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a b s t r a c t

In this paper we analyse flow and heat transfer characteristics of nanofluids in natural convection flows

in closed cavities. We consider two test cases: natural convection in a three-dimensional differentially

heated cavity, and flow around a hotstrip located in two positions within a cavity. Simulations were

performed for Rayleigh number values ranging from 103 to 106. Performance of three types of water

based nanofluids was compared with pure water and air. Stable suspensions of Cu, Al2O3 and TiO2 solid

nanoparticles in water were considered for different volume fractions ranging up to 20%. We present

and compare heat flux for all cases and analyse heat transfer enhancement attributed to nanofluids in

terms of their enhanced thermal properties and changed flow characteristics. Results show that, using

nanofluids, the largest heat transfer enhancements can be achieved in conduction dominated flows as

well as that nanofluids increase the three-dimensional character of the flow field. We additionally

examine the relationship between vorticity, vorticity flux and heat transfer for flow of nanofluids.

The simulations were performed using a three-dimensional boundary element method based flow

solver, which has been adapted for the simulation of nanofluids. The numerical algorithm is based on

the combination of single domain and subdomain boundary element method, which are used to solve

the velocity–vorticity formulation of Navier–Stokes equations. In the paper we present the adaptation

of the solver for simulation of nanofluids. Additionally, we developed a dynamic solver accuracy

algorithm, which was used to speed up the simulations.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

With the advancement of engineering technology there comes
an increasing demand for cooling. Efficient cooling is one of the
most important challenges. Low thermal conductivity of working
fluids such as water, oil or ethylene glycol led to the introduction
of nanofluids, which represent a novel approach to cooling.
Nanofluid is a suspension consisting of uniformly dispersed and
suspended nanometre-sized (10–50 nm) particles in base fluid,
pioneered by Choi [6]. Nanofluids have very high thermal
conductivities at very low nanoparticle concentrations and
exhibit considerable enhancement of convection [35]. Intensive
research in the field of nanofluids started only a decade ago. A
wide variety of experimental and theoretical investigations have
been performed, as well as several nanofluid preparation
techniques have been proposed [33].

Buoyancy induced flow and heat transfer is an important
phenomenon used in various engineering systems. Several
researchers have been focusing on buoyant flow of nanofluids.
Oztop and Abu-Nada [20] performed a two-dimensional study of

natural convection of various nanofluids in partially heated
rectangular cavities, reporting that the type of nanofluid is a key
factor for heat transfer enhancement. They obtained best results
with Cu nanoparticles. The same researchers [2] examined the
effects of inclination angle on natural convection in enclosures
filled with Cu–water nanofluid. They reported that the effect of
nanofluid on heat enhancement is more pronounced at low
Rayleigh numbers. Hwang et al. [13] studied natural convection of
a water based Al2O3 nanofluid in a rectangular cavity heated from
below. They investigated convective instability of the flow and
heat transfer and reported that the natural convection of a
nanofluid becomes more stable when the volume fraction of
nanoparticles increases. Ho et al. [12] studied effects on nanofluid
heat transfer due to uncertainties of viscosity and thermal
conductivity in a buoyant enclosure. They demonstrated that
usage of different models for viscosity and thermal conductivity
does indeed have a significant impact on heat transfer. Natural
convection of nanofluids in an inclined differentially heated
square enclosure was studied by Ögüt [19], using polynomial
differential quadrature method.

Forced and mixed convection studies were also performed.
Abu-Nada [1] studied the application of nanofluids for heat
transfer enhancement of separated flows encountered in a
backward facing step. He found that the high heat transfer inside
the recirculation zone depends mainly on thermophysical
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properties of nanoparticles and that it is independent of Reynolds
number. Mirmasoumi and Behzadmehr [18] numerically studied
the effect of nanoparticle mean diameter on mixed convection
heat transfer of a nanofluid in a horizontal tube using a two-phase
mixture model. They showed that the convective heat transfer
could be significantly increased by using particles with smaller
mean diameter. Akbarinia and Behzadmehr [3] numerically
studied laminar mixed convection of a nanofluid in horizontal
curved tubes. Tiwari and Das [30] studied heat transfer in a lid-
driven differentially heated square cavity. They reported that the
relationship between heat transfer and the volume fraction of
solid particles in a nanofluid is nonlinear. Torii [31] experimen-
tally studied turbulent heat transfer behaviour of nanofluid in a
circular tube, heated under constant heat flux. He reported that
the relative viscosity of nanofluids increases with concentration of
nanoparticles, pressure loss of nanofluids is slightly larger than
that of pure fluid and that heat transfer enhancement is affected
by occurrence of particle aggregation.

Numerous numerical methods have been proposed to simulate
the natural convection phenomena. Stream function-vorticity
formulation was used for simulation of nanofluids in two
dimensions by Gümgüm and Tezer-Sezgin [11]. In this work we
employ the velocity–vorticity formulation of Navier–Stokes
equations, written for nanofluids coupled with the energy
equation. The unknown field functions are the velocity, vorticity
and temperature. We employ the boundary element method
(BEM) to find the solution. Daube [9] stated that accurate
determination of boundary values of vorticity is essential for
conservation of mass when using the velocity–vorticity form of
the governing equations. Several different approaches have been
proposed for the determination of vorticity on the boundary.
Wong and Baker [34] used a second-order Taylor series to
determine the boundary vorticity values explicitly. Daube [9]
used an influence matrix technique to enforce both, the continuity
equation and the definition of the vorticity in the treatment of the
two-dimensional incompressible Navier–Stokes equations. Liu
[15] recognised that the problem is even more severe when he
extended it to three dimensions. Lo et al. [16] used the differential
quadrature method. We use single domain BEM to solve the
kinematics equation for boundary vorticity values [29]. Apart
from the boundary vorticity values, all other flow fields are solved
by subdomain BEM [22,23]. Subdomain BEM solution of a partial
differential equation leads to an overdetermined sparse system of
linear equations. A sparse system enables fast algebraic opera-
tions and does not require a lot of storage.

2. Governing equations

We consider water based nanofluids. Their thermophysical
properties are given in Table 1. Water and nanoparticles are in
thermal equilibrium and no slip occurs between them. We
assume the nanofluid to be incompressible. Natural convection
exhibited by the nanofluids in our simulations is laminar.
Effective properties of the nanofluid are: density rnf , dynamic

viscosity mnf , heat capacitance (cp)nf, thermal expansion
coefficient bnf and thermal conductivity knf, where subscript nf

is used to denote effective, i.e. nanofluid properties. The
properties are all assumed constant throughout the flow
domain. The mass conservation law for an incompressible fluid
may be stated as

~r �~v ¼ 0: ð1Þ

Considering constant nanofluid material properties and taking
density variation into account within the Boussinesq
approximation we write the momentum equation as

@~v

@t
þð~v � ~rÞ~v ¼�bnf ðT�T0Þ~g�

1

rnf

~rpþ
mnf

rnf

r
2~v: ð2Þ

We assume that no internal energy sources are present in the
fluid. We will not deal with high velocity flow of highly viscous
fluid, hence we will neglect irreversible viscous dissipation.
With this, the internal energy conservation law, written with
temperature as the unknown variable, reads as

@T

@t
þð~v � ~rÞT ¼

knf

ðrcpÞnf

r2T : ð3Þ

Relationships between properties of nanofluid to those of pure
fluid and pure solid are provided with the following models.
Density of the nanofluid is calculated using particle volume
fraction j and densities of pure fluid rf and of solid nanoparticles
rs as

rnf ¼ ð1�jÞrf þjrs: ð4Þ

The effective dynamic viscosity of a fluid of dynamic viscosity mf

containing a dilute suspension of small rigid spherical particles, is
given by Brinkman [4] as

mnf ¼
mf

ð1�jÞ2:5
: ð5Þ

Several other models exist (such as the Einstein model [10]),
which are based on experimental measurements or theoretical
investigations.

The heat capacitance of the nanofluid can be expressed as [14]

ðrcpÞnf ¼ ð1�jÞðrcpÞf þjðrcpÞs: ð6Þ

Similarly, the nanofluid thermal expansion coefficient can be
written as ðrbÞnf ¼ ð1�jÞðrbÞf þjðrbÞs, which may be, by taking
into account the definition of rnf , written as

bnf ¼ bf

1

1þ
ð1�jÞrf

jrs

bs

bf

þ
1

1þ
j

1�j
rs

rf

2
6664

3
7775: ð7Þ

The effective thermal conductivity of the nanofluid is approxi-
mated by the Maxwell–Garnett formula [17]

knf ¼ kf

ksþ2kf�2jðkf�ksÞ

ksþ2kf þjðkf�ksÞ
: ð8Þ

This formula is valid only for spherical particles, since it does not
take into account the shape of particles. Thus, our macroscopic
modelling of nanofluids is restricted to spherical nanoparticles
and it is suitable for small temperature gradients [28].

2.1. Nondimensional equations in velocity–vorticity form

Vorticity, ~o, is defined as a curl of velocity. By taking the curl
of the mass conservation law (1) and of the momentum transport
equation (2) and taking into account that by definition vorticity is
solenodial, ~r � ~o ¼ 0, we derive the velocity–vorticity formulation
of Navier–Stokes equations. The equations are rewritten into

Table 1
Thermophysical properties of water based nanofluids [20].

Pure water Cu Al2O3 TiO2

cp (J/kg K) 4179 385 765 686.2

r ðkg=m3Þ 997.1 8933 3970 4250

k (W/m K) 0.613 400 40 8.9538

b ð�10�5 K�1
Þ 21 1.67 0.85 0.9

a ð�10�7 m2=sÞ 1.47 1163 131.7 30.7
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nondimensional form using

~v-
~v

v0
, ~r-

~r

L
, o-

oL

v0
, t-

v0t

L
, T-

T�T0

DT
, ~g-

~g

g0
,

v0 ¼
kf

ðrcpÞf L
, ð9Þ

where T0 and L are characteristic velocity and temperature.
Characteristic temperature difference is DT, while g0¼9.81 m/s2.
We define pure fluid Rayleigh and Prandtl number values as

Ra¼
g0bfDTL3rf ðrcpÞf

mf kf
, Pr¼

mf cp

kf
: ð10Þ

The choice for characteristic velocity v0 in (9) is common
for buoyant flow simulations. It ensures that the Reynolds
number is eliminated for the governing equations, since its value
multiplied by Prandtl number equals one. With this the
nondimensional velocity–vorticity formulation of Navier–Stokes
equations for simulation of nanofluids consists of the kinematics
equation, the vorticity transport equation and the energy
equation:

r
2~vþ ~r � ~o ¼ 0, ð11Þ

@~o
@t
þð~v � ~rÞ~o ¼ ð~o � ~rÞ~vþPr

mnf

mf

rf

rnf

r2~o�Pr Ra
bnf

bf

~r � T~g , ð12Þ

@T

@t
þð~v � ~rÞT ¼

knf

kf

ðrcpÞf

ðrcpÞnf

r2T : ð13Þ

The flow and heat transfer of a nanofluid is thus defined by
specifying the pure fluid Rayleigh and Prandtl number values. The
nanofluid properties are evaluated using the following models:
rnf =rf from (4), mnf =mf from (5), ðrcpÞnf =ðrcpÞf from (6), bnf =bf

from (7) and knf/kf from (8). We should note that the effective
viscosity is independent of nanoparticle type, attributing ex-
pected differences in results to heat related physical parameters
only.

3. Numerical method

The algorithm used to solve the set of governing equations
(11)–(13) is devised as follows. Either Dirichlet or Neumann
type boundary conditions for velocity and temperature must be
known. In this paper we use the no-slip boundary condition
on all solid walls and prescribe temperature or temperature
flux. Boundary conditions for vorticity are unknown and are
calculated as a part of the algorithm. The following steps are
performed.

1. Use models (4)–(8) to calculate ratios of nanofluid to pure fluid
material properties.

2. Calculate vorticity values on the boundary by single domain
BEM from the kinematics Eq. (11).

3. Calculate velocity values by sub-domain BEM from the
kinematics equation (11).

4. Calculate temperature values by sub-domain BEM from the
energy equation (13).

5. Calculate vorticity values in the domain by sub-domain BEM
from the vorticity transport equation (12).

6. Check convergence. If all flow fields converged to 10�6 stop,
else go to 2.

The three-dimensional solver capable of simulating flow and heat
transfer by solving velocity–vorticity formulation of Navier–Stokes
equations by a combination of single and sub-domain BEM was

developed by Ravnik et al. [26,25]. The single domain BEM has been
accelerated by the use of the Fast multipole method [27].

The solver has been adapted for simulation of flow
and heat transfer of nanofluids. Governing equations are
written in integral form. The integral form of equations is
obtained by using Green’s second identity for the unknown field
function and for the fundamental solution u% of the diffusion
operator: u% ¼ 1=4pj~x�~r j. Green’s second identity is an integral
equation that can be, through a limiting process, rewritten
in a form that enables calculation of a field function in a source
point ~x.

The integral form of the kinematics equation is

cð~xÞ~nð~xÞ �~vð~xÞþ~nð~xÞ �
Z
G
~v~ru% � ~n dG

¼~nð~xÞ �
Z
G
~v � ð~n � ~rÞu% dGþ~nð~xÞ �

Z
O
ð~o � ~ru%ÞdO, ð14Þ

where ~x is the source or collocation point, ~n is a vector normal to the
boundary, pointing out of the domain. cð~xÞ is the geometric factor
defined as cð~xÞ ¼ a=4p, where a is the inner angle with origin in ~x. In
order to write a linear system of equations for the unknown boundary
vorticity values, we set the source point into every boundary node of
the whole computational domain. This yields a full system matrix
where number of rows and columns is equal to number of boundary
nodes. This, tangential form of the kinematics equation is used to
determine boundary vorticity values. After discretization the system
matrix is formed in such a way that boundary values of vorticity are
unknown, while domain vorticity and velocity values are taken from
the previous nonlinear iteration. The system is solved using a LU
decomposition method.

In the algorithm the kinematics equation is used again to
determine domain velocity values. The following form is used:

cð~xÞ~vð~xÞþ
Z
G
~v~ru% � ~n dG¼

Z
G
~v � ð~n � ~rÞu% dGþ

Z
O
ð~o � ~ru%ÞdO:

ð15Þ

Solution is obtained by sub-domain BEM. Boundary values of
velocity are known boundary conditions, while domain and
boundary values of vorticity are assumed known from the
previous iteration.

The partial derivative with respect to time in the kinetics
equations is approximated by second order three point finite
difference scheme @T=@t¼ ð3T�4T uþT 00Þ=2Dt, where Dt is the time
step and prime and double prime denote field functions in two
earlier time steps. Choice of the time step depends on the problem
being solved. It should be small enough to capture the physical
behaviour of the flow, i.e. be smaller than the characteristic length
scale of the flow divided by the characteristic velocity. In case of
simulation of steady phenomena a single very large time step is
chosen ðDt¼ 1016

Þ. The final forms of vorticity transport and
energy equation are

cð~xÞojð
~xÞþ

Z
G
oj
~ru� � ~n dG

¼

Z
G

u�qj dGþ
1

Pr

mf

mnf

rnf

rf

Z
G
~n � fu�ð~voj�~ovjÞgdG

�

�

Z
O
ð~voj�~ovjÞ �

~ru� dO
�
�Ra

bnf

bf

mf

mnf

rnf

rf

Z
G
ðu%T~g � ~nÞj dG

�Ra
bnf

bf

mf

mnf

rnf

rf

Z
O
ðT~r � u%~gÞj dO

þ
1

Pr

mf

mnf

rnf

rf

1

2Dt

Z
O
ð3oj�4ojuþoj

00Þu� dO, ð16Þ

cð~xÞTð~xÞþ
Z
G

T~ru� � ~n dG
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¼

Z
G

u�Tq dGþ
kf

knf

ðrcpÞnf

ðrcpÞf

Z
G
~n � fu�ð~vTÞgdG�

Z
O
ð~vTÞ � ~ru� dO

� �

þ
kf

knf

ðrcpÞnf

ðrcpÞf

1

2Dt

Z
O
ð3T�4T uþT 00Þu� dO: ð17Þ

In the subdomain BEM method we make a mesh of the
entire domain O and name each mesh element a subdomain.
Eqs. (15)–(17) are written for each of the subdomains. In order to
obtain a discrete version of the equations, we use shape functions to
interpolate field functions and flux across the boundary and inside of
the subdomain. In this work we used hexahedral subdomains with
27 nodes, which enable continuous quadratic interpolation of field
functions. The boundary of each hexahedron consists of six
boundary elements. On each boundary element we interpolate the
flux using discontinuous linear interpolation scheme with four
nodes. By using discontinuous interpolation we avoid flux definition
problems in corners and edges. A function, e.g. temperature, is
interpolated over a boundary element as T ¼

P
jiTi, inside each

subdomain as T ¼
P

FiTi, while flux is interpolated over boundary
elements as q¼

P
fiqi.

3.1. Acceleration of computation

The numerical algorithm solves the above equations sequen-
tially within a time step. At the end of each iteration, RMS
difference between flow fields of current and previous iteration is
calculated. We define the RMS difference as the sum of squared
difference between flow field values of current and previous
iteration for each node divided by the sum of squares of nodal
values in the previous iteration. When RMS difference for all flow
fields reaches eerr ¼ 10�6, we stop to iterate. Within each iteration
10 systems of linear equations must be solved (three for boundary
vorticity values, three for domain velocity, three for domain
vorticity and one for temperature). Apart from the flow kine-
matics, each system of linear equations is solved by the LSQR
solver [21] with diagonal preconditioning. The solver requires a
large number of iterations in order to converge to a predefined
convergence criteria e. The original algorithm, as proposed by
Ravnik et al. [26], uses a constant convergence criteria. Value,
which is 10 times less than the required RMS criteria eerr was
usually used, i.e. e¼ eerr=10¼ 10�7.

We argue that it is not necessary to keep e¼ 10�7 during the
whole iterative process, since at the beginning, when RMS
differences eerr are large, we do not require a very accurate
solution of linear systems of equations. Considering this e may be
set larger. Since the number of iterations of the solver of linear
systems of equation depends strongly on the required accuracy
and since the most CPU time is used in these routines, we
anticipate a large decrease of CPU time.

In order to accelerate the solver, we used the following
steps. Instead of keeping e constant, we change its value
every iteration. We set the range for e between emin ¼ 10�7 and
emax ¼ 10�3. The maximal value was chosen so that we ensure that
at least some work is done by the solver in each iteration. We
introduce a parameter R; 1rRr100. At the end of each iteration,
we calculate RMS differences eerr for all flow fields and use the
following algorithm to determine the new e:

DO 8 equations
eold ¼ e
IF ðeerr=RoeÞ THEN e¼ eerr=R ELSE e¼ emax

IF ðeoldoeÞ e¼ eold

IF ðeoeminÞ e¼ emin

END DO

We keep the linear solver accuracy between the minimum and
maximum value at e¼ eerr=R. In the algorithm we do not allow for
decrease of linear solver accuracy. If at some stage during the
nonlinear loop RMS difference increases, the linear solver
accuracy is not increased. This rule was included in the algorithm
because we want to limit such behaviour as much as possible,
thus is seems prudent to not allow for linear solver accuracy
decrease.

4. Test cases

We used the developed numerical algorithm to simulate
natural convection of nanofluids in two configurations: firstly, a
cubic cavity is filled with fluid and subjected to a temperature
difference on two opposite vertical sides. Secondly, the source of
natural convection is a hotstrip located in a cubic cavity. Its height
is one half of the cavity’s height. Two sides of the cavity are
cooled, the other four are adiabatic. Sketches and boundary
conditions for both cases are shown in Fig. 1. Both cases were
investigated for air (Pr¼0.71), water (Pr¼6.2) and water based
nanofluids (Table 1) for several Rayleigh number values. The
hotstrip was positioned in the centre of the cavity (d¼0.4H) and
off-centre (d¼0.5H).

Natural convection of air and other pure fluids in a differen-
tially heated cavity has been under intense investigation in the
past. More recently several authors simulated nanofluids in this
case [2,13,12,30]. Simulation conditions varied—in some cases
the hot side of the cavity was smaller, in others the cavity was
inclined. All of this work with nanofluids was done in two-
dimensional. In this paper we present three-dimensional
results. In our previous work [25] we examined this problem
using air as the working fluid. We established, by comparison
with other authors [32], that a grid with 253 nodes was
sufficient. In this paper we increased the grid density to 413

nodes in order to further increase the accuracy of computations.
Nodes were concentrated towards the hot and cold walls in such a
way that the ratio between the largest and the smallest element
length was 7.

Corvaro and Paroncini [8,7] performed a two-dimensional PIV
experiment on a hotstrip problem, using air as the working fluid.
The width and height of their enclosure were H¼0.05 m. The
depth of the enclosure was 0.42 m, with which they achieved a
two-dimensional flow field. They measured the flow field in the
central plane of the enclosure for Rayleigh number values
between Ra¼6.39�104 and 3.16�105. Preliminary results of

H

H

H

1
2H

d 1
5H

adiabatic wall

heated wall
T =+ 1

2

∇ T · =0

T = − 1
2

cooled wall

adiabatic wall
∇ T · =0
heated wall
T =+ 1

2

T = − 1
2

cooled wall

Fig. 1. Setup and boundary conditions of the hotstrip problem (left) and

differentially heated cavity problem (right). Hotstrip of height 0.5H and width

0.2H is located at distance d from the left cold wall. The hotstrip is heated to

T ¼ þ0:5, while the walls at x¼ 0 and H are cooled to T ¼�0:5. There is no

temperature flux through all other walls. In differentially heated cavity we keep

two opposite vertical walls cold and hot, while all other walls are adiabatic.

No-slip velocity boundary conditions are applied on all walls.
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numerical simulations of air in the hotstrip test case were
presented by Ravnik and Škerget [24]. A grid of 51�31�13
nodes proved successful for air simulations. For nanofluids
simulations in this work, we selected a denser mesh having
61�49�19 nodes.

5. Results

The heat transfer of a nanofluid is expected to depend,
apart from the flow configuration, on a number of material
factors, such as thermal conductivity and heat capacitance of
both pure fluid and particles, volume fraction, viscosity, etc.
In order to compare effectiveness of nanofluids in different
simulations, wall heat flux is calculated. Usually, the heat flux _Q
is expressed in terms of pure fluid thermal conductivity,
characteristic flow scales and a nondimensional Nusselt number,
i.e. _Q ¼ kf LDT � Nu. The Nusselt number, Nu, is defined as the
integral of the temperature flux through a wall. For a nanofluid, it
is written as

Nu¼
knf

kf

Z
G

~rT � ~n dG, ð18Þ

where G is the surface through which we calculate the heat
flux and ~n is a unit normal to this surface. We study local variation
of heat flux using the local Nusselt number defined as
Nulðx,y,zÞ ¼ knf =kf

~rT � ~n.

5.1. Testing of dynamic solver accuracy algorithm

The algorithm has been tested on the hotstrip example. Air
was the working fluid. Simulations were run for Ra¼103, 104 and
105 using parameter R ranging between R¼0.1 and 100. Table 2
shows the number of iterations of the LSQR solver [21], CPU time
and the number of iterations of the nonlinear loop. Within each
nonlinear loop iteration, seven linear systems of equations must
be solved using LSQR solver. The table presents cumulative values
for number of LSQR iterations.

At Ra¼103, the total number of iterations of the LSQR solver
required for the computation to converge, which is equal to 103
thousand when solver accuracy is constant at e¼ 10�7, drops to
more than one half of this value when using newly proposed
dynamic solver accuracy algorithm with R¼1. At the same time,
the CPU time of the whole nonlinear loop was decreased from 75
to 35.5 min. At Ra¼105 the number of iterations was decreased

from 759 thousand to 202 thousand and the CPU time from 570 to
228 min. Very low values of R tend to increase the number of
nonlinear iterations required to reach the solution. This causes
additional CPU time to be spent in forming the right hand sides of
linear systems of equations. The gain in CPU time seems to be
unaffected by the nonlinearity of the problem, i.e. the Rayleigh
number.

Fig. 2 shows graphs of RMS difference eerr , number of LSQR
iterations and solver accuracy e versus nonlinear iteration number
through the whole simulation. Comparison of simulation with and
without the use of dynamic solver accuracy is presented. We
observe that the convergence (the eerr graph) is nearly identical
for both cases. This proves that the use of dynamic solver accuracy
algorithm does not change the convergence properties of the
whole nonlinear algorithm. On the other hand, a large
improvement in terms of decreasing of LSQR number of
iterations can be observed when dynamic solver accuracy is
used. The dynamic solver accuracy algorithm keeps the number of
LSQR iterations at an approximately constant level. Without the
use of dynamic solver accuracy algorithm the number of LSQR
iteration is very large at the beginning of each time step and only
gradually decreases. This difference is reflected on the total
number of LSQR iterations and in consequence on total CPU time
needed for the simulation.

Based on this analysis we decided to use dynamic solver
accuracy algorithm and we chose the value R¼10 for all further
analyses.

5.2. Differentially heated cubic cavity

Applying a temperature difference on two opposite walls of an
otherwise insulated cavity starts up natural convection producing
a large vortex in the main part of the enclosure. At low Rayleigh
number values the vortex is weak and the heat is transferred
predominately with conduction. Convection dominates at
Ra¼106 where temperature stratification may be observed. The
flow becomes unsteady for higher Ra values with vortices
forming along the hot and cold walls. Due to high thermal
conductivity of nanofluids we expect to observe the largest
improvement in heat transfer of nanofluids for cases where
conduction plays a nonnegligible role. Simulations were per-
formed for Rayleigh number values between Ra¼103 and 106 for
pure air, pure water and three nanofluids. Two solid nanoparticle
volume fractions in nanofluids were considered: j¼ 0:1
and 0:2.

Nusselt number values for the natural convection in a cube are
shown in Table 3. The validity of our numerical method is
confirmed by comparing heat flux of present results for
simulation of air with the results of Lo et al. [16]. We observe
about 0.1% difference in Nusselt number values.

Using water based nanofluids instead of pure water increases
heat transfer in all cases. For low Rayleigh number, where
conduction is the predominant heat transfer mechanism, the
enhancement is the largest. For Cu nanofluid at Ra¼103 we
observe an 27.2% increase in heat transfer for j¼ 0:1 and 64.1%
for j¼ 0:2. Similar findings were reported by Abu-Nada and
Oztop [2] for two-dimensional inclined cavity case. TiO2 nanofluid
exhibits lower heat transfer enhancement, since its thermal
conductivity is lower than that of Cu and Al2O3 nanofluids. In
spite of the fact that thermal conductivity and thermal diffusivity
of Al2O3 are about one tenth of their values for Cu, both nanofluids
exhibit approximately the same heat transfer enhancement. This
is due to the fact that the effective thermal diffusivity
knf =kf � ðrcpÞf =ðrcpÞnf , which is the only parameter in the non-

Table 2
Comparison of convergence performance and the number of iterations of LSQR

solver [21] for different values of parameter R.

emin emax R LSQR nit (�103) CPU time (min) No. nonlin. iterations

Ra¼103

10�7 10�7 – 103.5 75 131

10�7 10�3 100 73.6 55 132

10�7 10�3 10 57.2 45.7 138

10�7 10�3 1 37.9 35.5 154

Ra¼104

10�7 10�7 – 148.8 108 205

10�7 10�3 10 79.9 66.3 207

Ra¼105

10�7 10�7 – 759.9 570 1235

10�7 10�3 10 410.6 363 1255

10�7 10�3 1 202.9 228 1179

10�7 10�3 0.1 150.6 241 1774

All simulations were run until RMS difference reached eerr ¼ 10�6.

J. Ravnik et al. / Engineering Analysis with Boundary Elements 34 (2010) 1018–10301022



Author's personal copy

dimensional heat equation (13), has an almost identical value for
Al2O3 and Cu nanofluids.

As the Rayleigh number increases, convection becomes the
dominant heat transfer mechanism, while conduction is negli-
gible. Thus, the increased thermal conductivity of nanofluids plays
a less important role in the overall heat balance. All nanofluids
exhibit smaller heat transfer enhancement as compared to the
low Rayleigh number case. At Ra¼106 Cu nanofluid increases heat
transfer at j¼ 0:1 for 11.6% and at j¼ 0:2 for 21.6%.

Fig. 3 shows the relationship between solid particle volume
fraction and heat transfer. We observe for all three nanofluids that
increasing solid particle volume fraction from 0.1 to 0.2 increases heat
transfer. About the same increase is obtained if we compare pure

water and j¼ 0:1 nanofluid. The increase in heat transfer is highest
when using Cu nanofluid and lowest when using TiO2 nanofluid.

In our geometry the hot and cold walls face each other in x

direction. Thus, the main vortex, which is induced by the onset of
natural convection is located in the y plane. We chose the y¼0.5H

plane to study the two velocity profiles: vertical velocity
vz(x,0.5H,0.5H) and horizontal velocity vx(0.5H,0.5H,z) across the
centre of the enclosure. The comparison of profiles for Ra¼103

and 106 for water and nanofluids is shown in Fig. 4. When
conduction dominates (Ra¼103) we observe that pure water
reaches the highest velocities, while addition of solid particles
slows down the flow. The decreased velocity results in decreased
convective heat transfer. However, since in this regime the

Table 3
Nusselt number values for the natural convection in a cube.

Ra Air Water Water+Cu Water+Al2O3 Water+TiO2

[16] Present j¼ 0:1 j¼ 0:2 j¼ 0:1 j¼ 0:2 j¼ 0:1 j¼ 0:2

103 1.0710 1.0712 1.071 1.363 1.758 1.345 1.718 1.297 1.598

104 2.0537 2.0564 2.078 2.237 2.381 2.168 2.244 2.115 2.132

105 4.3329 4.3432 4.510 4.946 5.278 4.806 4.968 4.684 4.732

106 8.6678 8.6792 9.032 10.08 10.98 9.817 10.39 9.556 9.871

Solid particle volume fraction is denoted by j. Simulations of air are compared with results of Lo et al. [16].
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majority of heat is transported by conduction, the decrease due to
lower velocity is almost negligible and the overall heat transfer of
nanofluids is still very large due to higher thermal conductivity of
a nanofluid. In the Ra¼106 case convection dominates. Here we
observe that velocities reached by nanofluids are higher than the
velocities of pure water. Thus, using nanofluids, the velocity
profiles, and in consequence, temperature profiles and heat
transfer are increased. The relative increase of heat transfer in
the convection dominated case is smaller than the increase in the
conduction dominated case because the increased thermal
conductivity does not play an important role in the convection
dominated heat transfer. When comparing velocity profiles

between different nanofluids we observe only slight differences.
The Cu nanofluid reaches the highest velocities, while the highest
velocities for Al2O3 nanofluid are about 4% lower and for TiO2

approximately 9% lower.
Fig. 5 displays temperature contours in the central y¼0.5H

plane. Comparing the temperature fields for different nanofluids
we observe almost identical temperature distribution in the
central part of the enclosure. Differences are larger closer to the
walls, although their magnitude is still small. Since heat transfer
depends on the temperature gradient on the walls, we examined
the temperature contour closest to the hot and cold walls.
Differences between pure fluid and nanofluid with j¼ 0:1 or
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0:2 can be observed in the conduction dominated low Rayleigh
number case. We see that the low flow velocity of the high solid
particle volume fraction indeed moved the first temperature
contour away from the wall and thus decreased the temperature
gradient. This decrease in heat transfer is much smaller than the
increase obtained by the increased thermal conductivity of the
nanofluid. In the convection dominated high Rayleigh number
case this effect is much smaller and it does not cause a noticeable
effect on the overall heat transfer.

Comparing the temperature field between different types of
nanofluids we observe only minor differences. Main character-
istics remain the same, i.e. approximately linear distribution of
temperature contours in the conduction dominated case and
stratification of temperature in the convection dominated case.

Heat flux distribution on a profile across the hot wall is shown
in Fig. 6. The heat flux is smaller at the top of the hot wall and
larger at the bottom, since the hot fluid is rising and decreasing
the temperature gradient at the top. Comparing the Ra¼103 and
106 cases, we see that the heat transfer enhancement is, relatively
speaking, larger in the conduction dominated Ra¼103 case than
in the convection dominated Ra¼106 case.

We examined the three-dimensional nature of the flow field.
Since, in this case, the flow field is driven by a temperature
difference between the two opposite walls, it causes a large
predominantly two-dimensional vortex between the hot and cold
walls. Three-dimensional nature of the flow can be seen in the
corners of the domain. The three-dimensional nature becomes
more apparent at higher Rayleigh number values. In Fig. 7 we
plotted isosurfaces of absolute value of horizontal velocity
component, which is perpendicular to the plane of the main
vortex, i.e. jvyj in our geometry. Water and Cu nanofluid at j¼ 0:1
and 0:2 are compared. We observe that the vy velocity component

grows with increasing solid particle volume fraction. Thus, usage
of nanofluid tends to make the flow field more three-dimensional
and contributes to the break up of symmetry and the onset of
unsteadiness, which occurs at higher Rayleigh number values.

5.3. Hotstrip

The hotstrip heats the surrounding fluid inducing two main
vortices—one on each side of the hotstrip. Hot fluid from the sides
of the hotstrip is transported upwards by convection making the
thermal boundary layer thin and thus resulting in high heat
transfer. Upon reaching the top of the hotstrip the fluid flows over
the top ultimately colliding with the fluid from the other side and
rising upwards. When the hotstrip is located in the centre of the
cavity, the flow field is symmetric and the fluid rises from the
centre of the hotstrip. If the hotstrip is placed off-centre, the flow
symmetry is lost. The sizes of large vortices on each side of the
hotstrip are different. The flow does not rise above the centre of
the hotstrip. Mixing of the fluid from both sides of the hotstrip
occurs, which does not happen in the symmetric case.

Nusselt number values for the natural convection of pure fluids
in a hotstrip are presented in Table 4. Tables 5 and 6 present
Nusselt number values for nanofluids of two different particle
volume fractions for hotstrip located in the centre (d¼0.4H) and
off-centre (d¼0.5H). When the hotstrip is located in the centre,
the flow field is symmetrical and the heat flux from both vertical
walls of the hotstrip is equal. Thus in the tables we present only
two values—heat flux from a vertical wall and from the top wall.
In the case, when the hotstrip is located off-centre, the symmetry
is broken and heat flux from all three walls is presented.
Comparing heat transfer for pure fluid, air and water, we
observe only minor differences. The heat transfer is only mildly
improved when using water instead of air. With the addition of
solid nanoparticles into the water the improvement in heat
transfer is more substantial. Graph in Fig. 8 shows the total heat
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Table 4
Nusselt number values for the natural convection of pure fluids in a hotstrip.

Ra d¼0.4H d¼0.5H

Air Water Air Water

Vert.

w.

Top Vert.

w.

Top Left

w.

Top Right

w.

Left

w.

Top Right

w.

103 1.500 0.781 1.500 0.781 1.281 0.806 1.898 1.279 0.805 1.898

104 1.827 0.579 1.827 0.587 1.817 0.657 2.068 1.815 0.659 2.064

105 3.885 0.561 3.924 0.694 3.828 0.600 3.769 3.863 0.707 3.766

When hotstrip is placed in the centre (d¼0.4H) we present values for heat flux

from vertical walls and the top wall. When the hotstrip is placed off-centre

(d¼0.5H) the symmetry is broken and results for vertical walls are given

separately.
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flux in terms of Nusselt versus Rayleigh number value. We
observe that the greatest improvement in heat transfer can be
achieved in the case of low Rayleigh number. At low Ra

conduction plays an important role in heat transfer and since
nanofluids have a substantially increased thermal conductivity
compared to pure fluid, conduction is more effective. As the
Rayleigh number value is increased, the most of the heat transfer
occurs due to convection and thermal conductivity plays a less
important role—thus usage of nanofluids brings relatively lower
heat transfer enhancement. Comparing the three nanofluids used
in simulations we observe that in all cases Cu nanofluid yields the
highest heat fluxes, Al2O3 the second highest and TiO2 the lowest.
However, all are well above the heat flux obtained by pure water.
Similar findings were reported by Oztop and Abu-Nada [20] for a
two-dimensional natural convection simulation. Simulations
were performed with two solid particle volume fractions for
nanofluids: j¼ 0:1 and 0:2. In all cases we observe that increasing
the solid particle volume fraction increases the heat transfer. In

the conduction dominated flows we observe that the heat transfer
enhancement observed when comparing pure water and j¼ 0:1
nanofluid is about the same as when comparing j¼ 0:1 and 0:2
nanofluids. Thus, heat transfer enhancement for conduction
dominated flows is an approximately linear function of solid
volume fraction. This can be explained by examining the
Maxwell–Garnet formula (8) for thermal conductivity of
nanofluids in the limit of low particle volume fractions:

lim
j-0

knf ¼ kf 1�3
kf�ks

ksþ2kf
j

� �
, ð19Þ

where second order j2 terms were omitted. Thus, for low solid
particles volume fractions thermal conductivity of nanofluids
behaves approximately as a linear function of solid volume
fraction.

Temperature contours on the central y¼0.5H plane for natural
convection of Cu nanofluid in a hotstrip are shown in Fig. 9. As in
the natural convection in a differentially heated cavity case, the
temperature distribution for other nanofluids is very similar to the
temperature distribution of Cu nanofluid. Comparison between
pure water and Cu nanofluid is made for both locations of the
hotstrip. In the low Ra conduction dominated case the largest
differences between temperature contours of pure fluid and
nanofluids can be observed away from the hot and cold walls.
This makes the temperature gradient on the walls equal in all
cases and the increase in heat flux can be attributed to the
increased thermal conductivity of nanofluids. As we increase the
Rayleigh number, the differences in temperature fields become
larger throughout the whole flow fields. Examining the
temperature field close to the hotstrip we observe that pure
fluid temperature contours are closest to the wall, although the
differences are not large. This has been observed in the case of
natural convection in a differentially heated cavity also. The
consequence of this is that the wall temperature gradients are
highest in the pure fluid case.

With the increase of Ra number the temperature contours
move away from the top wall of the hotstrip, making temperature
gradient and hence the heat transfer from the top wall smaller.
This phenomenon occurs for pure fluids and for nanofluids. Since
only a small part of the total heat transfer occurs from the top
wall, the total heat transfer still increases with increasing
Rayleigh number. Increased Ra produces larger buoyancy forces
and higher fluid velocities. In the high Ra case there is a large
quantity of hot fluid rising upward above the top of the hotstrip
making the temperature gradient on top of the hotstrip smaller.
This effect is stronger in the case when hotstrip is located in the
centre, since the broken symmetry of the off-central position
makes the fluid rise not exactly on top of the hotstrip and thus
enabling higher temperature gradients.

Due to inherent physical instability of fluid being heated from
below, steady solution of this problem may not be sufficient. If the
Rayleigh number would be higher, the problem should be
simulated as time dependent.

We examine heat flux distribution in terms of the local Nusselt
number on a profile across the centre of the hotstrip in Fig. 10. The
largest heat flux values are found near the edges connecting the
vertical and top walls. There the convection dominates and
ensures the highest heat flux. The smallest heat flux is located on
the top wall, where fluid flow is very slow and conduction
dominates the heat transfer in all cases. In the Ra¼103 case, clear
heat transfer enhancement can be observed when comparing pure
water with nanofluids. At Ra¼105 in the case of convection
dominated vertical walls this enhancement is smaller, while
substantial enhancement can be observed on the top wall, where
conduction still governs the heat transfer.

Table 5
Nusselt number values for natural convection of nanofluids in a hotstrip.

Ra j Water+Cu Water+Al2O3 Water+TiO2

Vert. w. Top Vert. w. Top Vert. w. Top

103 0.1 1.984 1.062 1.961 1.052 1.888 1.012

103 0.2 2.591 1.409 2.535 1.381 2.357 1.283

104 0.1 2.185 0.862 2.146 0.861 2.075 0.824

104 0.2 2.711 1.245 2.637 1.237 2.460 1.140

105 0.1 4.318 0.798 4.183 0.791 4.080 0.766

105 0.2 4.540 0.965 4.242 0.951 4.048 0.887

The hotstrip is located in the central position, d¼0.4H.

Table 6
Nusselt number values for natural convection of nanofluids in a hotstrip.

Ra j Water+Cu Water+Al2O3 Water+TiO2

Left

v.

Top Right

v.

Left

v.

Top Right

v.

Left

v.

Top Right

v.

103 0.1 1.682 1.094 2.520 1.662 1.083 2.492 1.601 1.042 2.399

103 0.2 2.192 1.450 3.299 2.143 1.422 3.228 1.993 1.320 3.000

104 0.1 2.029 0.916 2.626 1.980 0.912 2.589 1.923 0.874 2.497

104 0.2 2.393 1.294 3.364 2.311 1.283 3.283 2.164 1.183 3.056

105 0.1 4.339 0.908 4.008 4.216 0.905 3.880 4.105 0.872 3.785

105 0.2 4.680 1.186 4.341 4.390 1.163 4.120 4.182 1.084 3.896

The hotstrip is located in the off-central position, d¼0.5H.
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Three-dimensional structure of the flow field is shown in
Fig. 11. We present isosurfaces of the jvyj ¼ 2:5 component of the
velocity field for pure water and Cu nanofluid. The y component is
directed normal to the main vortical motion, i.e. it is the direction
that a two-dimensional case would consider to be irrelevant. We
observe that the vy is indeed small compared to the velocities in
other two directions in the low Ra case. But when the Rayleigh
number is increased, the flow in the y direction is not
to be neglected. The maximal velocity vy amounts to about
10% of the horizontal velocity vx. Furthermore, we observe that
using nanofluids the flow fields become more three-dimensional
as compared to pure water. Using nanofluids does not
significantly change the maximal value of vy but it does, as it is
evident from Fig. 11, substantially enlarge the area where vy

velocity components are significant. Off-central position of
the hotstrip results in a more pronounced three-dimensional
flow field than the central position of the hotstrip. The
loss of symmetry contributes to the three-dimensional structure
of the flow.

5.4. Relationship between vorticity, vorticity flux and heat transfer

intensity

Relationship between heat transfer intensity and vorticity has
been studied for pure fluids by Chang et al. [5]. Our numerical
method employs vorticity as one of the unknown flow fields.
Moreover usage of the boundary element method enables
computation of normal derivatives of vorticity on the boundaries.
Thus vorticity and vorticity flux on the boundary are a part of the
solution of our numerical algorithm. No additional post-proces-
sing of the results is necessary, thus avoiding additional numerical
errors in the solution.

We will examine vorticity flux on vertical walls in the (y,z)
plane. We define the vorticity wall integral Ioy and vorticity flux
wall integral Iqy as

Ioy ¼

Z
G
oy dG, Iqy ¼

Z
G

~roy � ~n dG: ð20Þ

Fig. 12 shows the dependence of heat transfer, vorticity and

vorticity flux integrals for Cu nanofluid with 0.2 particle volume
fraction. We observe that all quantities increase with increasing
Rayleigh number. The rate of increase is approximately
exponential. This makes values of vorticity and vorticity flux on
the wall a good indicator of heat transfer intensity. The physical
reason for this fact is that for a wall in the (y,z) plane oy vorticity
component measures the wall normal gradient of velocity, i.e.
oyjwall ¼ @vz=@x. Since with increasing Ra the velocity boundary
layer becomes thinner and velocity gradients increase, the
vorticity is thus increased as well. In the cases we considered,
convection was the dominant heat transfer mechanism. In
convection dominated flows there is a relationship between
thermal and velocity boundary layers and therefore a relationship
between vorticity and heat transfer. The vorticity flux, i.e. the
normal derivative of vorticity, is a measure for the rate of change
of velocity gradient in the normal direction away from the wall.
It too increases with Ra in approximately the same way as the
Nusselt number.

6. Summary

The paper presents a numerical method for the simulation of
flow of nanofluids. The method is based on the combination of
single domain and subdomain BEM used to solve the velocity–
vorticity formulation of Navier–Stokes equations. We developed a
dynamic solver accuracy algorithm, which was used to speed up
the simulations. CPU times were decreased by up to 50%.

The developed algorithm was used to simulate flow of three
types of water based nanofluids in two test cases: natural
convection in a three-dimensional differentially heated cavity
and natural convection around a hotstrip. The main findings are:
(i) using water based nanofluids instead of pure water enhances
heat transfer, (ii) the enhancement is largest when conduction is
the dominant heat transfer mechanism, since in this case the
increased heat conductivity of the nanofluid makes all the
difference, (iii) in convection dominated flows heat transfer
enhancement is smaller, (iv) all considered nanofluids (Cu, Al2O3

and TiO2) enhanced heat transfer for approximately the same
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J. Ravnik et al. / Engineering Analysis with Boundary Elements 34 (2010) 1018–1030 1027



Author's personal copy

order of magnitude, Cu nanofluid giving the best results, (v) heat
transfer enhancement grows with increasing solid particle
volume fraction in the nanofluid, (vi) the differences between
temperature fields when using different nanofluids with the same

solid nanoparticle volume fraction are small, (vii) vorticity and
vorticity flux may be used as an indicator for heat transfer
intensity of nanofluids, since they grow with Rayleigh number in
approximately the same way as the Nusselt number value, (viii)
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examining the three-dimensional structure of the flow fields, we
discovered that the flow is more three-dimensional when using
nanofluids.
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