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a b s t r a c t

In this paper a boundary-domain integral diffusion–convection equation has been developed for

problems of spatially variable velocity field and spatially variable coefficient. The developed equation

does not require a calculation of the gradient of the unknown field function, which gives it an

advantage over the other known approaches, where the gradient of the unknown field function is

needed and needs to be calculated by means of numerical differentiation. The proposed equation has

been discretized by two approaches—a standard boundary element method, which features fully

populated system matrix and matrices of integrals and a domain decomposition approach, which yields

sparse matrices. Both approaches have been tested on several numerical examples, proving the validity

of the proposed integral equation and showing good grid convergence properties. Comparison of both

approaches shows similar solution accuracy. Due to nature of sparse matrices, CPU time and storage

requirements of the domain decomposition are smaller than those of the standard BEM approach.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Many natural phenomena are governed by the diffusion and
convection transport processes. Heat transfer, mass transfer and
flow of fluids are some of the examples. In nature and for most
engineering purposes, the transport phenomena occur in envir-
onments, where the velocity of the fluid changes within the
domain in question. In some cases, for example, in turbulence
modelling with turbulent viscosity hypothesis, the coefficient also
changes within the domain.

Solution of the diffusion–convection partial differential equa-
tion is a challenging task. Many numerical algorithms have been
proposed. In terms of the boundary element method by using the
diffusion–convection fundamental solution, the problem can
(at least for constant velocity field and constant coefficient) be
described by pure boundary integral equations. This approach
has been extensively studied in the past, where methods of
solution have been proposed handling the problem up to very
high Péclet numbers (Škerget et al. [22], Qiu et al. [16], Wrobel
and DeFigueiredo [25], Žagar et al. [23]).

To solve the problem of variable velocity, a decomposition of the
velocity field into a constant and variable part has been proposed. The
decomposition leads to a domain integral involving the variable part
of the velocity field and the unknown field function. DeSilva [4] used
this approach to solve the transient conduction convection in 2-D.
ll rights reserved.
These approaches are now well known and described in textbooks of
Wrobel [24] and Divo and Kassab [5].

More recently, several authors solved the diffusion–convection
equations with variable coefficients (Rap et al. [17], Škerget and
Ravnik [21]). Decomposition to constant and variable part has
been used here as well. It leads to a domain integral involving
variable part of the coefficient and the gradient of the unknown
field function. Since a gradient of the unknown function is
needed, it must be calculated by means of numerical differentia-
tion from a solution of a previous nonlinear iteration step. Having
the gradient of the unknown function on the right hand side
strengthens the non-linear properties of the problem and requires
more nonlinear iterations to reach the solution.

In this work, we present an alternative approach, where the
gradient of the coefficient is needed and gradient of the field
function is not needed. Thus, the final integral equation (Eq. (21))
includes only the unknown function on the boundary and in the
domain and its flux on the boundary. The proposed equation is
linear and after discretization requires only a single solution of a
system of linear equations to obtain the solution.

The derivation employed is similar to the solution of the
diffusion and Helmholtz equations in non-homogenous media,
as presented in [10,11,3,2,1,26].
2. Governing equation

Let us consider a domain O in R3 with a boundary G.
The domain is filled with a fluid. Let r

!
be a vector pointing to
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a point in the domain and let v
!

be the fluid velocity. A field
function, u, which is subjected to convective and diffusive
processes in the domain, is governed by the following PDE:

v
!
ð r
!
Þ � r
!

u¼ r
!
� ðað r
!
Þr
!

uÞ, r
!AO, ð1Þ

with the following Dirichlet and/or Neumann type boundary
conditions

uð r
!
Þ¼ uð r

!
Þ, r
!AGD,

n
!
� r
!

uð r
!
Þ¼ qð r

!
Þ¼ qð r

!
Þ, r
!AGN , ð2Þ

where GD and GN are the Dirichlet and Neumman parts of the
boundary with G¼GD [ GN .

The fluid is considered incompressible, thus r
!
� v
!
¼ 0.

The fluid velocity varies in space. The coefficient, a, in the domain
is isotropic and non-homogenous, thus að r

!
Þ (the thermal conduc-

tivity in the case of heat transfer or the diffusivity in the case of
mass transfer or turbulent viscosity in case of turbulence modelling)
is a function of the location.
3. Integral representation

Let us consider a source point x
!

where the coefficient has a
value of að x

!
Þ¼ a0. Furthermore, let v

!
0 be the constant part of the

velocity. It can be the average velocity in the domain or the velocity
at the source point. Taking these values of the coefficient and
velocity, we can find the fundamental solution of diffusion–convec-
tion equation by keeping the coefficient and velocity constant, i.e.
að r
!
Þ¼ að x

!
Þ¼ a0 and v

!
ð r
!
Þ¼ v
!

0, yielding (Driessen [6])

a0r
2u%þ v

!
0 � r
!

u% ¼�dð r
!

, x
!
Þ, ð3Þ

with

u%ð r
!

, x
!
Þ¼

1

4p9 r
!
� x
!

9a0

exp
v
!

0 � ð r
!
� x
!
Þ�v09 r

!
� x
!

9
2a0

0
@

1
A, ð4Þ

where v0 ¼ 9 v
!

09. The gradient of the fundamental solution is

r
!

u%ð r
!

, x
!
Þ¼

1

9 r
!
� x
!

9
þ

v0

2a0

0
@

1
A r
!
� x
!

9 r
!
� x
!

9
�

v
!

0

2a0

0
@

1
Au%ð r

!
, x
!
Þ: ð5Þ

In this work, we derive and test the boundary-domain diffusion–
convection integral equation in 3D. However, all results are valid in
2D cases as well, provided that the appropriate 2D fundamental
solution is used.

The variable coefficient and the velocity field are decomposed
into constant and variable parts as follows:

að r
!
Þ¼ a0þa0, v

!
ð r
!
Þ¼ v
!

0þ v
!0

, ð6Þ

where a0 and v
!0

are the variable parts. Using this decomposition,
we may rewrite Eq. (1) as

a0r
2u¼ v

!
0 � r
!

u�r
!
� ða0r
!

uÞþ v
!0
� r
!

u: ð7Þ

Considering for a moment the second and third terms on the right
hand side of Eq. (7) as source terms, the standard BEM derivation
(Wrobel [24]) yields the following integral representation for a
source point x

!
AG located at the boundary:

cð x
!
Þuð x
!
Þþ

Z
G
a0ur
!

u% � dG
!
¼

Z
G

u%a0r
!

u � dG
!
�

Z
G

u%u v
!

0 � dG
!

þ

Z
O

u%r
!
� ða0r
!

uÞ dO|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
due to variable coef :

�

Z
O

u% v
!0
� r
!

u dO|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
due to var: velocity

, ð8Þ
where cð x
!
Þ is the free coefficient given by the solid surface angle

at x
!

. The two domain integrals in Eq. (8) are due to the source
terms of Eq. (7) and include the variable parts of the coefficient a0
and the variable part of velocity v

!0
. In their kernels they both

include gradient of the solution, r
!

u. Such a formulation can be
used (Škerget and Ravnik [21]), however, the fact that the
gradient of the solution is needed to construct the source terms,
means that numerical differentiation must be employed. Further-
more, an iterative scheme must be employed, where the
solution of (8) and the numerical calculation of r

!
u are alterna-

tively calculated until convergence is achieved.
In the following, we are presenting a derivation using algebraic

relations and integral clauses to avoid the calculation of the
gradient of the solution that leads to a novel integral formulation.
Let us first focus on the domain integral of Eq. (8), which is due to
variable coefficient. We use the following algebraic relation to
transform the integral kernel:

r
!
� ðu%a0r

!
uÞ ¼ u%r

!
� ða0r
!

uÞþa0r
!

u � r
!

u%: ð9Þ

Furthermore, we make use of the rule chain derivation, which
states that

r
!
ða0uÞ ¼ a0r

!
uþur
!
a0: ð10Þ

Using (9) and (10), the kernel can be rewritten as

u%r
!
� ða0r
!

uÞ ¼ r
!
� ðu%a0r

!
uÞþur

!
a0 � r
!

u%�r
!
ða0uÞ � r

!
u%: ð11Þ

The last expression of Eq. (11) can be rewritten using

r
!
� ða0ur

!
u%Þ ¼ r

!
ða0uÞ � r

!
u%þa0ur2u%: ð12Þ

Using (12) in Eq. (11) we obtain the final version for the integral
kernel

u%r
!
� ða0r
!

uÞ ¼ r
!
� ðu%a0r

!
uÞþur

!
a0 � r
!

u%�r
!
� ða0ur

!
u%Þþa0ur2u%:

ð13Þ

The domain integral on the right hand side of Eq. (8) can thus be
written asZ
O

u%r
!
� ða0r
!

uÞ dO¼
Z
O
r
!
� ðu%a0r

!
uÞ dOþ

Z
O

ur
!
a0 � r
!

u% dO

�

Z
O
r
!
� ða0ur

!
u%Þ dOþ

Z
O
a0ur2u% dO: ð14Þ

The two integrals that feature a divergence of the kernel can be
written as boundary integrals using Gauss clause, yieldingZ
O

u%r
!
� ða0r
!

uÞ dO¼
Z
G

u%a0r
!

u � dG
!
þ

Z
O

ur
!
a0 � r
!

u% dO

�

Z
G
a0ur
!

u% � dG
!
þ

Z
O
a0ur2u% dO: ð15Þ

The kernel of the last domain integral in Eq. (15) includes a
Laplacian of the fundamental solution. This can be rewritten by
using the definition in Eq. (3) as

Z
O
a0ur2u% dO¼�

1

a0

Z
O
a0udð r

!
, x
!
Þ dO�

1

a0

Z
O
a0u v
!

0 � r
!

u% dO: ð16Þ

At his point we choose the constant part of the coefficient to be
a0 ¼ að x

!
Þ. Thus a0 is equal to zero at the source point, and since

the Kronecker delta is zero everywhere else, the first integral on
the right hand side of Eq. (16) vanishes. Using this, Eq. (15)
simplifies to

Z
O

u%r
!
� ða0r
!

uÞ dO¼
Z
G

u%a0r
!

u � dG
!
�

Z
G
a0ur
!

u% � dG
!

þ

Z
O

u r
!
a0� a0

a0
v
!

0

� �
� r
!

u% dO: ð17Þ
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Noticing that r
!
a¼ r
!
a0, a0=a0 ¼ a=a0�1, using (6) and (17) we

rewrite Eq. (8) as

cð x
!
Þuð x
!
Þþ

Z
G
aur
!

u% � dG
!
¼

Z
G

u%ar
!

u � dG
!
�

Z
G

u%u v
!

0 � dG
!

þ

Z
O

u r
!
aþ v
!

0�
a
a0

v
!

0

� �
� r
!

u% dO�
Z
O

u% v
!0
� r
!

u dO:

ð18Þ

Next, we turn our attention to the last domain integral of Eq. (18).
This integral is needed because of the spatially varying velocity
field and it still features the gradient of the function u, which we
want to avoid. We start by transforming the kernel using the
definition of divergence:

r
!
� ðu%u v

!0
Þ ¼ u%ur

!
� v
!0
þ v
!0
� r
!
ðu%uÞ ¼ v

!0
� r
!
ðu%uÞ

¼ u% v
!0
� r
!

uþu v
!0
� r
!

u%, ð19Þ

where we have taken into account that the velocity field is
solenoidal, i.e. r

!
� v
!0
¼ 0. Using (19), the last domain integral of

Eq. (18) can be transformed asZ
O

u% v
!0
� r
!

u dO¼
Z
O
r
!
� ðu%u v

!0
Þ dO�

Z
O

u v
!0
� r
!

u% dO¼

¼

Z
G

u%u v
!0
� dG
!
�

Z
O

u v
!0
� r
!

u% dO, ð20Þ

where the Gauss clause has been used to transform the domain
integral into a boundary integral. Finally, using (20) in (18) we are
able to write the following integral equation:

cð x
!
Þuð x
!
Þþ

Z
G
aur
!

u% � dG
!
¼

Z
G

u%ar
!

u � dG
!
�

Z
G

u%u v
!
� dG
!

þ

Z
O

u r
!
aþ v
!
�
a
a0

v
!

0

� �
� r
!

u% dO: ð21Þ

Here a is the coefficient and v
!

is the fluid velocity, which both
vary in space. a0 and v

!
0 are the constant parts, which are used to

calculate the fundamental solution and its gradient. a0 is the
coefficient at the location of the source point. The constant part of
the velocity can be chosen arbitrarily, for example, it can be the
average of the velocity field in the domain or the velocity at the
source point. The equation is valid for incompressible flows.

For completeness, Eq. (21) written in Cartesian tensor notation
is

cð x
!
Þuð x
!
Þþ

Z
G
au

@u%

@xj
nj dG¼

Z
G

u%aqdG�
Z
G

u%uvjnj dG

þ

Z
O

u
@a
@xj
þvj�

a
a0

v0,j

� �
@u%

@xj
dO, ð22Þ

where the flux is defined by q¼ n
!
� r
!

u¼ nj@u=@xj.
Fig. 1. The 1�1�1 mesh. The figure on the right shows the location of 27 nodes

for the interpolation of the function, while the figure on the left shows the 6�4

nodes for interpolation of flux across the six boundary elements.
4. Discretization

Eq. (21) includes boundary as well as domain integrals. In the
literature, many approaches have been proposed to handle the
domain integral. One option is to make a mesh inside of the
domain and calculate the domain integral. This requires a high
computational effort and large storage requirements, since the
number of integrals that need to be calculated and stored scales
with a square of the number of nodes in the domain. The
calculation of the domain integral can be avoided by approximate
techniques. These use approximations to transform the domain
integral onto the boundary, such as Dual reciprocity method
(Partridge [13]) and Radial integration method (Yang and Gao
[26], Fata [7]). Another option is to approximate the resulting
matrix of domain integrals with techniques based on kernel
expansion. (Fast multipole method (Popov et al. [15]), panel
clustering method (Hackbusch and Nowak [8]) as well as alge-
braic approximation techniques such as wavelet compression
(Ravnik et al. [18,20]) or adaptive cross-approximation (Maerten
[9]).) Finally, domain decomposition of the domain and calcula-
tion of domain integrals also reduces the cost and storage
requirements significantly, since the resulting matrix of domain
integrals is sparse (Popov et al. [14]).

Although all of the mentioned techniques can be applied to
handle the domain integral of Eq. (21), we choose only two: first,
we calculate the domain integral in full by making a domain mesh
and storing the fully populated matrix of domain integrals and
secondly, we employ the domain decomposition approach. We
chose the first because it does not rely on any approximation and
can serve as a benchmark of other approximate approaches. We
designate the first approach as BDIE and the second as SDBDIE.
Both are explained in detail in the following subsections.
4.1. Standard approach—BDIE

In order to obtain a discrete version of (21) we use shape
functions to interpolate field functions and flux across the
boundary elements and inside of each domain element. In this
work we use hexahedral mesh elements with 27 nodes to
discretize the volume elements, which enable continuous quad-
ratic interpolation of field functions. The boundary elements are
the sides of these hexahedrons. Nine nodes on each boundary
element enable continuous quadratic interpolation. On each
boundary element we interpolate the flux using discontinuous
linear interpolation scheme with 4 nodes. The elements are
shown in Fig. 1. By using discontinuous interpolation we avoid
flux definition problems in corners and edges. Details of the
interpolation scheme are given in Ravnik et al. [19]. A function,
u, is interpolated over a boundary elements as u¼

P
jiui, inside

each domain element as u¼
P

Fiui, while flux is interpolated
over boundary elements as q¼

P
fiqi. According to (21) the

following integrals must be calculated:

½H� ¼

Z
G
jir
!

u% � n
!

dG, ½G� ¼

Z
G
fiu

% dG, ð23Þ

½ A
!
�¼

Z
G
ji n
!

u% dG, ½D
!
�¼

Z
O
Fir
!

u% dO: ð24Þ

The square brackets denote integral matrices. In order to calculate
the integrals, a Gaussian quadrature algorithm is used. The
integrals are calculated in local coordinate system via weighted
summation of 8 integration points per coordinate axis. Eight
integration points were found sufficient by Ravnik et al. [19]. A
polar coordinate system transformation is used to handle weakly
singular integrals. Calculation of the free coefficient cð x

!
Þ is
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performed indirectly via the solution of the rigid body movement
problem.

Each source point location yields one row in these matrices.
The source point is set in accordance with boundary conditions.
For each boundary element, the source point is set into all nine
function nodes in case of Neumann boundary conditions and into
all four flux nodes in case of Dirichlet boundary conditions.
Furthermore, since domain values of the function u are also
unknown, the source point has to be set into all domain nodes
as well. Discrete version of Eq. (21) is thus

½H�faug ¼ ½G�faqg�½ A
!
� � f v
!

ugþ½D
!
� � u r

!
aþ v
!
�
a
a0

v
!

0

� �� �
, ð25Þ

where q¼ n
!
� r
!

u and curly brackets denote vectors of nodal
values. All matrices are fully populated. The number of rows in
matrices is equal to the number of all source points, i.e. the
number of function nodes plus the number of flux nodes in the
whole domain nþnq. The number of columns in boundary
matrices is equal to the number of boundary function nodes Nu

or the number of boundary flux nodes Nq. The number of columns
of the domain matrices is n. Thus, the total memory requirements
are ðnþnqÞð4NuþNqþ3nÞ.

After application of boundary conditions, the resulting system
of linear equations is solved by LU decomposition. The problem is
linear, thus solution of (25) yields the u and q without the need of
an iterative procedure. In contrast to the previous integral
formulation of such problems, which featured the gradient of u

in the domain integral, an iterative procedure was needed,
alternatively calculating the solution and the gradient of u until
convergence was achieved.

In order to calculate the fundamental solution and its gradient,
the constant parts of the coefficient a0 and velocity v

!
0 must be

chosen. In BDIE we used values at the source point location, i.e.
a0 ¼ að x

!
Þ and v

!
0 ¼ v
!
ð x
!
Þ.
4.2. Domain decomposition approach—SDBDIE

In this approach we keep the domain mesh and consider each
mesh element as a subdomain. Within each subdomain standard
approach (BDIE) is used. Between neighbouring subdomains,
which share some of the nodes, compatibility conditions are
prescribed, i.e. the function value at the node, which is shared
by several subdomains, is equal for all subdomains. For two
subdomains, which share a face, the flux through this face has
the same value but opposite sign. Compatibility conditions
lead to an over-determined system of equations, since the
number of unknowns is smaller than the number of equations.
The over-determined system is solved in a least squares manner,
using the Paige and Saunders [12] LSQR solver with diagonal
preconditioning.

The source point is set into all function and flux nodes, thus
the total number of rows is equal to the number of subdomains
(mesh elements) times 51 (¼27þ24). The number of columns is
26 for ½H� and ½ A

!
� matrices, since there are 26 function nodes on

the surface of each subdomain. The matrix ½G� has 24 columns,
since there are 24 flux nodes on the surface of each subdomain.
Matrices ½D

!
� have 27 columns since there are 27 nodes in each

subdomain. Further details of the SDBDIE including the properties
of the over-determined system are given in Ravnik et al. [19].

Now, we estimate the storage requirements of BDIE and
SDBDIE. Consider a cube, meshed by x3 mesh elements. In the
case of BDIE, the number of elements of domain matrices scales
approximately with the square of the number of function nodes in
the mesh, that is with ð2xþ1Þ6. In the case of SDBDIE, the number
of elements is equal to 51 � x3 � 27. This makes the ratio of storage
requirements equal to

SDBDIE

BDIE
�

51 � x3 � 27

ð2xþ1Þ6
�

21

x3
: ð26Þ

For x¼8 the SDBDIE storage requirements are only 4% of BDIE,
while at x¼16 this is already at 0.5%.

In order to calculate the fundamental solution and its gradient,
we used coefficient value at the source point location, i.e.
a0 ¼ að x

!
Þ. Constant part of velocity, v

!
0, was estimated by

calculating the average velocity in the subdomain.
5. Numerical examples

In order to prove the validity of the integral formulation
proposed in Eq. (21) and to compare BDIE and SDBDIE, we
performed several numerical examples.

5.1. Setup

Table 1 lists 14 examples. Case number, coefficient, velocity
and the analytical solution are presented. 1D, 2D and 3D cases are
considered having different coefficients, velocities and analytical
solutions.

Dirichlet boundary conditions were prescribed on all walls in
3D cases. In 2D cases, Neumann zero flux boundary condition was
used in the direction perpendicular to the solution plane in order
to simulate a 2D problem in a 3D solution domain. In the same
way, in 1D cases, four walls had Neumann zero flux boundary
conditions, which enable simulation of a 1D problem in a 3D
domain.

The domain was a unit cube located at ½ð1,1,1Þ � ð2,2,2Þ�. The
cube was meshed with 1, 23, 43, 83, 163 and 323 domain elements
having 33, 53, 93, 173, 333, 653 nodes. All elements were identical
cubes, no concentration in areas of high gradients was used. In
BDIE only meshes up to 83 elements were used, since memory
storage requirements for 163 and 323 meshes were too large.

In order to estimate the simulation error, the root mean square
norm was used. It is based on the difference between the
simulation result u and the analytical solution ua as

Ju�uaJRMS ¼

Pn
i ¼ 1ðui�ua,iÞ

2Pn
i ¼ 1 u2

a,i

 !1=2

, ð27Þ

where i denotes a nodal value and n is the number of all nodes in
the domain.

5.2. Results

The results are presented in terms of RMS error versus number
of nodes in the mesh. Figs. 2–6 display the appropriate graphs.
The 1D test cases are shown in Fig. 2. The simulation was
performed at Péclet number Pe¼10. Both methods show good
convergence properties for all three test cases. Since the first
mesh has only one element and only one internal node, the RMS
calculation is biased by the analytically prescribed boundary
conditions, and the resulting RMS difference seems very accurate.

Test 2 was solved for different Péclet number values. Fig. 3
displays the simulation error for Pe¼1, Pe¼2 and Pe¼10. In all
cases for both methods we see an increase of solution accuracy
when increasing the mesh density. The accuracy decreases when
increasing the Péclet number. This was expected, since higher
Péclet number means higher velocity and higher gradients within
the solution. Since our meshes were not concentrated in regions
where high gradients are expected, it is reasonable, that the
solution accuracy decreases when increasing the Péclet number.
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Fig. 2. RMS norms versus number of nodes for 1D test cases simulated with Péclet number of Pe¼10. BDIE (left), SDBDIE (right).
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Fig. 3. Test 2 solved for three values of Péclet number. BDIE (left), SDBDIE (right).

Table 1
Numerical examples solved by BDIE and SDBDIE in order to prove the validity of the integral formulation (21) and compare the

methods. 3D cubical domain located at ½ð1,1,1Þ � ð2,2,2Þ� is used in all cases. Dirichlet boundary conditions are employed. Péclet

number for test 1,2 and 3 was set to Pe¼1, Pe¼2 and Pe¼10.

Case Coefficient að r
!
Þ Velocity v

!
ð r
!
Þ Solution uað r

!
Þ

1D cases

1 x ðPe,0,0Þ 1�xPe

2 x2
ðPe,0,0Þ exp � Pe

x

� �
3 sinðxÞ ðPe,0,0Þ

tan
x

2

	 
Pe

2D cases

4 xþy ð1,1,0Þ xy

5
ffiffiffiffiffiffiffiffiffiffi
xþy
p

ð2
ffiffiffiffiffiffiffiffiffiffi
xþy
p

�xþyÞ ð1,1,0Þ
ffiffiffiffiffiffiffiffiffiffi
xþy
p

6 x2þy2

xþy

ð1,1,0Þ ðxþyÞ2

7 2x3þ6xy2þ3ð�xþyÞ

3ðxþyÞ2
ð1,1,0Þ ðxþyÞ3

3D cases

8 xþyþz ð1,1,1Þ xyz

9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþyþz
p

ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþyþz
p

�xþyÞ ð1,1,1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþyþz
p

10 �3x2þ6xyþ6xzþ2ðz�xÞ

2ðxþyþzÞ

ð1,1,1Þ ðxþyþzÞ2

11 1
3 ðxþyþzÞ ð1,1,1Þ ðxþyþzÞ3

12 xð5þx�2yþzÞ ðx,5�2y,zÞ xþyþz

13 �5x2�x3þ10xyþ4x2y�4xy2þ10xzþx2z�2xyzþ2xz2

2ðxþyþzÞ

ðx,5�2y,zÞ ðxþyþzÞ2

14 1
9 ð5þx�2yþzÞðxþyþzÞ ðx,5�2y,zÞ ðxþyþzÞ3
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Fig. 4. RMS norms versus number of nodes for 2D test cases. BDIE (left), SDBDIE (right).
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Fig. 5. RMS norms versus number of nodes for 3D test cases with constant velocity field. BDIE (left), SDBDIE (right).
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Fig. 6. RMS norms versus number of nodes for 3D test cases with spatially varying velocity field. BDIE (left), SDBDIE (right).
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Fig. 4 displays results of the 2D test cases. We observe good
convergence for both methods. The SDBDIE reaches 10�6 accuracy
at 163 mesh. No improvement of solution is observed at 323

mesh. The reason for this is the fact, that the solver precision and
the precision of calculation of integrals is reached, and thus
increase of mesh density does not improve the solution.

Solution accuracy of 3D test cases with constant velocity field
are shown in Fig. 5. High order of accuracy is reached by both
methods. The most accurate results are obtained with test 9,
while tests 8, 10 and 11 have lower accuracy. This is due to the
fact that the solution of test 9 is simpler, while the solutions of
other tests include higher order terms, which can not be accu-
rately described by our interpolation scheme.

Finally, Fig. 6 presents the accuracy of 3D test cases
with variable velocity field. Similar conclusions can be drawn
as for other cases. Good convergence is observed, all cases are
solved with RMS norm o10�6, when sufficient number of nodes
are used.
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Fig. 7. Computer memory required by both approaches.
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Fig. 8. CPU time for solution of individual tests solved by BDIE. Time for

integration of integrals is not included. Single refers to solution proposed in

present work, iterative refers to iterative solution, which was required by the

previous formulation of the integral equation. The meshes of 43 and 83 elements

are considered.

J. Ravnik, L. Škerget / Engineering Analysis with Boundary Elements 37 (2013) 683–690 689
Since the sizes in our meshes decrease by a factor of 2, we
were able to use the Richardson extrapolation to estimate the
order of our methods. The order of methods is calculated as the
log of the RMS norm at 4� 4� 4 mesh over the RMS norm at
8� 8� 8 mesh divided by the log of 2, i.e.

O¼ 1

log 2
log

Ju�uaJRMS,4�4�4

Ju�uaJRMS,8�8�8

� �
: ð28Þ

Calculating the average value for all test cases, we obtain O¼ 2:7
for BDIE and O¼ 2:4 for SDBDIE, establishing more than second
order accuracy for the proposed methods.
Fig. 7 displays computer memory requirements for BDIE and
SDBDIE. In terms of computer memory requirements, SDBDIE
uses only a fraction of the memory required by the BDIE. This is
due to the sparse versus full integral matrix and has been
foreseen by Eq. (26).

The integral equation (21) enables the solution of the proposed
problems in a single iteration. Previous formulations featured a
gradient of the function in the domain integral and thus required
the domain integral to be put on the right hand side of the system
of equations. In this case an iterative procedure must be set up in
which the function and its gradient are alternatively calculated
until convergence is achieved. For CPU time comparison, we also
set up the solution of (21) in an iterative way, with the domain
integral on the right hand side of the system. No under-relaxation
was needed to get converged solutions of our tests. In terms of
accuracy, the single iteration and iterative approaches produce
identical results. In Fig. 8 we compare the CPU time needed for
the solution of individual tests by BDIE. The single iteration
solution based on (21) is compared with the iterative solution,
in which the domain integral is on the right hand side. The
iterative solution needed on average 14 iterations to converge.
Fig. 8 shows that the newly proposed integral formulation (21)
enables almost an order of magnitude faster computation as
compared to the iterative approach, which is required by the
old formulation. This is a direct result of the fact that the iterative
approach needs on average 14 solutions of a system of linear
equations, while the integral equation (21) can be solved by only
a single solution of a system of linear equations.
6. Summary

In this work we derived a boundary-domain integral diffu-
sion–convection equation with variable coefficient and variable
velocity field. The equation does not include the gradient of the
unknown function, which is the main advantage of the present
formulation against the formulations developed by other authors.
The formulation enables the solution of the diffusion–convection
equation with variable coefficient and variable velocity field by a
single solution of a system of linear equations.

Two discretization approaches have been developed to prove
the validity of the formulation. The standard approach, in which
integrals are calculated and their values stored in fully populated
matrices, and a sub-domain approach, where a domain decom-
position technique is used, which yields sparse matrices of
integrals. Using numerical tests, both approaches were found to
yield similar accuracy. The memory requirements were smaller in
the case of the domain decomposition.
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[19] Ravnik J, Škerget L, Žunič Z. Combined single domain and subdomain BEM for
3D laminar viscous flow. Eng Anal Boundary Elem 2009;33:420–4.
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