra
Z

C
uHT~g �~ndC� Ra

Z
X

T~r� uH~g dX; ð14Þ
yielding an expression without derivatives of the tempera-
ture field. Using expressions (12) and (14) instead of the do-
main integrals in Eq. (7), we may write the final integral
form of the vorticity transport equation as:

cð~hÞxjð~hÞ þ
Z

C
xj
~ru	 �~ndC

¼
Z

C
u	qj dCþ 1

Pr

Z
C

~n � fu	ð~vxj � ~xvjÞgdC

� 1

Pr

Z
X
ð~vxj � ~xvjÞ � ~ru	 dX� Ra

Z
C
ðuHT~g �~nÞj dC

� Ra
Z

X
ðT~r� uH~gÞj dX: ð15Þ
In the subdomain BEM method we make a mesh of the en-
tire domain X and name each mesh element a subdomain.
Eq. (15) is written for each of the subdomains. In order to
obtain a discrete version of (15) we use shape functions to
interpolate field functions and flux across the boundary
and inside of the subdomain. In this work we used hexahe-
dral subdomains with 27 nodes, which enable continuous
quadratic interpolation of field functions. The boundary
of each hexahedron consists of six boundary elements.
On each boundary element we interpolate the flux using
discontinuous linear interpolation scheme with four nodes.
By using discontinuous interpolation we avoid flux defini-
tion problems in corners and edges. A subdomain and
one boundary element are sketched in Fig. 2. A function,
e.g. temperature, is interpolated over a boundary elements
as T ¼

P
uiT i, inside each subdomain as T ¼

P
UiT i,

while flux is interpolated over boundary elements as
q ¼

P
/iqi. The following integrals must be calculated:



Fig. 2. A boundary element in R3 space (left) and in a local coordinate system (middle) with function (circles) and flux (squares) nodes. A hexahedral
subdomain with function nodes is shown on the right.
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½H � ¼
Z

C
ui
~ruH �~ndC; ½G� ¼

Z
C

/iu
H dC; ð16Þ

½~A� ¼
Z

C
ui~nuH dC; ½~D� ¼

Z
X

Ui
~ruH dX: ð17Þ

The square brackets denote integral matrices. Each source
point location yields one row in these matrices. The number
of columns is 26 for ½H � and ½~A� matrices, since there are 26
function nodes on the surface of each subdomain. The ma-
trix ½G� has 24 columns, since there are 24 flux nodes on the
surface of each subdomain. Matrices ½~D� have 27 columns
since there are 27 nodes in each subdomain. In order to cal-
culate the integrals, a Gaussian quadrature algorithm is
used. The integrals are calculated in local coordinate system
via weighted summation of up to 48 integration points per
coordinate axis. Calculation of the free coefficient cð~hÞ is
preformed indirectly. If we consider a rigid body movement,
u ¼ 1, q ¼ 0, we see that the sum of all ½H � matrix elements
for one source point must be equal to 0, thus we may use
this fact to calculate cð~hÞ. The calculated cð~hÞ are added
to the diagonal terms of the ½H � matrix.

The source point is set to all function and flux node in
each subdomain. That makes the number of rows of each
matrix 51 times the number of subdomains. By letting curly
brackets denote vectors of nodal values of field functions,
we may write the discrete vorticity transport equation in
component form as:

½H �fxxg ¼ ½G�fqxg þ
1

Pr
½Ay �fvyxx � xyvxg

þ 1

Pr
½Az�fvzxx � xzvxg �

1

Pr
½Dy �fvyxx � xyvxg

� 1

Pr
½Dz�fvzxx � xzvxg þ Raðgz½Ay �fTg

� gy ½Az�fTg � gz½Dy �fTg þ gy ½Dz�fTgÞ; ð18Þ

½H �fxyg ¼ ½G�fqyg þ
1

Pr
½Ax�fvxxy � xxvyg

þ 1

Pr
½Az�fvzxy � xzvyg �

1

Pr
½Dx�fvxxy � xxvyg

� 1

Pr
½Dz�fvzxy � xzvyg þ Raðgx½Az�fT g

� gz½Ax�fTg þ gz½Dx�fTg � gx½Dz�fTgÞ; ð19Þ
½H �fxzg ¼ ½G�fqzg þ
1

Pr
½Ax�fvxxz � xxvzg

þ 1

Pr
½Ay �fvyxz � xyvzg �

1

Pr
½Dx�fvxxz � xxvzg

� 1

Pr
½Dy �fvyxz � xyvzg þ Raðgy ½Ax�fTg

� gx½Ay �fTg � gy ½Dx�fTg þ gx½Dy �fTgÞ: ð20Þ

Since neighbouring subdomains share nodes, the systems of
linear equations (18)–(20) are over-determined. After tak-
ing into account the boundary conditions, we solve them
using a least squares solver [25]. All integrals depend only
on the shape of subdomains and as such may be calculated
only once, prior to the start of the nonlinear iterative
process.

4.1.2. Subdomain BEM solution of the energy equation

The energy equation (6) is a diffusion convection partial
differential equation exactly like the vorticity transport
equation without the vortex twisting and stretching and
buoyancy terms. The solution of (6) is thus obtained in
the same manner than the solution of the vorticity transfer
equation. The same integral matrices are required. The dis-
crete counterpart of the energy equation (6) is

½H �fTg ¼ ½G�fqTg þ ½Ax�fvxTg þ ½Ay �fvyTg þ ½Az�fvzTg
� ½Dx�fvxTg � ½Dy �fvyT g � ½Dz�fvzT g; ð21Þ

where fqTg is a nodal vector of temperature flux. Boundary
conditions are either known temperature or temperature
flux on the boundary. We set up the system matrix from
½H � and ½G� matrices accordingly. The system matrix is
sparse and as such it is stored efficiently in a compressed
row storage format. The system is solved in a least squares
manner [25].

4.1.3. Subdomain BEM solution of the kinematics equation

The integral form of the kinematics equation without
derivatives of the velocity and vorticity fields takes the fol-
lowing form (for derivation, see Ravnik et al. [22] Eqs.
(19)–(24)):



Table 1
Natural convection in a cubic enclosure without inclination, # ¼ 0

Ra [8] [7] 173 213 253

103 1.0710 1.0700 1.0716 1.0710 1.0713
104 2.0537 2.0542 2.0664 2.0627 2.0591
105 4.3329 4.3371 4.3893 4.3768 4.3570

Present Nusselt number values are compared with the benchmark results
of Lo et al. [8] and Tric et al. [7].
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cð~hÞ~vð~hÞ þ
Z

C

~v~ruH �~ndC ¼
Z

C

~v� ð~n� ~rÞuH dC

þ
Z

X
ð~x� ~ruHÞdX: ð22Þ

The boundary integral on the left hand side are stored in
the ½H � matrix, the domain integrals on the right hand side
are the ½~D� matrices. We define the boundary integral on
the right hand side as ½~H t� integrals in the following
manner:

½~H t� ¼
Z

C
uið~n� ~rÞuH dC: ð23Þ

Since there are no fluxes in the equation, the source point is
set to function nodes only. The discrete kinematics equa-
tion written in component wise form is

½H �fvxg ¼ ½H t
z�fvyg � ½H t

y �fvzg þ ½Dz�fxyg � ½Dy �fxzg; ð24Þ
½H �fvyg ¼ ½H t

x�fvzg � ½H t
z�fvxg � ½Dz�fxxg þ ½Dx�fxzg; ð25Þ

½H �fvzg ¼ ½H t
y �fvxg � ½H t

x�fvyg þ ½Dy �fxxg � ½Dx�fxyg: ð26Þ

The kinematics equation takes the same form for fluid flow
problems and for coupled fluid flow – heat transfer prob-
lems. Thus, the solution procedure employed here is the
same as it was used in an algorithm for the solution of
3D laminar viscous flow [17].

4.2. Single domain BEM

In order to use the kinematics equation to obtain
boundary vorticity values, we must rewrite Eq. (22) in a
tangential form by multiplying the system with a normal
in the source point ~nð~hÞ:

cð~hÞ~nð~hÞ �~vð~hÞ þ~nð~hÞ �
Z

C

~v~ruH �~ndC

¼~nð~hÞ �
Z

C

~v� ð~n� ~rÞuH dCþ~nð~hÞ �
Z

X
ð~x� ~ruHÞdX:

ð27Þ

This approach has been proposed by Škerget and used in
2D by Škerget et al. [16] and in 3D by Žunič et al. [26]
and Ravnik et al. [17]. In order to write a linear system
of equations for the unknown boundary vorticity values,
we set the source point into every boundary node of the
whole computational domain. This yields a full system ma-
trix with number of boundary nodes rows and columns. It
is solved using a LU decomposition method. Since this
equation and its solution are the same for coupled and
uncoupled flow and heat transfer problems, please examine
the references above for a complete detailed description of
the single domain BEM procedure.

5. Results

We studied the natural convection phenomena in two
type of enclosures: a cube with H ¼ D ¼W and a paral-
lelepiped with H ¼ 2W and D ¼W (Fig. 1). Both
enclosures were inclined for angles between # ¼ 0� and
# ¼ 60� and subjected to temperature differences corre-
sponding to Rayleigh numbers ranging from Ra ¼ 103 to
Ra ¼ 105.

Three meshes were used in the analysis. The very coarse
mesh with 83 subdomains and 173 nodes, the coarse mesh
with 103 subdomains and 213 nodes and the fine mesh with
123 subdomains and 253 nodes. Subdomains were concen-
trated towards the hot and the cold walls. The stopping cri-
teria for the least squares solver was 10�7. The nonlinear
loop continued until the RMS difference between iterations
of all field functions was less than 10�6. For a cubic enclo-
sure about 100 iterations were necessary to achieve the
stopping criteria using an under-relaxation of vorticity
and temperature values of 0.1. The same is valid to the
H ¼ 2W enclosure for Ra 6 104, while under-relaxation
of 0.01 was used in the Ra ¼ 105 case requiring about a
1000 iterations. By increasing the inclination angle the
number of the necessary iterations decreased.

In order to validate our numerical algorithm, we com-
pared our results with the results of Tric et al. [7] and Lo
et al. [8]. Tric et al. [7] studied natural convection in a cubic
enclosure without inclination, # ¼ 0�, using a pseudo-spec-
tra Chebyshev algorithm based on the projection–diffusion
method with spatial resolution supplied by polynomial
expansions. Lo et al. [8] also studied a cubic enclosure
under five different inclinations # ¼ 0�; 15�; 30�; 45�; 60�.
They used a differential quadrature method to solve the
velocity–vorticity formulation of Navier–Stokes equations
employing higher order polynomials to approximate differ-
ential operators.

Both studies provided their results in terms of the Nus-
selt number Nu. The Nusselt number is a nondimensional
quantity defined as the integral of the temperature flux
through a wall divided by the area of the wall. In our geom-
etry this may be written as

Nu ¼ W2

HD

Z D=W

0

Z H=W

0

oT
ox

dzdy: ð28Þ

Table 1 presents Nusselt number values for the cubic enclo-
sure without inclination. Results obtained with our method
on three meshes are compared with benchmark results.
With the increasing mesh density our results converge ni-
cely to the benchmark making the 253 mesh results in good
agreement with the benchmark.

Nusselt number estimation for an inclined cubic enclo-
sure are presented in Table 2. Again we can confirm that



Table 2
Natural convection in a cubic enclosure under inclination #

# [8] 173 253 [8] 173 253 [8] 173 253

Ra ¼ 103 Ra ¼ 104 Ra ¼ 105

15� 1.0590 1.0595 1.0592 1.8425 1.8525 1.8464 3.7731 3.8149 3.7881
30� 1.0432 1.0435 1.0433 1.5894 1.5955 1.5916 2.9014 2.9227 2.9071
45� 1.0268 1.0269 1.0268 1.3434 1.3460 1.3443 1.9791 1.9821 1.9782
60� 1.0127 1.0128 1.0127 1.1524 1.1531 1.1526 1.3623 1.3587 1.3600

Present Nusselt number values are compared with the benchmark results of Lo et al. [8].
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the results obtained on the fine mesh are in good agreement
with the reference for all inclination angles and Rayleigh
number values.

Finally, we present the Nusselt number values for natu-
ral convection in an inclined H=W ¼ 2 enclosure. Table 3
presents the values for # ¼ 0�; 15�; 30�; 45� and 60� and
103
6 Ra 6 105.

Comparison of Nusselt number values for both types of
enclosures is presented graphically in Fig. 3. In both cases
we observe an increase of the Nusselt number with increas-
ing Rayleigh number and a decrease of the Nusselt number
with increasing inclination angle. The H=W ¼ 2 enclosure
yields higher Nusselt values than the cubic enclosure.

Fig. 4 presents the temperature profiles. We may observe
that the temperature gradients are highest close to the hot
and the cold walls in the # ¼ 0� case. As the enclosure is
Table 3
Natural convection in a H=W ¼ 2 enclosure

# Ra ¼ 103 Ra ¼ 104 Ra ¼ 105

0� 1.111 2.163 4.177
15� 1.096 2.029 3.892
30� 1.073 1.839 3.430
45� 1.047 1.594 2.774
60� 1.023 1.317 1.915

The Nusselt number values representing the heat flux through walls are
shown for different inclination angles and Rayleigh numbers. Simulations
were preformed on a mesh with 253 nodes.
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Fig. 3. Dependence of the Nusselt number on the inclination
inclined the temperature gradients decrease. As a result
the heat transfer through the walls is lower and conse-
quently the Nusselt number values as also lower. Fig. 4 dis-
plays profiles only up to # ¼ 30�. At larger inclination
angles the Nusselt number is close to unity and thus all pro-
files are very close to the linear profile. Fig. 5 displays tem-
perature contours in the y ¼ 0:5 plane at Ra ¼ 105 for
different inclination angles. We see that regardless of the
inclination angle or the shape of the enclosure the temper-
ature is stratified, i.e. we observe layers of air with equal
temperature perpendicular to the direction of gravity. We
noticed the same effect when observing the temperature
fields at Ra ¼ 103 and Ra ¼ 104. The stratification was
observed in the central parts of the enclosures by other
authors as well [10,22]).

The maximum difference between present Nusselt num-
ber values (Tables 1 and 2) and benchmark results is for all
Rayleigh number values observed at # ¼ 0�. This can be
explained considering the fact that as the inclination angle
increases the temperature gradient at the walls decreases.
The gradients are steepest and the flow field is most com-
plex at # ¼ 0�. Consequently, it is more difficult to simulate
the # ¼ 0� flow field, than flows at other inclination angles.

By observing the velocity profiles in Fig. 6 we observe
that the fluid moves fastest along the hot and the cold
walls. Considerable velocity is found along the top and bot-
tom walls as well, making the primary vortex in the x–z

plane. Examining the flow structure in the enclosures, we
observe that the flow field is not far from being 2D. The
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Fig. 4. Comparison of temperature profiles for the three Rayleigh number values, y ¼ 0:5, z ¼ 0:5, # ¼ 0� (left), # ¼ 15� (middle) and # ¼ 30� (right). Top
row: cubic enclosure, bottom row H=W ¼ 2 enclosure.
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fluid predominantly moves in the x–z plane. In order to
show the 3D nature of the phenomena, we plotted iso-sur-
faces of y velocity component in Fig. 7. Although the
extent of movement perpendicular to the x–z plane is small,
it can be found in the corners of the enclosures. The fact
Fig. 7. Iso-surfaces of an absolute value of velocity component jvy j ¼ 3 shown
H=W ¼ 2 enclosure (left); Ra ¼ 105, # ¼ 0�. The iso-surfaces are coloured wi
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(right). Top row: cubic enclosure; bottom row: H=W ¼ 2 enclosure.
that the 2D approximation of the natural convection in
an enclosure is quite good in this Rayleigh number range
can be confirmed by comparing the Nusselt number values.
A 2D solution of natural convection of air in a square
enclosure [1,11]) yield Nu ¼ 1:118 for Ra ¼ 103,
along with velocity vectors in y ¼ 0:5 plane for cubic enclosure (right) and
th temperature contours.
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Nu ¼ 2:243 for Ra ¼ 104 and Nu ¼ 4:519 for Ra ¼ 105,
which are all quite close (within 8%) to the values obtained
by the present 3D solution (Table 1). A 2D simulation pre-
dicts higher Nusselt number values than the full 3D simu-
lation. Salat et al. [27] confirmed that 2D and 3D
simulation give the same general flow structure even when
modelling turbulent natural convection at high Rayleigh
number values by studying experimental data, 2D LES,
2D DNS and 3D LES computations.

Fig. 8 shows the y vorticity component contours along
the walls of the enclosures. We can see that the vorticity
values grow rapidly with the increasing of the Rayleigh
number. The largest vorticity values may be found at the
bottom of the hot wall and at the top of the cold wall,
where velocity gradients are highest. Comparing the cubic
and H=W ¼ 2 enclosures we observe that the high vortic-
ity areas take up a larger portion of the wall in the
H=W ¼ 2 enclosure. Also, the vorticity values are higher
in the H=W ¼ 2 enclosure than in the cubic. This is due
to the fact that the fluid is able to accelerate along a longer
wall in the case of H=W ¼ 2 enclosure and as such pro-
duces higher velocity gradients.

6. Conclusions

We presented a method for solving coupled laminar vis-
cous flow and heat transfer problems. The algorithm solves
the velocity–vorticity formulation of Navier–Stokes equa-
tions. The boundary vorticity values are obtained by the
single domain BEM solution of the kinematics equation.
The solution of the vorticity equation for domain vorticity
values, the energy equation for domain temperature values
and the kinematics equation for domain velocity values are
obtained by subdomain BEM.

The method was used to simulate natural convection
phenomena in inclined parallelepipedal enclosures. The
method was validated by comparing Nusselt number val-
ues for Ra ¼ 103 to Ra ¼ 105 with benchmark results for
an inclined cubic enclosure. In addition we presented tem-
perature fields, velocity profiles and Nusselt number values
for an enclosure with height to width ratio H=W ¼ 2.

By studying the temperature field in the enclosure we
observed, that in the central part the temperature field is
stratified. The layers of constant temperature are set per-
pendicularly to the gravity direction regardless of the incli-
nation angle as long as the hot wall lies above the cold wall.
The velocity flow fields show that the flow is predominantly
moving in a single vortex, up along the hot wall and down
along the cold wall. The 3D nature of the flow may be
observed in the corners of the enclosures. We have con-
firmed that the 2D approximation of the flow field is quite
good. The 2D calculated Nusselt number values are quite
close (within 8%) of the Nusselt number values obtained
with a 3D simulation.



J. Ravnik et al. / International Journal of Heat and Mass Transfer 51 (2008) 4517–4527 4527
Comparing the cubic and H=W ¼ 2 enclosures we
established that the Nusselt number values are higher in
the case of H=W ¼ 2 enclosure. Moreover, comparison
of temperature profiles, velocity vectors and vorticity val-
ues showed that higher values and steeper gradients may
be found in the H=W ¼ 2 enclosure.

In future we whish to expand our numerical method for
simulation of turbulent natural convection at high Ray-
leigh numbers using velocity–vorticity formulation of
LES.
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