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Abstract

A wavelet matrix compression technique was used to solve systems of linear equations resulting from BEM applied to fluid dynamics. The

governing equations were written in velocity–vorticity formulation and solutions of the resulting systems of equations were obtained with

and without wavelet matrix compression. A modification of the Haar wavelet transform, which can transform vectors of any size, is proposed.

The threshold, used for making fully populated matrices sparse, was written as a product of a user defined factor k and the average value of

absolute matrix elements values. Numerical tests were performed to assert, that the error caused by wavelet compression depends linearly on

the factor k; while the dependence of the error on the share of thresholded elements in the system matrix is highly non-linear. The results also

showed that the increasing non-linearity (higher Ra and Re number values) limits the extent of compression. On the other hand, higher mesh

density enables higher compression ratios.
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1. Introduction

One of the main impediments of the boundary element

method is the need for solving large fully populated linear

systems of equations resulting from numerical discretization

of the governing non-linear partial differential equations.

The numerical solution of viscous fluid flow requires very

large numbers of boundary elements and internal cells in

order to capture all physical effects. Unfortunately, large

systems of equations require enormous amounts of compu-

tation time and computer storage. The fast development of

computer technology enables us to solve more and more

complex problems, however, a vast number of problems still

remain unsolved due to computation time and storage

limitations.

The wavelet transform is a recent mathematical tool,

developed specially for saving computational time and

computer storage. It has been widely used for image

compression and signal processing and recently for

providing faster solutions of boundary element algorithms

[2,7,8,11,12]. In the present work, we will use a

modification of the Haar wavelet transform with a BEM

numerical scheme, based on a numerical algorithm

developed by Škerget et al. [16] for solving equations of

fluid flow and heat transport. After a brief overview of the

BEM algorithm in Section 2, we will introduce the

modification of the discrete wavelet transform, which

will transform vectors of arbitrary size.

The wavelet solution method for solving systems of

linear equations was previously proposed, among others, by

Bucher et al. [2]. The thresholding operation makes a fully

populated matrix sparse. Beylkin et al. [1] proposed

the fast wavelet transform (FWT) algorithm, which ensures

OðnlognÞ non-zero elements at a fixed threshold, using

Daubechies [3] wavelets. Koro and Abe [12–14] proposed a

threshold determination strategy that optimizes matrix

sparsity and calculation error using their non-orthogonal

spline wavelets. In Section 4, we introduce the threshold as

a product of a user defined factor and the average matrix

element value. This results in linear dependence of the user

defined factor and the final solution field RMS error.

Finally, the flow kinematics equation is solved with

wavelets repeatedly for two numerical test cases to provide

an insight into the possibilities and limitations of the use of
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the technique in the proposed velocity–vorticity BEM

numerical scheme. Special emphasis is given to the

investigation of the effects of changing values of Reynolds

and Rayleigh number, as wells as changing computational

mesh density, on the error caused by wavelet solution of the

flow kinematics equation.

2. The Navier–Stokes equations

The analytical description of motion of a continuous fluid

medium is based on conservation of mass, momentum and

energy, the associated equations of state and constitutive

relations. With the assumptions of incompressibility

within Boussinesq approximation, a velocity–vorticity

formulation was developed by Škerget et al. [16–18] and

Hribersek and Škerget [9,10]. The dynamics of a viscous

incompressible fluid is partitioned into its kinematic and

kinetic aspect through the use of derived vector vorticity

field function viðrj; tÞ; obtained as a curl of the compatibility

velocity field viðrj; tÞ :

vi ¼ eijk

›vk

›xj

;
›vi

›xj

¼ 0; ð1Þ

which is a solenoidal vector by definition, and eijk is the

permutation unit tensor. By applying a curl to the vorticity

definition (1) and using the continuity equation for

incompressible flow ~7·~v ¼ 0; the following vector elliptic

Poisson equation for velocity vector is obtained:

72
~v þ ~7 £ ~v ¼ 0: ð2Þ

Eq. (2) represents the kinematics of an incompressible

fluid motion, expressing the compatibility and restriction

conditions between velocity and vorticity field functions.

The kinetic aspect is governed by the parabolic

diffusion–convection vorticity transport equation, obtained

by applying the curl operator to the momentum equation.

In the case of two-dimensional flow, the vorticity vector has

just one component, which is perpendicular to the plane of

the flow. Thus, we obtain a scalar transport equation for

vorticity

Dv

Dt
¼ n

›2v

›xj›xj

þ eijgj

›FB

›xi

; ð3Þ

eij being the permutation unit symbol and D
Dt

the Stokes

derivative. The vorticity transport equation is non-linear due

to the product of velocity and vorticity in the convective

term. The buoyancy source term FB ¼ 2bT ðT 2 T0Þ

couples the vorticity transport equation with the energy

conservation equation:

DT

Dt
¼ a

›2T

›xj›xj

; ð4Þ

where bT is the thermal volume expansion coefficient, T0 is

the reference temperature, a ¼ l
rcp

denotes the thermal

diffusivity. The material properties such as mass density r;

specific isobaric heat cp; kinematic viscosity n and heat

conductivity l are assumed to be constant parameters.

Eqs. (2)–(4) form a closed system of partial differential

equations, which must be solved in order to obtain the

resulting velocity, vorticity and temperature fields. To apply

the boundary element method, we must rewrite the equations

in integral form. Making use of the Green fundamental

solutions, the following integral representation for the

two-dimensional plane kinematics can be derived [16]:

cðjÞviðjÞ þ
ð
G

vi

›up

›n
dG

¼
ð
G

vj

›up

›t
dG2 eij

ð
V
v
›up

›xj

dV; ð5Þ

where up is the elliptic Laplace fundamental solution, j the

source point and G the boundary of the domain V:

Deriving integral representations of the vorticity trans-

port equation (3) and heat transport equation (4), one has to

consider the parabolic diffusion–convection character of

the transport equation. The final integral statements are [16]:

cðjÞvðj; tFÞ þ n
ð
G

ðtF

tF21

v
›up

›n
dt dG

¼ n
ð
G

ðtF

tF21

›v

›n
up dt dG2

ð
G

ðtF

tF21

vvnup dt dG

þ
ð
V

ðtF

tF21

vvj

›up

›xj

dt dVþ eij

ð
G

ðtF

tF21

nigjFBup dt dG

2 eij

ð
V

ðtF

tF21

gjFB

›up

›xi

dt dVþ
ð
V
vF21up

F21 dV

ð6Þ

for the vorticity transport equation (3) and

cðjÞTðj; tFÞ þ a
ð
G

ðtF

tF21

T
›up

›n
dt dG

¼ a
ð
G

ðtF

tF21

›T

›n
up dt dG2

ð
G

ðtF

tF21

Tvnup dt dG

þ
ð
V

ðtF

tF21

Tvj

›up

›xj

dt dVþ
ð
V

TF21up
F21 dV; ð7Þ

for the heat transport equation (4). In Eqs. (6) and (7),

the up is the parabolic diffusion fundamental solution and

Dt ¼ tF 2 tF21 the corresponding time increment.

Analytical solutions of integral equations for velocity,

vorticity and temperature exist only for simple cases of

elementary geometries or basic forms of boundary

conditions. The boundary element method enables us to

find approximate solutions of the integral equations by

writing them in a discrete form. To obtain discrete forms of

equations, we divide the boundary G into boundary elements

with Ne nodes and the domain V into internal cells with Nc
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nodes. The unknowns of the system are nodal values of v;

vx; vy;
›v
›n
; T and ›T

›n
:

The flow kinematics equation (5) is written in discrete

form by collocating the boundary nodes with the source

point j: This produces an implicit system matrix for

unknown boundary nodes only. Eq. (5) has to be written

in its tangential or normal form to produce a non-singular

system matrix [18]. The final discrete forms of the flow

kinematics equation are normal (8) and tangential (9) forms:

ð½H1� þ ½Ht1�Þ{vn} ¼ þð½Ht2�2 ½H2�Þ{vt} þ ½Dt�{v}; ð8Þ

ð½H1� þ ½Ht1�Þ{vt} ¼ 2ð½Ht2�2 ½H2�Þ{vn} þ ½Dn�{v}; ð9Þ

where {vn}; {vt} and {v} are column vectors of node point

transformed velocities and vorticities. The solution of

systems of Eqs. (8) and (9) gives boundary values

of velocity and vorticity. Velocities in the domain are

computed explicitly from the discrete form of the integral

kinematics equation (5).

For equations of vorticity transport (3) and heat transport

(4) all nodes (boundary and domain) are included in the

system equation. Boundary and domain vorticities and

temperatures are computed implicity through the solution

of the system of linear equations. The final discrete forms of

Eqs. (3) and (4) are:

½Hk�{v}F ¼ ½Gk�
›v

›n

� �
F
2

1

n
½Gk�{vnv}F

þ
1

n
ð½Dkx�{vxv}F þ ½Dky�{vyv}FÞ

þ
1

n
½Bk�{v}F21 ð10Þ

for vorticity transport and

½He�{T}F ¼ ½Ge�
›T

›n

� �
F
2

1

a
½Ge�{vnT}F

þ
1

a
ð½Dex�{vxT}F þ ½Dey�{vyT}FÞ

þ
1

a
½Be�{T}F21 ð11Þ

for heat transport. For specified boundary and initial

conditions, this non-linear set of Eqs. (8)–(11) is solved

by an iterative procedure with under-relaxation. Through

the iterative process, large systems of linear equations must

be repeatedly solved. The described discretization

procedure was presented among others by Hriberšek and

Škerget [9], Škerget et al. [17], and Wrobel [19].

3. The discrete wavelet transform

The aim of this section is to show how to use the

properties of the discrete wavelet transform to accelerate

the solution of large linear systems of equations. One can

find another account of using this technique, among others

in Bucher et al. [2] and Koro and Abe [11–13]. The matrices

produced by discrete integral equations (5)–(7) are fully

populated and non-symmetric. We will use the modified

Haar wavelet transform, introduced below, to compress the

matrices i.e. to make them sparse. Writing the matrices in

compressed form (compressed row storage was used

in present work) will enable the solver to find the solutions

in less computational time.

3.1. The fast wavelet transform

The FWT algorithm of Beylkin et al. [1] uses a pyramidal

scheme to transform a vector into a wavelet basis. It employs

compact support wavelets of Daubechies [3] with M

vanishing moments. Each wavelet family is characterized

by 2M wavelet filter coefficients ðhi; giÞ; which were

tabulated by Daubechies up to M ¼ 10 in her 1988 paper

[3]. With M ¼ 1 we have the Haar wavelets, which have a

constant scaling function and non-overlapping support.

Given a vector with components s0
k ; k ¼ 1;…;N ¼ 2nþ1;

the following formulae are used recursively to make the

transform:

sk
j ¼

Xl¼2M

l¼1

hlslþ2k22
j21

; ð12Þ

dk
j ¼

Xl¼2M

l¼1

glslþ2k22
j21

; ð13Þ

where sk
j and dk

j are viewed as periodic sequences with the

period 2n2j: The formulae (12) and (13) map coefficients

s
j21
k with k ¼ 1;…; 2n2jþ1 into sk

j and dk
j with k ¼

1;…; 2n2j: The inverse mapping is given by

s
j21
k ¼

Xk¼M

k¼1

h2ks
j
n2kþ1 þ

Xk¼M

k¼1

g2kd
j
n2kþ1;

d
j21
k ¼

Xk¼M

k¼1

h2k21s
j
n2kþ1 þ

Xk¼M

k¼1

g2k21d
j
n2kþ1:

ð14Þ

Using formulae (12) and (13) recursively for all j ¼ 1;…; n;

k ¼ 1;…; 2n2j starting with s0
k ; k ¼ 1;…;N we are able

to evaluate all sk
j and dk

j with a cost proportional to N:

Storing dk
j and the one element in sn

1; we can perform

the inverse transform by recursively using Eq. (14)

for j ¼ n; n 2 1;…; 0:

3.2. FWT for vectors of arbitrary length

The requirement that the number of vector components N

is a power of 2, N ¼ 2nþ1; steams form the fact that

complete wavelet orders must be used in the transform.

All wavelets are formed by translation and dilation of a

prototype wavelet or a mother wavelet. The mother wavelet

is the zero-order wavelet denoted by c0;1: Higher order

wavelets are denoted by ck;l; where k is the wavelet order

and l its position. Wavelets of order k are dilated into

l ¼ 1;…; 2k positions. Starting with the zero-order mother
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wavelet, which only has one position and including the

scaling function, we have 2nþ1 wavelets, if the maximal

wavelet order is n:

The boundary-domain integral method solves viscous

fluid flow problems by solving large systems of linear

equations for equations of flow kinematics, vorticity

transport and heat transport. The sizes of the system

matrices are the number of boundary nodes and the

number of boundary and internal nodes for equations of

kinematics and both transport equations, respectively.

For the wavelet transform to be complete, all wavelets

up to a maximal order must be included into the wavelet

matrix. Therefore, the wavelet transform can work only on

vectors (or columns, rows of a system matrix), which have

a power of two components. This poses a limitation for

our formulation. It is not possible to have the number of

boundary nodes and the number of boundary and internal

nodes both of 2n form. Also, the difference in

computational effort needed to solve linear systems with

2n and 2nþ1 equations becomes drastic at large values of

n; hence making the choice of computational mesh density

very limited.

Let a vector ~s0 have an arbitrary number of components

s0
k ; k ¼ 1;…;L and let the first power of 2 larger than L be N:

We will expand the vector with additional K ¼ N 2 L

components xi; chosen is such manner, that the last K

wavelet coefficients d1
k will end up zero. The wavelet

transform of the expanded vector will be:

ðs0
1; s

0
2;…; s0

L2Kþ1; x1; s
0
L2Kþ2; x2;…; s0

L; xKÞ

! ðsn
0; d

n
1 ;…; d1

1 ; d
1
2 ;…; d1

N=22K ; 0;…; 0Þ; ð15Þ

where there are K zero and L non-zero wavelet coefficients

in the transformed vector. Also, N=2 is always larger than K;

because N is the first power of 2 number larger than L: In the

case of K ¼ N=2 we are dealing with a trivial case of

the original vector having a power of 2 components

L ¼ N=2; so there is no need for expansion. Eq. (13) defines

the values d1
k : Let us rewrite it for j ¼ 1 :

d1
k ¼

Xl¼2M

l¼1

gls
0
lþ2k22; k ¼ 1; 2;…;N=2 ð16Þ

where s0
i are the expanded vector defined on the left hand

side of Eq. (15). We would like to have the last K

coefficients equal to zero, d1
k ¼ 0: To achieve this, the

following system of equations must be solved for xi :

d1
k ¼

Xl¼2M

l¼1

gls
0
lþ2k22 ¼ 0; k ¼ N=2 2 K;…;N=2 ð17Þ

where s0 ¼ ðs0
1; s0

2; …; s0
L2Kþ1; x1; s0

L2Kþ2; x2; …; s0
L; xKÞ:

The system (17) has K equations for xk ðk ¼ 1;…;KÞ

unknowns. It is a M upper diagonal system, where non-zero

elements of the system matrix are located only on M upper

diagonals. For M ¼ 3 and K ¼ 6 the system is such:

g2 g4 g6 0 0 0

0 g2 g4 g6 0 0

0 0 g2 g4 g6 0

0 0 0 g2 g4 g6

0 0 0 0 g2 g4

0 0 0 0 0 g2

·

x1

x2

x3

x4

x5

x6

¼ ~R; ð18Þ

where the right hand side vector ~R is equal to

Rk ¼

2
XM
i¼1

g2i21s0
N22K21þkþi k # K 2 ðM 2 1Þ

2
Xa
i¼1

g2i21s0
N22K21þkþi

(

2
X2M

i¼2aþ1

gis
0
i22a

)
k . K 2 ðM 2 1Þ

8>>>>>>>>>><
>>>>>>>>>>:

;

ð19Þ

and a ¼ M 2 ½k 2 {K 2 ðM 2 1Þ}�: Solution of the system

(17) may be obtained recursively, when starting from the

bottom and solving for xK first. The following formulae

should be used:

xk ¼

1

g2

Rk 2
XM
i¼2

g2ixkþi21

( )
k # K 2 ðM 2 1Þ

1

g2

Rk 2
XK2k

i¼1

g2iþ2xkþi

( )
k . K 2 ðM 2 1Þ

8>>>>><
>>>>>:

: ð20Þ

for k ¼ K;K 2 1;…; 1: The solution (20) of the system (17)

is specially simple for the Haar wavelets (M ¼ 1;

g1 ¼ 2g2), namely

xk ¼ s0
L2Kþk; k ¼ 1;…;K;M ¼ 1: ð21Þ

Let us estimate the size of coefficients xk for

Daubechies wavelets ðM . 1Þ: Since the application of

the formulate (20) is recursive, we approximately have

xk21 < xk

g2
: This makes the order Oðx1Þ < ð 1

g2
ÞK :

The absolute value of the wavelet coefficient is

g2 ¼ 0:22 for M ¼ 2 and quickly decreases towards

zero as M increases [3]. This makes x1 a huge number

for virtually any combination K and M . 1; which soon

cannot be represented by a double precision number.

Daubechies wavelets (M . 1) can be used only, if K is

sufficiently small. In practice this means, that one can

expand the vector by only a few additional coefficients.

Due to this limitation of Daubechies wavelets, we have

used the Haar wavelets for the solution of the linear

systems of equations of fluid flow.
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3.3. The Haar wavelet transform for vectors

of arbitrary length

Here, we introduce the modified Haar wavelet transform,

which can transform vectors of any size, using a full matrix

form instead of the pyramid scheme presented above. Let the

Haar wavelet matrix be denoted by H: It is a square matrix

with 2kmaxþ1 £ 2kmaxþ1 elements, including all wavelets up to

the kmax order. We would like to be able to transform a

vector ~f of N components by multiplying it with the wavelet

matrix. The number of components N is larger than 2kmax ;

but smaller than 2kmaxþ1: We can always choose such kmax

that this inequality holds.

The strategy of our modification of the Haar wavelet

transform is to expand the vector, which has N components,

to 2kmaxþ1 components in such a way, that the transformed

vector f̂ ¼ H~f will have only N non-zero components.

The expansion is done by duplicating the last components of

the vector (see Eq. (21)). The highest order wavelets in the

bottom half of the Haar wavelet matrix have only two

non-zero elements of the same magnitude and opposite sign.

When those rows are multiplied with a vector with

duplicated components, the result is zero. The expansion

is a linear process and can be written in matrix form E~f ¼ ~f:

The expansion matrix E has 2kmaxþ1 rows and N columns.

An example of the expansion for N ¼ 5 and kmax ¼ 2 is

given in Eq. (22):

E~f ¼

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 1

·

f1

f2

f3

f4

f5

¼

f1
f2
f3
f3
f4
f4
f5
f5

¼ ~fe: ð22Þ

Applying the Haar wavelet matrix H on the expanded

vector ~fe yields a vector with only N non-zero elements:

HE~f ¼ H~fe ¼ lf̂1; f̂2; f̂3; f̂4; f̂5; 0; 0; 0l
T
¼ f̂e: ð23Þ

Since all ðf̂eÞi components for i . N are zero, one can

introduce contraction linear operator C; which will

transform f̂e into f̂ by disregarding the zeros. Writing C in

matrix form gives

CHE~f ¼ Cf̂e ¼

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

·

f̂1
f̂2
f̂3
f̂4
f̂5
0

0

0

¼

f̂1

f̂2

f̂3

f̂4

f̂5

¼ f̂:

ð24Þ

The matrix product CHE is a square matrix of N £ N

elements. The modified Haar or the CHE transform of a

vector of arbitrary length can be written as f̂ ¼ CHE~f:

The inverse CHE transform is obtained by multiplying the

wavelet coefficients with the inverse (CHE)21 matrix:

~f ¼ ðCHEÞ21 f̂ ¼ E21HTCT f̂; ð25Þ

ðCHEÞ21ðCHEÞ ¼ E21HTCTCHE ¼
�
I; ð26Þ

where E21 is a matrix that shortens the vector by

disregarding duplicate elements, HT is a transpose Haar

wavelet matrix and CT is a transpose C matrix, which

expands a vector by adding zeros to it. Matrices C; CT; E

and E21 are identity matrices, if the vector length N is equal

to the wavelet matrix dimension N ¼ 2kmaxþ1:

The CHE transform is still in its essence the Haar wavelet

transform. Before the Haar transformation, the vector is

modified in such manner, that just the right number of

wavelet coefficient end up zero. Not storing zeros makes it

possible to apply the CHE transform to a vector with an

arbitrary number of components and store only the same

number of wavelet coefficients.

4. Solving linear systems of equations using the modified

Haar wavelet transform

The discretization procedure described in the beginning

of this paper yields large systems of linear equations for

equations of flow kinematics, vorticity transport and heat

transport. Let us write the systems symbolically

�
a~x ¼ ~b; ð27Þ

where the unknown values are ~x ¼ x1; x2;…; xn: The right

hand side vector ~b ¼ b1; b2;…; bn and the system matrix
�
a

with elements aij are both known. Multiplying with the CHE

wavelet matrix on both sides of Eq. (27) gives

CHE
�
a~x ¼ CHE~b: ð28Þ

The expression (CHE)21(CHE) is equal to identity

(Eq. (26)), so it can be inserted into Eq. (28) to obtain

CHE
�
aðCHEÞ21CHE~x ¼ CHE~b: ð29Þ

The new system matrix can now be defined as

�
â ¼ CHE

�
aðCHEÞ21 ¼ CHE

�
aE21HTCT

: ð30Þ

The product CHE
�
a is the wavelet transform of all

columns in
�
a while ðCHE

�
aÞðCHEÞ21 transforms all rows in

the product CHE
�
a: Thus, the majority of information is

written in large elements of
�
â; while the redundant

information of
�
a is represented in small elements in

�
â:
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In Fig. 1, we displayed the magnitude of absolute element

values of the system matrix
�
â: The shown system matrix

solves the flow kinematics equation with the velocity

prescribed as the boundary condition. The numerical

example is described in more detail below. The difference

between absolute values of small and large elements in the

matrix is several orders of magnitude.

The vectors ~x and ~b in Eq. (29) are transformed according

to Eq. (24). Finally, we have a new system of linear

equations

�
âx̂ ¼ b̂ ð31Þ

governed by the new system matrix
�
â: When the system is

solved for x̂; we obtain the final solution vector with the

inverse wavelet transform (Eq. (25)) ~x ¼ ðCHEÞ21x̂:

The main advantage of this procedure is that the

unknown vector in the new linear system of equations x̂

consists of wavelet coefficients of the unknown vector ~x of

the original system of equations. Let us examine the inverse

transformation, which calculates ~x out of coefficients x̂:

Only a few coefficients x̂i are needed to obtain a good

approximation for ~x: The vast number of other coefficients

only make an already good approximation even better and if

we use all of them, we obtain the perfect reconstruction of ~x:

Even if our new system of equations calculates x̂

imperfectly, the inverse wavelet transformation will still

give us a good approximation of ~x: The strategy for the

imperfect calculation of x̂ was already proposed among

others by Bucher et al. [2]. It suggests that elements of

the system matrix
�
â; that have small absolute values, could

be thresholded, because they carry redundant information.

The thresholding operation proposed by Bucher et al. [2] is

thresholdð
�
âÞ ¼ �

âij; l
�
âijl $ a

0; otherwise

(
ð32Þ

Let �m be the average value of absolute elements of N £ N

system matrix defined as

�m ¼
1

N2

X
i

X
j

l
�
âijl: ð33Þ

We chose factors k of �m to be the thresholds a ¼ km for

the thresholding of elements in Eq. (32). Since the user has

but little knowledge of the magnitude of elements in the

system matrix it is convenient to express thresholding limit

in terms of the factor k: Although one could set the

thresholding limit in terms of the number of thresholded

elements, choosing the value of k has three advantages.

† The thresholding operation algorithm is easier to

develop.

† The RMS difference between solutions of the linear

systems of equations with and without thresholding is

linearly proportional to the factor k and exponentially

proportional to the share of thresholded elements.

† The dependence of the RMS difference to k is

independent of the size of the system of equations,

whereas the RMS difference at a fixed share of

thresholded elements depends on the system matrix size.

To show this advantages we devised the following

numerical test. Three flow kinematics system matrices with

120, 240 and 360 equations were prepared. All were taken

from the driven cavity flow test case, which is described in

detail in Section 5. We solved the three systems for 100

random right hand side vectors for a wide range of k values,

calculating the RMS difference between solution vector

obtained at k ¼ 0 and vectors obtained at non-zero k:

The average of the 100 RMS values is shown in Fig. 2. Please

note that the factor k in Fig. 2a is plotted in log–log scale and

therefore the function RMSðkÞ is linear and independent of

the number of equations in the system. At values of k larger

than k < 10; only the diagonal of the system matrix is

retained and the RMS difference becomes flat and indepen-

dent of k: On the other hand, the dependence of RMS on the

share of thresholded elements, plotted in graph in Fig. 2b, is

exponential and depends on the number of equations.

We shall now review this section by writing a solution

algorithm for a system of linear equations using the wavelet

matrix compression technique. The boundary element

method (or any other numerical scheme) produces the

system matrix
�
a and the right hand side vector ~b: The user

chooses the factor k as one of the input parameters of the

numerical scheme.

1. We calculate wavelet transform of the right hand side

vector b̂ ¼ CHE~b:

Fig. 1. The magnitude of absolute element values of the system matrix
�
â:

The largest elements lie on the diagonal and were, for the purpose of clearer

presentation, decreased by a factor of 10. The matrix was taken from a flow

kinematics calculation described in Section 5.
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2. Next we have to calculate the new system matrix via the

following matrix product:
�
â ¼ CHE

�
aE21WTCT:

Although the fast pyramid scheme of Beylkin et al. [1]

can be applied, this product still takes a substantial

amount of CPU time.

3. We zero out elements in
�
â; that have absolute values less

than the chosen threshold a ¼ k �m (Eq. (32)).

4. The thresholded matrix is now written in a

compressed form. We used the compressed row

storage technique [10].

5. We solve
�
âx̂ ¼ b̂ for x̂ instead of

�
a~x ¼ ~x for ~x:

6. Finally, we calculate the inverse wavelet transform

~x ¼ ðCHEÞ21x̂ and obtain the solution vector.

Only step 5 is needed, when solving the system

without usage of the wavelet transform. It is therefore

imperative that steps 1–4 and 6 take less computation

time than it is saved by the faster solution of the system in

step 5.

The calculation of the new system matrix in step 2

(Eq. (30)) takes up the majority of CPU time. Each row and

column must be extended ðEÞ; then transformed ðHÞ

and finally compressed ðCÞ: We measured CPU time needed

for step 2 for systems with different number of equations.

Results are shown in Fig. 3b, where it can be seen that the

shape of the time versus number of equations curve is

parabolic. Hence, the CPU time needed for the calculation

Fig. 2. The RMS difference between solution vectors obtained with and without thresholding in dependence of (a) the factor k and (b) the share of

thresholded elements.

Fig. 3. The CPU time needed for (a) the solution of three wavelet transformed systems of equations and three ðCHEÞ
�
aðCHEÞ21 calculations versus the share of

thresholded elements; (b) ðCHEÞ
�
aðCHEÞ21 calculations versus the number of equations N:
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of the new system matrix is proportional to the square of the

number of equations.

The wavelet solution algorithm saves CPU time by

solving the system of linear equations faster (step 5 in the

above algorithm). To be able to see how much CPU time

can be saved, we repeated the numerical test described

above. Three kinematics equation systems (120, 240 and

360 equations) were solved for random right hand side

vectors. The BICGSTAB [15] solver with diagonal

preconditioning was used. Both the CPU time needed for

the solution versus share of thresholded elements and the

time needed for the calculation of the new system matrix

(which is independent of the share of thresholded elements)

are shown in Fig. 3a. The sharp decrease in CPU time at

very large shares of thresholded elements is due to the fact,

that only the diagonal elements are non-zero and hence the

solution of the system is trivial. Unfortunately, we can

observe, that the CPU time needed for the calculation of

the new system matrix is longer than the time required

for the iterative solution of the original system. Thus, the

CPU time cannot be saved, if the system needs to be

solved for only one right hand side vector. It was already

reported by González et al. [7] and Beylkin et al. [1] that

the cost of iterative solvers for sparse systems is of

the order OðN log NÞ; while the wavelet compression of the

system matrix has the cost of OðN2Þ: Therefore, CPU time

can be saved only, if we are solving the system for more

than one right hand side vector.

In order to implement Eq. (30) to calculate the wavelet

transformed system matrix
�
â one needs the whole system

matrix
�
a in storage. The implementation itself requires only

one additional vector to store the temporary wavelet

coefficients. Since, Eq. (30) has to be solved prior to the

iterative process only once, the original system matrix may

be stored outside the core memory. After compression, the

original matrix is disregarded and only the compressed

matrix, which should fit into the core memory, is stored and

used throughout the iterative process to obtain solutions for

different right hand side vectors.

Our work focuses mainly on the accelerated solution of

linear systems of equations. However, wavelet compression

may be used on any linear equation involving matrices and

vectors. Storage requirements for explicit calculations like

~x ¼
P

�
mi·~vi may be efficiently reduced with wavelet

compression of matrices
�
m̂i ¼ CHE

�
miðCHEÞ21 and solving

the equation for wavelet transformed vector x̂ ¼
P

�
m̂i·v̂i:

Such schemes are especially useful in cases when storage is

more of a problem than CPU time.

5. Wavelet transform for flow kinematics

The use of the boundary element method, to solve

the governing equations of fluid flow written in the

velocity–vorticity formulation, requires a coupled iterative

solution procedure. Equations of fluid kinematics (8)

and (9), vorticity transport (10) and heat transport (11) are

to be solved for each iterative step. This procedure is

described in detail in Škerget et al. [16]. The main difference

between the flow kinematics and kinetics equations is, that

the system matrix
�
a changes for each iterative step for

equations of vorticity and heat transport, yet it is kept

constant for the flow kinematics equation. The reason for

this is that the velocity field, which changes every iteration,

is needed to calculate convective transport in kinetics

equations (10) and (11). This means that the most CPU

intensive step in the wavelet solution algorithm (2) needs to

be calculated only once for the flow kinematics equation,

and in each iterative step for the transport equations. As it

was shown in Section 4, wavelet matrix preparation takes

longer than the solution of the system, so using wavelet

transform for the solution of kinetics equations would

prolong computation time. For this reason, we focused our

attention on the wavelet solution of the flow kinematics. In

special cases, e.g. creeping flow, the kinetics equations can

also be kept constant by neglecting convective terms in

Eqs. (10) and (11). In the sub-domain technique [10], the

kinetics system matrix is temporary frozen in the iteration

process and changes only every 10 or so iterations. Using

the wavelet transform with fluid kinetics in the sub-domain

technique will be investigated in forthcoming research.

The use of wavelet compression for the solution of the

flow kinematics equation produces inaccurate boundary

vorticity values each iterative step. Those are used for the

solution of the transport equations. The BICGSTAB [15]

solver with diagonal preconditioning was used for solving

all systems of linear equations. When the solution vorticity

field changes between iterations for less than the conver-

gence criteria (RMS difference between vorticity fields in

subsequent iterations is less than e ¼ 5 £ 1026), the final

solution is written and the calculation process is stopped. To

get a quantitative representation of the error that is caused

by the wavelet compression we used the root mean square

(RMS) measure between the solution fields obtained with

and without the use of wavelets. The RMS measure is the

square root of the sum of squared differences between

the fields divided by the sum of squared values of the field

calculated without wavelets.

Two numerical test examples were investigated: the

onset of natural convection in a closed cavity and isothermal

fluid flow in a square driven cavity. Natural convection

onsets in a closed square cavity because of the buoyancy

force, which is approximated via the Boussinesq

approximation in our formulation. The test configuration

is shown in Fig. 4a. The left wall is heated constantly at

temperature T1; while the right wall is cooled and kept at T0:

The bottom and the top walls are adiabatic, while the gravity

force acts in a downward direction. The fluid is at rest on all

walls. This test was covered extensively by Davies [4] and

Davies and Jones [5]. The benchmark Nusselt number

Nu ¼
Ð1

0
›T
›n

dy for the middle vertical plane was used for

quantitative comparison of the results.
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The second test example investigated was the driven

cavity test. The fluid in the cavity is isothermal, so it is not

necessary to solve the heat transport equation. We are

seeking an iterative solution of only fluid kinematic

equation and vorticity transport equation. The driven cavity

is presented in Fig. 4b. On the top wall, the velocity is

prescribed in the x direction ~v ¼ ~vx; whereas on the other

walls, the flow velocity is zero. Ghia et al. [6] benchmark

velocity profiles were used for comparison.

Our aim is to use the two tests to establish the

dependence of the RMS error of the final temperature and

velocity fields on the share of thresholded elements for

different Rayleigh (Ra) and Reynolds (Re) number values

and for different mesh densities.

5.1. Share of thresholded elements

The first set of calculations was made to establish the

dependence on the share of thresholded elements. We chose

a 120 equation linear system for the solution of fluid

kinematics. The onset of natural convection was calculated

for Ra ¼ 104 and the fluid in the driven cavity was at

Re ¼ 400: Altogether we made six calculations of each test,

changing the share of thresholded elements by making use

of the factor k: The first calculation was made without using

wavelet compression ðk ¼ 0Þ: The RMS difference of the

temperature and velocity fields calculated with and without

the use of wavelets is presented, along with other parameters

of the calculations, in Table 1. In the Table and in the graph

in Fig. 5, we can see that the RMS difference increases

approximately linearly with k; which is in agreement with

the dependence on k of RMS errors caused by wavelet

transforms of a single vector, discussed in Section 5.

The resulting temperature field and the velocity profiles are

shown on Fig. 6.

Natural convection in a cavity is strong along the walls of

the cavity, where velocity and its gradients are large. In the

center of the cavity, diffusion is the dominant heat transport

process. Wavelet solution of fluid kinematics introduces a

numerical error, which is large in the convection-governed

part of the cavity and small in the center of the cavity,

where diffusion dominates. The increasing numerical error

with k is also reflected in the increasing difference of

the Nusselt number to the benchmark in the driven cavity test.

Looking at the velocity profiles in graphs b and c in Fig. 6,

we can also confirm, that the profiles calculated with

wavelets deviate from benchmark profiles mostly in the

areas of high velocity and gradients. For every driven cavity

test examined we found that RMSð~vyÞ is always larger than

RMSð~vxÞ:This is due to the geometry of the driven cavity test.

5.2. Reynolds and Rayleigh number values

Let us now examine the effect of Ra and Re number

values on the error introduced by wavelet compressed

solutions of the fluid kinematics equation. Again, a 120

linear equation system was chosen. The factor k was

Fig. 4. Presentation of the two tests: (a) the onset of natural convection in a

closed cavity and (b) isothermal flow in a square driven cavity.

Table 1

Error analysis of wavelet compressed solutions of the discrete fluid

kinematic equation using linear systems of 120 equations for the onset of

natural convection test and the driven cavity test

120 equation linear system, Ra ¼ 104; Re ¼ 400

k Share Natural convection Driven cavity

RMSðTÞ Nu Nub RMSð~vxÞ RMSð~vyÞ

0.0 0.000 0.0 2.24504 2.243 0.0 0.0

1023 0.109 3.62 £ 1026 2.24502 2.243 1.02 £ 1026 1.10 £ 1026

1022 0.387 2.42 £ 1025 2.24515 2.243 6.14 £ 1025 8.92 £ 1025

1021 0.710 0.90 £ 1024 2.24512 2.243 1.18 £ 1023 1.51 £ 1023

10þ0 0.883 1.78 £ 1023 2.24971 2.243 9.38 £ 1023 1.37 £ 1022

10þ1 0.987 0.76 £ 1022 2.26865 2.243 7.58 £ 1022 1.05 £ 1021

The RMS columns show the RMS difference between the final

temperature and velocity fields solved with and without the use of wavelets.

The middle vertical plane benchmark Nusselt number Nu ¼
Ð1

0
›T
›n

dy is

shown alongside the benchmark Nusselt number Nub [4].

Fig. 5. The RMS error of the temperature field in the onset of natural

convection test and the RMS error of the velocity field in the driven cavity

test plotted versus the factor k:
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kept constant for all calculations and was set to k ¼ 8:0:

This value was chosen based on the linear RMS versus k

dependence established in Section 5.1. This choice leaves

256 non-zero system matrix elements out of 14,400,

making the share of thresholded elements 0.9822. The

onset of natural convection was evaluated for three

Rayleigh number values Ra ¼ 103; 104, 105, while the

velocity field in a driven cavity was evaluated for three

Reynolds number values Ra ¼ 100; 400, 1000. The RMS

differences between resulting temperature and velocity

fields obtained with and without the use of wavelets are

shown in Table 2.

The rate of convective heat transport in the cavity is

characterized by the Rayleigh number value. The higher

the value the stronger the convection. At higher Ra number

value, velocities and velocity gradients are larger than at

lower Ra number value. Thus, the inaccuracies in the solution

of fluid kinematics equation at higher Ra number values,

which are due to the use of wavelets, have stronger influence

on the solution of transport equations and hence on the final

temperature field. Looking at the RMSðTÞ column of Table 2

it is evident, that the RMS difference rises with increasing

Rayleigh number value. In Fig. 7, the resulting temperature

fields are plotted for all three Rayleigh number values.

Fig. 6. The lines of constant temperature (a) in the onset of natural convection test and horizontal (b) and vertical (c) velocity profiles in the driven cavity test for

k ¼ 0 (solid lines) and k ¼ 10 (dashed lines). Ghia et al. [6] benchmark velocity profiles are shown with squares.

Table 2

Error analysis with regard to changing Ra and Re number values

Discrete form of flow kinematics has 120 equations, k ¼ 8:0

Natural convection Driven cavity

Ra RMSðTÞ Nu Nu0 Nub Re RMSð~vxÞ RMSð~vyÞ

103 2.239 £ 1023 1.124 1.118 1.118 100 3.123 £ 1022 6.057 £ 1022

104 8.666 £ 1023 2.277 2.245 2.243 400 4.881 £ 1022 6.902 £ 1022

105 39.42 £ 1023 4.656 4.539 4.519 1000 11.61 £ 1022 14.48 £ 1022

Nu0 is the Nusselt number value of the solution calculated without wavelets. Other notation is the same as in Table 1.

Fig. 7. The lines of constant temperature in a closed square cavity. The solid lines are temperature field solutions calculated without wavelet compression,

dashed lines were calculated using wavelets at k ¼ 8:0 and (a) Ra ¼ 103; (b) Ra ¼ 104; (c) Ra ¼ 105:
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Decreasing solution accuracy with increasing Ra number

value is obvious. Similarly in the driven cavity test, the

higher Reynolds number value increases the RMS difference

between velocity fields. Non-linearity of the momentum

transport equation is more severe at higher Re number value

and its solution more susceptible to the inaccuracies of the

boundary conditions, which are set by the wavelet solution of

the fluid kinematics equation.

5.3. Computational mesh density

To be able to understand the effect of computational

mesh density on the employability of the wavelet

compressed solutions of fluid kinematics equation, we

repeated the two numerical tests with different mesh

densities. We chose k ¼ 8:0; Ra ¼ 104; Re ¼ 400 and

three mesh densities: the discrete form of the fluid

kinematics equation had 80, 120 and 160 equations.

The RMS differences between resulting temperature and

velocity fields obtained with and without the use of wavelets

are shown in Table 3.

All RMS error values decrease with increasing mesh

density when the factor k is kept constant. We have shown

in Fig. 2, that the RMS error caused by preforming an

inverse wavelet transform at constant k on a vector of

arbitrary size is constant. Hence, the boundary vorticities

obtained by solving the flow kinematics equation with

wavelets have the same RMS error regardless of the mesh

density. When this constant error is introduced through

boundary conditions to the solution of flow transport

equations, it has a larger effect on the solution fields at

lower mesh densities and a smaller effect at high mesh

densities. This effect is visualized in Fig. 8, where the

vorticity distributions of the natural convection test were

plotted for all three cases. The increase of solution accuracy

with increased mesh density can readily be observed.

This work was focused mainly on saving computational

time by compressing an already formed full system matrix.

Further work will investigate the possibility of completely

abandoning the full system matrix and using the wavelet

compressed matrix also for right hand side vector

computations and for explicit computations of the fields

inside of the domain.

6. Conclusions

In this paper, we presented an implementation of wavelet

transform for acceleration of solutions of systems of linear

equations. The velocity–vorticity [16–18] formulation of

Table 3

Error analysis with regard to increasing computational mesh density

k ¼ 8:0; Ra ¼ 104; Re ¼ 400

Number of equation Share Natural convection Driven cavity

RMSðTÞ Nu Nu0 Nub RMSð~vxÞ RMSð~vyÞ

80 0.9826 11.82 £ 1023 2.244 2.248 2.243 18.26 £ 1022 24.31 £ 1022

120 0.9822 8.666 £ 1023 2.277 2.245 2.243 4.881 £ 1022 6.902 £ 1022

160 0.9792 4.301 £ 1023 2.267 2.245 2.243 2.879 £ 1022 3.293 £ 1022

Notation is the same as in Table 2.

Fig. 8. Vorticity distribution in a closed square cavity for the onset of natural convection test. The solid lines are calculated without wavelet compression,

dashed lines were calculated using wavelets at k ¼ 8:0: The flow kinematics equation was discreteized by (a) 80 equations, (b) 120 equations and

(c) 160 equations.
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the governing equations of fluid flow and heat transport was

used. The boundary element method solving the governing

equations was upgraded with the wavelet matrix

compression technique. A modification of the discrete

wavelet transform, which transforms vectors with arbitrary

number of elements, was introduced.

In the wavelet solution algorithm, the system matrix is

thresholded by zeroing out elements, which have absolute

values less than a chosen threshold a: We proposed the

threshold to be a factor k of the mean absolute value of all

matrix elements �m; a ¼ k �m It was shown, that the error

caused by thresholding elements is linearly dependent on

the factor k; while the dependence on the share of

thresholded system matrix elements is highly non-linear.

Fluid and heat flow in two numerical tests was

investigated. The standard onset of natural convection in a

square cavity and the flow in the driven cavity tests were

solved with and without the use of wavelets for the flow

kinematics equation for different Ra, Re, mesh densities and

factors k: It was shown that the RMS difference between the

final solution field calculated with wavelets and the one

obtained without wavelets increases linearly with the factor

k: The RMS difference also increases with increasing

Rayleigh and Reynolds number values at the same share of

thresholded elements. On the other hand, increasing

computation mesh density enables us to threshold more

elements to end up with the same RMS difference.
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