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In this paper we develop a numerical method and present results of simulations of flow and heat transfer
of nanofluids. We consider a heated circular and elliptical cylinder in a cooled cubic enclosure. Natural
convection, which drives the flow, and heat transfer are simulated for different temperature differences
and enclosure inclination angles. Steady laminar regime is considered with Rayleigh number values up to
a million. Al2O3;Cu and TiO2 nanofluids are considered, as well as pure water and air for validation pur-
poses. Properties of nanofluids are considered to be constant throughout the domain and are estimated
for different nanoparticle volume fractions (0.1 and 0.2).

In order to simulate nanofluids, an in-house numerical method was developed based on the solution of
3D velocity–vorticity formulation of Navier–Stokes equations. The boundary element method is used to
solve the governing equations. In the paper, special consideration is given to the estimation of the bound-
ary value of vorticity on an arbitrary curved surface.

The results show highest heat transfer enhancement in the conduction dominated flow regime, where
the enhanced thermal properties of nanofluids play an important role. When convection is the dominant
heat transfer mechanism, the using nanofluids yields a smaller increase in heat transfer efficiency.
Comparison of 2D and 3D results reveals consistently lower heat transfer rates in the 3D case. As the
enclosure is tilted against gravity, the flow symmetry around an elliptical cylinder is lost and the overall
heat transfer increases.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Cooling is one of the major challenges in development of effi-
cient devices. Natural convection is used to design many devices,
for example, heat exchangers and electronics coolers. Study of nat-
ural convection in such devices was started by De Vahl Davies [6],
who proposed the now classical problem of a differentially heated
cavity. He considered an enclosure, where one wall is heated to a
constant temperature and a wall on the opposite side is cooled to
a constant temperature. Due to the temperature difference, natural
convection develops in the enclosure. Many engineering applica-
tions are geometrically more complicated and thus more recently,
attention has shifted to enclosures with hot bodies embedded
within [9]. Depending on the temperature difference, the natural
convection that develops, may be steady and laminar for low tem-
perature differences, while for higher temperature differences
transition to turbulence may be observed.
Choice of a working fluid is very important, as its thermal prop-
erties determine heat transfer characteristics. As thermal conduc-
tivity of water, oil and other working fluids are low, Choi [4]
introduced nanofluids. Nanofluid is a suspension consisting of uni-
formly dispersed and suspended nanometre-sized (10–50 nm) par-
ticles in base fluid. Nanofluids have a very high thermal
conductivity at a very low nanoparticle concentrations and exhibit
considerable enhancement of convection [35]. A wide variety of
experimental and theoretical investigations have been performed,
as well as several nanofluid preparation techniques have been pro-
posed [32].

Research in the use of nanofluids for natural convection type
application has been intensified in recent years [31,18,27]. Hu
et al. [11] considered a square enclosure filled with nanofluid
and compared experiments and numerical simulations for differ-
ent nanoparticle concentrations. Oztop and Abu-Nada [21] per-
formed a 2D study of natural convection of various nanofluids in
partially heated rectangular cavities, reporting that the type of
nanofluid is a key factor for heat transfer enhancement. They
obtained best results with Cu nanoparticles. The same researchers
[2] examined the effects of inclination angle on natural convection
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in enclosures filled with Cu–water nanofluid. They reported that
the effect of nanofluid on heat enhancement is more pronounced
at low Rayleigh numbers. Hwang et al. [12] studied natural convec-
tion of a water based Al2O3 nanofluid in a rectangular cavity heated
from below. They investigated convective instability of the flow
and heat transfer and reported that the natural convection of a
nanofluid becomes more stable when the volume fraction of
nanoparticles increases. Ho et al. [10] studied effects on nanofluid
heat transfer due to uncertainties of viscosity and thermal conduc-
tivity in a buoyant enclosure. They demonstrated that usage of dif-
ferent models for estimation of viscosity and thermal conductivity
does indeed have a significant impact on heat transfer. Natural
convection of nanofluids in an inclined differentially heated square
enclosure was studied by Ögüt [20], using polynomial differential
quadrature method. Kim et al. [15] studied 2D natural convection of
air around a circular cylinder within a square enclosure. Sheremet
et al. [28] considered natural convection in a 3D porous enclosure
filled with a nanofluid and compared homogeneous nanoparticle dis-
tribution model with a inhomogeneous model. Most of the studies in
the literature were done in 2D. In this paper we present development
of a 3D nanofluid flow simulation algorithm.

Several numerical methods have been proposed for the simula-
tion of nanofluids. Garoosi [8] carried out a numerical study of nat-
ural and mixed convection heat transfer of nanofluid in a
two-dimensional square cavity with several pairs of heat
source-sinks using the finite volume method. Control volume
based finite element method was used by Seyyedi et al. [26] to
simulate the natural convection heat transfer of Cu–water nano-
fluid in an annulus enclosure. El Abdallaoui et al. [1] used the lattice
Boltzmann method for numerical simulation of natural convection
between a decentered triangular heating cylinder and a square outer
cylinder filled with a pure fluid or a nanofluid. Elshehabey et al. [7]
developed a finite difference method for natural convection in an
inclined L-shaped enclosure filled with Cu–water nanofluid that
operates under differentially heated walls in the presence of an
inclined magnetic field. Kefayati [13] used a finite difference lattice
Boltzmann method heat transfer and entropy generation due to
laminar natural convection in a square cavity.

In this paper we present a boundary element method based
algorithm for simulation of flow and heat transfer of nanofluids.
We formulate the Navier–Stokes equations in velocity–vorticity
form and couple them with the energy conservation equation.
Daube [5] pointed out that the correct evaluation of boundary vor-
ticity values is essential for conservation of mass when using the
velocity vorticity formulation. Several different methods were con-
sidered for estimation of the vorticity on the boundary. Wong and
Baker [33] used a second-order Taylor series to determine the
boundary vorticity values explicitly. Daube [5] used an influence
matrix technique to enforce both the continuity equation and the
definition of the vorticity in the treatment of the 2D incompress-
ible Navier–Stokes equations. Liu [16] recognised that the problem
is even more severe when he extended it to three dimensions. Lo
et al. [17] used the differential quadrature method. Škerget et al.
[30] proposed the usage of single domain BEM to obtain a solution
of the kinematics equation in tangential form for the unknown
boundary vorticity values and used it in 2D. This work was
extended into 3D using a linear interpolation by Žunič et al. and
Ravnik et al. [25] for simple geometries. In this paper we extend
these methods for determination of boundary vorticity at an arbi-
trarily shaped surface.
Fig. 1. Computational domain and coordinate system with boundary conditions.
The angle a measures a location around the circumference of the cylinder. The angle
c measures the tilt of the enclosure with respect to the gravity vector. The front and
back walls (y ¼ 0 and y ¼ L) are adiabatic.
2. Problem description

A heated cylinder is inserted into an enclosure with four cooled
walls. Front and back walls are perfectly insulated (adiabatic). All
walls have a no-slip boundary condition applied for velocity. The
heat is transferred from the cylinder to the fluid causing density
changes that result in buoyancy forces. Natural convection devel-
ops – the fluid rises around the cylinder and transports heat
towards the cold walls. The heat flux depends on the type of fluid
(air, water and nanofluids in this work), the shape of the cylinder
and the orientation of the enclosure with respect to gravity.

The centre of the cylinder is located at the centre of the enclo-
sure. The shape of the base of the cylinder is an ellipse with major
semi-axis a and minor semi axis b. They are defined as

a ¼ 0:2L; b ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

; ð1Þ

where e is the eccentricity of the ellipse and the length of the cylin-
der is L. The enclosure is cubic with a volume of L3. It is tilted with
respect to gravity with an angle of c. The temperature of the cylin-
der is constant Th and the temperature of the cold walls is also con-
stant, Tc (see Fig. 1).
3. Governing equations

We consider water based nanofluids, as well as pure water and
air for validation and comparisons. Thermophysical properties of
solid nanoparticles and all fluids are given in Table 1. Water and
nanoparticles are in thermal equilibrium and no slip occurs
between them. We assume the nanofluid to be incompressible.
Natural convection exhibited by the nanofluids in our simulations
is laminar and steady. Effective properties of the nanofluid are:
density qnf , dynamic viscosity lnf , heat capacitance ðcpÞnf , thermal

expansion coefficient bnf and thermal conductivity knf , where sub-
script nf is used to denote effective i.e. nanofluid properties. The
properties are all assumed constant throughout the flow domain.
Pure fluid properties will be denoted by the subscript f.

Dimensionless velocity ~v , location vector~r, vorticity ~x, temper-
ature T and gravity ~g were employed by introducing

~v !
~vH

v0
; ~r !

~rH

L
; ~x!

~xHL
v0

; T ! TH � Tc

Th � Tc
; ~g !

~gH

g0
; ð2Þ

where, v0 ¼
kf

ðqcpÞf L is the characteristic velocity and g0 ¼ 9:81 m=s2.

The nondimensional steady velocity–vorticity formulation of
Navier–Stokes equations for simulation of nanofluids consists of



Table 1
Thermophysical properties of pure fluids, solid nanoparticles and water based
nanofluids. Effective nanofluid properties have been estimated using models in Eqs.
(7)–(11).

cp [J/kg K] q ½kg=m3� k [W/m K] b ½�10�5 K�1� l ½mm2=s�

Pure fluids
Air 1005 1.205 0.0257 3.43 15.11
Water 4179 997.1 0.613 21 0.912

Solid nanoparticles [21]
Cu 385 8933 400 1.67
Al2O3 765 3970 40 0.85
TiO2 686.2 4250 8.9538 0.9

Water based nanofluids, u ¼ 0:1, Eqs. (7)–(11)
Cu 2286 1791 0.816 11.36 1.187
Al2O3 3132 1294 0.807 14.82 1.187
TiO2 3056 1322 0.777 14.54 1.187

Water based nanofluids, u ¼ 0:2, Eqs. (7)–(11)
Cu 1556 2584 1.070 7.636 1.593
Al2O3 2476 1592 1.047 10.95 1.593
TiO2 2377 1648 0.973 10.63 1.593
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the kinematics equation, the vorticity transport equation and the
energy equation [23]:

r2~v þ ~r� ~x ¼ 0; ð3Þ

ð~v � ~rÞ~x ¼ ð~x � ~rÞ~v þ Pr
lnf

lf

qf

qnf
r2~x� PrRa

bnf

bf

~r� T~g; ð4Þ

ð~v � ~rÞT ¼ knf

kf

ðqcpÞf
ðqcpÞnf

r2T: ð5Þ

The flow and heat transfer of a nanofluid is thus defined by specify-
ing the pure fluid Rayleigh and Prandtl number values. They are
defined as

Ra ¼
g0bf DTL3qf ðqcpÞf

lf kf
; Pr ¼

lf cp

kf
: ð6Þ

The nanofluid properties are evaluated using the following
models. Density of the nanofluid is calculated using particle vol-
ume fraction u and densities of pure fluid qf and of solid nanopar-
ticles qs as:

qnf ¼ ð1�uÞqf þuqs: ð7Þ

The effective dynamic viscosity of a fluid of dynamic viscosity lf

containing a dilute suspension of small rigid spherical particles, is
given by Brinkman [3] as

lnf ¼
lf

ð1�uÞ2:5
: ð8Þ

The heat capacitance of the nanofluid can be expressed as [14]:

ðqcpÞnf ¼ ð1�uÞðqcpÞf þuðqcpÞs: ð9Þ

Similarly, the nanofluid thermal expansion coefficient can be writ-
ten as ðqbÞnf ¼ ð1�uÞðqbÞf þuðqbÞs, which may be, by taking into
account the definition of qnf , written as:

bnf ¼ bf
1

1þ ð1�uÞqf

uqs

bs

bf
þ 1

1þ u
1�u

qs
qf

2
4

3
5: ð10Þ

The effective thermal conductivity of the nanofluid is approxi-
mated by the Maxwell–Garnett formula [19]

knf ¼ kf
ks þ 2kf � 2uðkf � ksÞ
ks þ 2kf þuðkf � ksÞ

: ð11Þ

This formula is valid only for spherical particles, since it does not
take into account the shape of particles. Thus, our macroscopic
modelling of nanofluids is restricted to spherical nanoparticles
and it is suitable for small temperature gradients [29].
4. Numerical procedure

The governing equations were solved for heat and fluid flow by
an in-house boundary element based algorithm [24,23,36,22]. The
algorithm solves the velocity–vorticity formulation of Navier–
Stokes equations. It requires known velocity and temperature
boundary conditions. The problem considered in this paper has
known Dirichlet boundary conditions for velocity (no-slip at the
walls) and Dirichlet (temperature on the cylinder and walls) and
Neumann (zero heat flux on two walls) boundary conditions for
temperature. Boundary conditions for vorticity are unknown.

In the first step, the algorithm estimates boundary vorticity val-
ues using single domain BEM on the kinematics equation (3). This
step is described in detail in Section 4.1. Secondly, using
sub-domain BEM solution of the kinematics equation (3) the veloc-
ity in the domain is calculated. Thirdly, the energy equation (5) is
solved for domain temperature values using sub-domain BEM.
Lastly, the vorticity transport equation (4) is solved for domain vor-
ticity values using sub-domain BEM. The procedure is repeated
until convergence for all field functions is achieved. Convergence
criterion of 10�5 was used. It is calculated as the RMS difference
between field functions in two subsequent iterations.
Under-relaxation is used. A value of 0.1 is used for problems with
low Rayleigh number value and 0.01 for problems with high
Rayleigh number value.

4.1. Vorticity boundary conditions for an arbitrary 3D surface

Several different approaches have been proposed for the deter-
mination of vorticity on the boundary. We propose the usage of
singular integral kinematics equation. In this work, we extend
the approach for determining boundary vorticity on an arbitrary
3D surface.

The normal component of vorticity at the boundary is usually
known. If we consider a wall, then the velocity at the wall is either
zero or we know the value of slip velocity. Thus, the normal com-
ponent of vorticity may be calculated directly from the known
velocity distribution at the wall. This is possible due to the fact that
in order to calculate the normal component of vorticity only tan-
gential components of the velocity are needed. The same reasoning
applies at the inlets and outlets as well, since the velocity profile is
known there. In the case of symmetry or free slip boundary condi-
tions, the flux of normal component of vorticity is zero. This can be
used in the vorticity transport equation and as a results, the normal
component of boundary vorticity can be calculated there.

For an arbitrary surface, such as the cylinder in our case, the
normal component of vorticity is calculated using Cartesian vortic-
ity components and the unit normal to the surface, i.e.
xn ¼ ~n � ~x ¼

P
inixi, where i ¼ x; y; z. Since we know that xn ¼ 0

at the no-slip surface and ~n changes along the surface, we propose
the following strategy to find xx;xy and xz.

The singular boundary integral representation for the velocity
vector can be formulated by using the Green theorems for scalar
functions, or weighting residuals technique. Following Wu and
Thompson [34], Škerget et al. [30] derived the following integral
form of the kinematics equation, employing the derivatives of
the fundamental solution:

cð~nÞ~vð~nÞþ
Z

C

~vð~n � ~ruHÞdC¼
Z

C

~v �ð~n� ~ruHÞdCþ
Z

X
ð~x� ~ruHÞdX;

ð12Þ

where uH ¼ uHð~n;~rÞ is the elliptic Laplace fundamental solution,~n is
the source point on boundary C;~r integration point in domain X

(including C), cð~nÞ geometry coefficient and ~n outward pointing
normal to the boundary. Geometry coefficient can be generally
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computed as H=4p, where H is the internal solid angle at point ~n

in steradians. The Laplace fundamental solution is uHð~n;~rÞ ¼
1=4pj~n�~rj.

To obtain discrete form of integral equation we divide compu-
tational domain X into domain elements and its boundary C into
boundary elements. Domain elements used are hexahedra with
27 nodes enabling quadratic interpolation. Boundary elements
used are sides of domain hexahedra with 9 nodes. They also enable
quadratic interpolation. A function, e.g. temperature, is interpo-
lated over a boundary elements as T ¼

P
NiTi, inside each domain

element as T ¼
P

UiTi. Functions Ni and Ui are interpolation
functions.

After a choice of the source point ~n in (12) has been made and
interpolation of functions used, the integrals in (12) depend only
on the geometry and the fundamental solution. They may be calcu-
lated and stored in matrices. The boundary integrals on the left
hand side are stored in the ½H� matrix, the boundary integrals on

the right hand side in the ½~Ht � matrix and the domain integrals

on the right hand side are stored in the ½~D� matrices. For each
source point a row in the matrices is calculated:

½H� ¼
Z

C
Nið~n � ~ruHÞdC; ½~Ht� ¼

Z
C
Nið~n� ~ruHÞdC; ð13Þ

½~D� ¼
Z

X
Ui
~ruHdX: ð14Þ

The ½H� matrix holds integrals of normal derivatives of the funda-

mental solution, ½~Ht� tangential derivatives and ½~D� the gradient of
the fundamental solution. Thus the discrete version of Eq. (12)
may be written as

H½ �f~vg ¼ f~vg � ½~Ht� þ f~xg � ½~D�; ð15Þ

where curly brackets denote vectors of nodal values of field func-
tions. In order to obtain a system of linear equations, the source
point is placed into all boundary nodes. Thus the number of rows
in all matrices is equal to the number of boundary nodes. The num-

ber of columns in ½H� and ½~Ht� is also equal to the number of bound-
ary nodes since they are multiplied by boundary velocity values. On

the other hand, the number of columns in ½~D� is equal to the number

of all nodes, as ½~D� is multiplied by vorticity in the domain and on
the boundary.

In order to use Eq. (15) to solve for boundary vorticity values we
decompose the vorticity vector into two parts in the following way
fxig ¼ fxigC þ fxigX0 . In the vector fxigC only the boundary vor-
ticity values are non-zero and in the vector fxigX0 only the domain
vorticity values are non-zero. The subscript C stands for boundary
nodes only and X0 stands for interior nodes only (without bound-
ary nodes). Furthermore, one must set up the system in such a
way, that the system matrix is non-singular. Since we are dealing
with boundary element method, the system matrix may contain
a normal derivative of the fundamental solution for the integral
kernel. The integral kernel in the matrices ½Dx�; ½Dy�; ½Dz� are the
components of the gradient of the fundamental solution. The nor-
mal derivative may be written as ½nx�½Dx� þ ½ny�½Dy� þ ½nz�½Dz� ¼
½~n� � ½~D�, where ½nx�; ½ny� and ½nz� are diagonal matrices of unit normal
vector components ~n ¼ ðnx;ny;nzÞ for each boundary source point.

To obtain such a system, we perform a vector product of (15) by
normal vector ½~n�

H½ � ½~n� � f~vgð Þ ¼ ½~n� � f~vg � ½~Ht � þ f~xg � ½~D�
� �

ð16Þ

and after using ½~n� � ðf~xg � ½~D�Þ ¼ ð½~n� � ½~D�Þf~xg � ½~D�fxng and
f~xg ¼ f~xgC þ f~xgX0 and rearranging we obtain
½~n� � ½~D�
� �

f~xgC ¼ ½~D�fxng � ½~n� � ½~D�
� �

f~xgX0 � ½~n� � ½~Ht �
� �

f~vg

þ ½~Ht �fvng þ ½H� ½~n� � f~vgð Þ: ð17Þ

In Eq. (17), all three equations for individual components of bound-
ary vorticity are non-singular. However, they can only be used to
solve for tangential components of the boundary vorticity, since
the equation for normal component of boundary vorticity is identi-
cally equal to zero. This can be seen, if we consider a boundary
located in plane y� z with the unit normal~n ¼ f1;0; 0g. In this case
xx is the normal component of the vorticity and vx is the normal
component of velocity. We observe that all terms in Eq. (17) for
xx are either zero or cancel each other. Thus, the equation is iden-
tically equal to zero and it can not be used for the solution of the
normal component of vorticity.

Finally, the algorithm for determining the boundary vorticity is
as follows. At each source point, which is located at the boundary,
compare jnxj; jnyj and jnzj to find the largest component of the nor-
mal vector. Use Eq. (17) to find the other two components of vor-
ticity and use equation xn ¼ ~n � ~x and the known xn to find the
last boundary vorticity component. For example, if jnxj > jnyj and
jnxj > jnzj then solve (17) for xy and xz and solve xn ¼~n � ~x for xx.

4.2. Heat flux

The heat flux is measured across all walls of the enclosure. It is
reported in terms of the Nusselt number value. The wall average
heat flux is measured by Nu, while the local heat flux is measured
by the local Nusselt number value Nul. Since the heat flux is lin-
early interpolated across each boundary element, the local
Nusselt number for i-th boundary element is defined by a surface
integral over the element. So, the local and the average Nusselt
numbers are defined as

Nul;i ¼
1
Ci

Z
Ci

@T
@n

dC; Nu ¼ 1
C

X
i

CiNul;i ¼
1
C

Z
C

@T
@n

dC; ð18Þ

where Ci is the surface area of i-th boundary element of the wall
and C is the surface area of the entire wall.

4.3. Computational mesh

In order to validate the numerical method and prove conver-
gence of the results, we used several computational meshes. The
meshes are composed of domain elements which enable quadratic
interpolation of field functions and have 27 nodes. The mesh is set
up in primary vortex (x� z) plane and extruded into the third
direction. The numerical algorithm is written in 3D and solves fully
3D flow problems. In order to simulate 2D phenomena, appropriate
boundary conditions are used. Thus, two types of meshes are con-
structed: meshes for 2D simulations have only 1 element in y
direction and meshes for 3D simulations have several elements
in y direction.

Fig. 2 shows a quarter of the mesh. The other three-quarters of
the mesh are symmetric. Letters A;B;C and D denote sides along
which elements are distributed. The number of element along each
side and the total number of nodes are listed in Table 2. The mesh
elements are concentrated towards the walls in x and z directions.
In y direction all elements have equal size.

4.4. Validation

In order to validate the numerical model, we performed simula-
tions using air as the working fluid and compared results to Kim
et al. [15], who studied natural convection of air in a square enclo-
sure with a circular cylinder inserted in 2D.



Fig. 3. Streamlines in a 2D simulation of u ¼ 0:1 copper nanofluid. Streamline
colour denotes velocity magnitude.

Fig. 2. Mesh design is based on specifying the number of elements along A;B;C and
D sides. Hexahedra are used. Only a quarter of the mesh is shown, as the rest is
symmetrical.

Table 2
Description of meshes used in this paper. The elements used are 27 node quadratic
hexahedral Lagrange elements. The number of elements along sides and the total
number of nodes is presented; see Fig. 2 for graphical representation of the sides.

Mesh name Number of nodes ð�103Þ No. of elements along sides

Circle, e ¼ 0 Ellipse, e ¼ 0:9
A;B;D;C A;B;D;C

3D – fine 136 14, 14, 14, 10 14, 16, 12, 10
3D – coarse 57.1 10, 10, 10, 8 12, 8, 12, 8
2D – very fine 39.4 20, 20, 20, 1 20, 24, 16, 1
2D – fine 32.0 18, 18, 18, 1 18, 22, 14, 1
2D – coarse 14.4 12, 12, 12, 1 12, 14, 10, 1
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Comparison is done for Rayleigh number values Ra ¼ 103 � 106.
The flow regime is laminar and steady. Heat transfer from the
cylinder into the fluid is measured in terms of the Nusselt number.
Three computational meshes are considered. Comparison is pre-
sented in Table 3. We observe good agreement with the results
of Kim et al. [15], who studied the 2D case. Looking at the results
on the fine mesh, we observe all Nusselt number values are within
1% of the Kim’s results.

Simulations were repeated for the 3D case. No comparison is
available in the literature, however we used two meshes to assess
the required mesh density. Looking at the results on different
meshes, we observe convergence of results. Based on this, we
decided to use the 2D and 3D fine meshes for all simulations pre-
sented in the results section.

5. Results

We simulated pure water and six nanofluids, namely
Al2O3;Cu;TiO2 with nanoparticle volume fractions of u ¼ 0:1 and
u ¼ 0:2. 2D simulations were done for four Rayleigh number
Table 3
Validation of the numerical method. Average Nusselt number values at the hot cylinder
Simulations are performed in 2D and 3D on several meshes using air (Pr ¼ 0:7) as the wo

Mesh Circle, e ¼ 0

103 104 105 10

2D – very fine 5.041 5.133 7.756 14
2D – fine 5.041 5.133 7.779 14
2D – coarse 5.042 5.135 7.834 14
Kim et al. [15] 5.093 5.108 7.767 14

3D – fine 5.041 5.117 7.520
3D – coarse 5.040 5.115 7.514
values Ra ¼ 103 . . . 106, while in the 3D case, three Rayleigh num-
ber values were considered Ra ¼ 103 . . . 105. In terms of geometry
we considered two 3D cases: a circular cylinder and an elliptical
cylinder. For the 2D case we simulated five cases: a circular cylin-
der and elliptical cylinder under four inclinations c ¼ 0� . . . 45�. In
total we obtained results of 192 simulations. In the following sec-
tion heat transfer expressed in terms of the Nusselt number plots is
shown for all simulations. Other details such as contours, local
Nusselt number plots and streamline plots are, due to the lack of
space, shown only for selected cases. The complete simulation
database is available upon request.
5.1. Circular cylinder

Since the cylinder is heated above the temperature of the sur-
rounding fluid, the heat is transferred from the cylinder into the
fluid. Hot fluid around the cylinder exhibits buoyancy forces and
starts to raise against gravity. As it reaches the top wall, it turns
towards the side walls creating two vortices one on each side of
the enclosure. Streamlines for the case of u ¼ 0:1 copper nanoflu-
ids are shown in Fig. 3. At Ra ¼ 104 the flow field is symmetrical
and features four vortices in the top left, top right, bottom left
and bottom right corners. As the temperature difference between
the cylinder and the walls is small in this case, the flow field exhi-
bits top to bottom symmetry as well as left–right symmetry. As the
temperature difference is increased (middle and right panel of
Fig. 3) we observe a break-up of top–bottom symmetry. Hot fluid
close to the cylinder rises upwards and flows downwards along
the vertical wall. The velocity magnitude is highest close to the
cylinder.

Temperature contours for pure water and u ¼ 0:1 copper
nanofluids are shown in Fig. 4. We observe little difference
between water and nanofluid at the lowest Rayleigh number. In
this case most of the heat is transferred via conduction and flow
has a very small impact on temperature distribution. At higher
Rayleigh number values, the differences are more visible, espe-
cially at the top of the cylinder. There, in the case of pure water,
the contours are narrower than in the case of the nanofluid. This
indicates that the area, where heat transfer is small (at the top of
for different values of the Rayleigh number are compared with the results of [15].
rking fluid.

Ellipse, e ¼ 0:9

6 103 104 105 106

.020 5.079 5.288 8.760 14.595

.080 5.078 5.289 8.791 14.661

.275 5.075 5.283 8.844 15.077

.110

5.077 5.245 8.588
5.075 5.243 8.599



Fig. 4. Temperature contours in 2D simulation. Top panels show results of a pure
water simulation, bottom panels present u ¼ 0:1 copper nanofluid. Nine contour
levels are shown with values between 0.1 and 0.9 in steps of 0.1.
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the cylinder) is smaller in the case of water than in the case of
nanofluid.

Fig. 5 shows the average heat flux out of the circular cylinder
into the fluid expressed as the Nusselt number value. We compare
pure water and all three nanofluids and two nanoparticle concen-
trations. An increase of heat transfer with the Rayleigh number is
evident in all cases. Since the Rayleigh number measures the tem-
perature difference between the cylinder and surrounding walls,
this increase is expected. The increase in the heat flux is minimal
between Ra ¼ 103 and Ra ¼ 104. For these two cases, conduction
is the dominant heat transfer mechanism (circular temperature
contours in Fig. 4), thus increased buoyancy forces, which result
in increased flow around the cylinder, are negligible and do not
contribute to heat flux. As the temperature difference is increased
further, the heat flux increases.

Taking a look at the differences between water and nanofluids
we observe the following. Pure water has the lowest heat transfer
rate, u ¼ 0:1 nanofluids show an increase, while u ¼ 0:2 nanoflu-
ids exhibit the largest heat transfer. The largest heat transfer
enhancement is observed in the conduction dominated flow
ðRa ¼ 103;104Þ. In this flow regime the enhanced thermal proper-
ties of the nanofluid enable better heat transfer rate. As convection
becomes important ðRa � 105Þ most of the heat is transferred by
convection and thus the heat conductivity of the working fluid is
not very important. Although we still observe an increase in heat
transfer, it is relatively smaller than the increase in the conduction
dominated flow regime.
Fig. 5. Average heat flux out of the circular cylinder expressed as Nusselt number. Resu
Comparing the results of the 2D and 3D simulations, we observe
no major differences in heat transfer enhancement. The 3D simula-
tion consistently shows slightly smaller heat transfer rates. This
can be explained by looking at the 3D structure of the flow, which
shows that the flow in the direction along a cylinder (y) is weak
compared to the dominating vortex in the x� z plane. Isosurfaces
of y component of velocity, vy for u ¼ 0:1 Al2O3 nanofluid are
shown in Fig. 6. A break in symmetry is observed in the 3D struc-
ture of the flow field as Rayleigh number is increased. At low
Rayleigh number the flow is symmetrical above and below the
cylinder. This symmetry is lost when the Rayleigh number is
increased. At Ra ¼ 105 stronger motion in the direction along the
cylinder is observed above the cylinder. As a smaller portion of
heat is transferred from the top of the cylinder this 3D nature of
the flow has a small impact on the overall heat transfer.

Fig. 7 shows the local heat flux around the circumference of the
cylinder expressed at the local Nusselt number. Water and Al2O3

nanofluid are compared. At low Rayleigh number values
ðRa � 104Þ we observe that the heat flux is approximately constant
all around the cylinder. This is due to the fact that conduction is the
driving heat transfer mechanism and thus heat enters the fluid
equally in all directions. When convection becomes important
ðRa � 105Þ, upward flow around the cylinder is the main driving
force of heat transfer. At the top of the cylinder, at around
a ¼ 90�, there is an area where flow stagnates and we observe
the lowest heat transfer there. On the other side, at the bottom
of the cylinder, at around a ¼ 270�, the flow is fast and the temper-
ature boundary layer is thin. Thus, we observe the highest heat
transfer there. This situation is found in water and in nanofluids.
In conduction regime the increase in heat transfer by nanofluids
is mainly caused by the increased thermal properties of the nano-
fluid. In the convection regime, most of the heat is transferred by
convection and thus the thermal properties of the fluid play a less
important role and so we observe smaller heat transfer
enhancement.
5.2. Elliptical cylinder

In the case of the elliptical cylinder, we considered several
Rayleigh number values as well as different angles of inclination
versus gravity. The elliptical shape causes a change in flow regime
when tilted against gravity. To illustrate this point we choose TiO2

nanofluid and present temperature contours and streamlines in
Figs. 8 and 9. At Ra ¼ 104 the heat transfer is conduction domi-
nated and thus temperature contours keep the elliptical shape of
the cylinder. Streamlines reveal a symmetrical flow field, with a
lts of 2D simulations are shown in the left panel, 3D results are in the right panel.



Fig. 6. Isosurfaces of y component of velocity, vy , for u ¼ 0:1 Al2O3 nanofluid. A
major change is observed in the 3D structure of the flow field as Rayleigh number is
increased.

Fig. 8. Temperature contours of u ¼ 0:1 TiO2 nanofluid in 2D simulation with
elliptical cylinder for Ra ¼ 104 . . . 106. Top panels show results at c ¼ 15� , while
bottom panels present c ¼ 45� . Nine contour levels are shown with values between
0.1 and 0.9 in steps of 0.1. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 9. Streamlines u ¼ 0:1 TiO2 nanofluid in 2D simulation with elliptical cylinder
for Ra ¼ 104 . . . 106. Top panels show results at c ¼ 15� , while bottom panels
present c ¼ 45� . Colour denotes velocity magnitude.
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vortex on both sides of the cylinder. Vortex centres are located
approximately on a diagonal line going through the enclosure from
the top-left corner to the bottom-right corner.

When we look at the convection dominated cases (Ra ¼ 105 and
Ra ¼ 106) we observe that the symmetry is lost. Raising the tilt of
the enclosure causes movement of the line, which divides both
vortices. The location of this dividing line is important, as flow
stagnates there and causes that area of the cylinder to have the
lowest heat transfer. We observe that the line is located at the
point of the cylinder, which is highest (has the largest z coordi-
nate). Thus tilting the enclosure against gravity (raising c) moves
the low heat transfer zone away from the top of the cylinder
(a ¼ 90�) towards the side (a ¼ 0�).

This can be also observed when we look at the heat flux distri-
bution around the circumference of the cylinder in Fig. 10. On the
other hand, in the conduction regime Ra 6 104, the tilt against
gravity does not affect the heat flux.

The heat flux distribution around the cylinder features two
peaks at the sides of the enclosure. This is different than in the cir-
cular cylinder case, where the area with the highest heat transfer
was located at the bottom of the cylinder (Fig. 7). Tilting the enclo-
sure increases the heat transfer around most of the cylinder apart
from the area around a ¼ 0�, where the heat flux is decreased. The
highest heat transfer is found at bottom left side of the cylinder
(a ¼ 180�).

The heat transfer averages expressed as Nusselt number values
are given for zero tilt in Fig. 11 and for other tilts in Table 4. The
data reveal heat transfer enhancement when using nanofluids
instead of pure water. The enhancement is largest when conduction
Fig. 7. Heat flux around the circumference of the circular cylinder expressed as Nusselt
Al2O3 nanofluid in the centre panel and u ¼ 0:2 Al2O3 nanofluid in the right panel.
is the dominating heat transfer mechanism (Ra � 104), where we
observe about 	 30% increase in heat flux for u ¼ 0:1 nanofluids
and about 	 70% increase when using u ¼ 0:2 nanofluids. As
convection becomes important, enhancement is smaller, since fluid
number. Results of 2D simulations are shown. Pure water in the left panel, u ¼ 0:1



Fig. 10. Heat flux around the circumference of the ellipsoidal cylinder expressed as Nusselt number. Results of 2D simulations of u ¼ 0:1 Al2O3 nanofluid are shown for
Ra ¼ 104 (left), Ra ¼ 105 (left) and Ra ¼ 106 (right). Results for different angles c against gravity are presented.

Table 4
Average Nusselt number values for elliptical cylinder in 2D simulation.

c=Ra 103 104 105 106 103 104 105 106

u ¼ 0:1;Al2O3 nanofluid u ¼ 0:2;Al2O3 nanofluid
0 6.686 6.758 9.886 17.206 8.674 8.697 10.742 19.302
15 6.686 6.763 9.935 17.494 8.674 8.699 10.750 19.555
30 6.686 6.777 10.068 18.158 8.674 8.705 10.797 20.183
45 6.686 6.799 10.331 18.434 8.674 8.713 10.991 20.607

u ¼ 0:1;Cu nanofluid u ¼ 0:2;Cu nanofluid
0 6.761 6.843 10.143 17.569 8.862 8.893 11.310 20.214
15 6.761 6.848 10.197 17.872 8.863 8.896 11.331 20.483
30 6.761 6.864 10.344 18.466 8.863 8.903 11.391 21.152
45 6.761 6.888 10.618 18.932 8.863 8.913 11.604 21.599

u ¼ 0:1;TiO2 nanofluid u ¼ 0:2;TiO2 nanofluid
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properties play a less important role in determining heat flux. For
Ra ¼ 106 we observe about 	 14% increase in heat flux for
u ¼ 0:1 nanofluids and about 	 30% increase when using u ¼ 0:2
nanofluids.

Comparing the heat transfer averages for the circular and ellip-
tic cylinders (Figs. 5 and 11) we observe that the results are similar,
with the elliptical case exhibiting slightly larger heat transfer. In
order to understand this, we consider a simplified problem of heat
conduction through an insulation around a heated electrical wire.
Let the wire and the outer surface of the insulation material be
at constant temperatures. Heat is conducted through insulation.
Since this case is geometrically simple (a cylinder within a cylin-
der) an analytical solution exists for temperature
0 6.436 6.511 9.613 16.692 8.062 8.087 10.166 18.233
15 6.437 6.516 9.663 16.976 8.062 8.089 10.180 18.476
30 6.437 6.531 9.799 17.632 8.062 8.095 10.227 19.069
45 6.437 6.553 10.058 17.895 8.062 8.103 10.417 19.431
TðrÞ ¼ T1 þ
T2 � T1

ln r2
r1

ln
r
r1
;

dTðrÞ
dr
¼ T2 � T1

r ln r2
r1

;

Pure water, Pr ¼ 6:2
0 5.078 5.293 8.936 14.911
15 5.079 5.300 9.017 15.248
30 5.079 5.325 9.230 15.949
45 5.080 5.371 9.486 16.396
where r is the distance measured from the centre of the wire, r1 is
the radius of the wire and r2 is the radius of the insulation.
Calculating the temperature derivative at the wire gives
dTðr1Þ

dr ¼
T2�T1

r1 ln
r2
r1

Using L as the characteristic length, the derivative

may be written in nondimensional form as Nu ¼ L
r1 ln

r2
r1

. Since in our

circular case we have r1 ¼ 0:2L and r2 	 0:5L we can calculate
Nu ¼ 5:45. For the elliptic case, we approximate the ellipse with
an equal area circle, we get r1 ¼ 0:15L and Nu ¼ 5:53. Thus, this
Fig. 11. Average heat flux out of the elliptical cylinder expressed as Nusselt number for c
panel.
approximate analytical analysis yields a slight increase in Nu in
the case of the elliptical cylinder, confirming our results.

Fig. 12 shows a comparison of heat flux expressed as the local
Nusselt number value from the circular and elliptical cylinders.
¼ 0. Results of 2D simulations are shown in the left panel, 3D results are in the right



Fig. 12. Contours of heat flux around the circumference of cylinders expressed as Nusselt number for u ¼ 0:1 Cu nanofluid. Results of 3D simulations are shown for Ra ¼ 104

(top), Ra ¼ 105 (bottom).
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We observe that in the circular cylinder case, the highest heat flux
is located at the bottom of the cylinder, while in the elliptical case,
the highest heat flux comes from the side of the cylinder.
Considering the changes in heat flux along the y axis, we observe
that in the central part of the cylinder the flow is predominantly
two-dimensional, since changes in heat flux along the y axis are
found only close to the enclosure walls.
6. Summary

The paper presents a boundary element based numerical
method for simulation of flow and heat transfer of nanofluids.
The Navier–Stokes equations are used in velocity–vorticity form.
Special consideration was given to the algorithm for determining
the boundary vorticity values at an arbitrary 3D boundary surface,
which is based on the boundary-domain integral kinematics
equation.

The developed method has been used to study nanofluid heat
transfer enhancement for the case of a cylinder in an enclosure.
Circular and elliptical cylinders were considered for various
Rayleigh number values and inclinations against gravity.

The main conclusions of the analysis are: (1) Use of nanofluid
enhances heat transfer the most in the case, where the majority
of the heat is transferred by conduction. In cases, where convection
is the dominant heat transfer mechanism, the heat transfer
enhancement due to the use of a nanofluid is lower. (2)
Comparing the circular and elliptic cylinders we observe similar
heat transfer characteristics with the elliptical case yielding
slightly better heat transfer rates. (3) Tilting the elliptical cylinder
against gravity increases the heat transfer rate and changes the
flow structure. The increase is small in flows, where conduction
dominates, while it is larger in convection dominated flows.
Furthermore it changes the locations on the cylinder, where lowest
heat transfer is observed. (4) Comparison of 2D and 3D simulations
shows, that 3D simulations yield slightly lower heat transfer rates.
The difference is very small for conduction dominated flows, while
in convection dominated flows it is larger. As the differences are
small, 2D simulations may be used to analyse such problems.
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