
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Combined single domain and subdomain BEM for 3D laminar viscous flow

J. Ravnik �, L. Škerget, Z. Žunič
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a b s t r a c t

A subdomain boundary element method (BEM) using a continuous quadratic interpolation of function

and discontinuous linear interpolation of flux is presented for the solution of the vorticity transport

equation and the kinematics equation in 3D. By employing compatibility conditions between

subdomains an over-determined system of linear equations is obtained, which is solved in a least

squares manner. The method, combined with the single domain BEM, is used to solve laminar viscous

flows using the velocity vorticity formulation of Navier–Stokes equations. The versatility and accuracy

of the method are proven using the 3D lid driven cavity test case.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The main advantage of the boundary element method (BEM) is
the ability to solve partial differential equations by solving for
boundary unknowns only, omitting the discretization of the
domain. This advantage is lost when a suitable fundamental
solution cannot be found and a domain contribution remains in
the integral equation. This happens when solving the vorticity
transfer equation or the kinematics equation. Several procedures
have been proposed to avoid this difficulty, for instance methods
based on the expansion of the integral kernel [1], dual reciprocity
method [2]or compression of the resulting full matrices [3].
We employed the subdomain method [4], in which the domain is
discretized into subdomains and BEM is applied on each
subdomain. The resulting integral matrices are sparse and
as such may be stored efficiently and enable fast algebraic
operations.

In the last decade our research group developed several BEM
based numerical algorithms for the solution of viscous incom-
pressible and compressible, laminar and turbulent flows by
solving the velocity–vorticity formulation of the Navier–Stokes
equations. With the aim of increasing computational grid density
and decreasing computational times the single domain BEM
approach has been coupled by several numerical procedures, such
as wavelet compression [5,6].

In this work, we are presenting a 3D viscous laminar flow
solver, which is based on a combination of single domain BEM and
subdomain BEM. In the subdomain BEM integral equations are
written for each subdomain (mesh element) separately. We use
continuous quadratic boundary elements for the discretization of
function and discontinuous linear boundary element for the
discretization of flux. By the use of discontinuous discretization of
flux all flux nodes are within boundary elements where the
normal and the flux are unambiguously defined. The corners and
edges, where the normal is not well defined, are avoided. The
singularities of corners and edges were dealt with special singular
shape functions by Ong and Lim [7] and by the use of additional
nodes by Gao and Davies [8]. By the use of a collocation scheme a
single linear equation is written for every function and flux node
in every boundary element. By using compatibility conditions
between subdomains, we obtain an over-determined system of
linear equations, which may be solved in a least squares manner.
The governing matrices are sparse and have similar storage
requirements as the finite element method. In the paper we
present subdomain BEM for the solution of the vorticity transport
and the kinematics equations. Ramšak and Škerget [9] employed a
similar approach for the 3D Laplace equation, but using a lower
order interpolation scheme.

The solution of viscous flow using a velocity–vorticity
formulation of Navier–Stokes equations requires an iterative
scheme for solution of both velocity and vorticity fields. The
main challenge lies in the determination of boundary vorticity
values, which are needed for the solution of the vorticity transport
equation. Several different approaches have been proposed for the
determination of vorticity on the boundary. Daube [10] used an
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Engineering Analysis with Boundary Elements 33 (2009) 420–424



Author's personal copy

influence matrix technique to enforce both the continuity
equation and the definition of the vorticity in the treatment of
the 2D incompressible Navier–Stokes equations. Liu [11] recog-
nized that the problem is even more severe when he extended it
to three dimensions. Lo et al. [12] used a differential quadrature
method to calculate vorticity from its definition to obtain a
solution of a natural convection problem. We will use single
domain BEM solution of the kinematics equation for determina-
tion of boundary vorticity. This approach was introduced by
Škerget et al. [13] in 2D and used coupled by FEM in 3D by Žunič
et al. [14].

2. BEM solution of the Navier–Stokes equations in
velocity–vorticity formulation

In this paper we assume an incompressible viscous Newtonian
fluid with constant material properties. Vorticity ~o is defined as
the curl of the velocity ~o ¼ ~r �~v. Both velocity and vorticity
fields are divergence free. The viscous fluid flow is governed by
the kinematics equation

r2~vþ ~r � ~o ¼ 0, (1)

which is a vector elliptic partial differential equation of
Poisson type and links the velocity and vorticity fields for every
point in space and time. The kinetic aspect of fluid movement is
governed by the vorticity transport equation, written in non-
dimensional form:

q~o
qt
þ ð~v � ~rÞ~o ¼ ð~o � ~rÞ~vþ 1

Re
r

2~o, (2)

with the Reynolds number denoted by Re. Eq. (2) equates the
advective vorticity transport on the left-hand side with the vortex
twisting and stretching term and the diffusion term on the right-
hand side. In this paper we are dealing with steady flows only,
which makes q~o=qt ¼ 0. The system of equations (1) and (2) is
solved in a nonlinear loop of three steps. Firstly, calculate
boundary vorticity values by solving the kinematics equation by
single domain BEM. Secondly, calculate domain velocity values by
solving the kinematics equation by subdomain BEM and finally
solve vorticity transport equation for domain vorticity values
using the boundary values from the solution of the kinematics
equation by subdomain BEM.

The boundary conditions required to obtain the solution are
prescribed velocity on the boundary. The unknown boundary
conditions for the vorticity transport equation are calculated as a
part of the algorithm using single domain BEM.

2.1. Solution of the steady vorticity transport equation

by subdomain BEM

The integral form of the steady vorticity transport equation (2)
may be written for the j th component of the vorticity vector
as [13]

cð~WÞojð
~WÞ þ

Z
G
oj
~ru� �~n dG

¼

Z
G

u�qj dGþ Re

Z
G
~n � fu�ð~voj � ~ovjÞgdG

� Re

Z
O
ð~voj � ~ovjÞ �

~ru� dO, (3)

where ~r is the location point, ~W is the collocation point, u% ¼
1
4pj

~W�~rj and ~q is the vorticity flux vector qj ¼ ~n �
~roj.

The field functions as well as the products of velocity and
vorticity field components are interpolated within elements using
shape functions. The mesh elements used in this work are
hexahedrons (Fig. 1). Quadratic interpolation of function within
hexahedron is employed ojðx;ZÞ ¼

P27
i¼1 Fioi

j, where Fi are the
standard shape functions for a 27 node Lagrangian domain
element. On each face of the hexahedron (Fig. 2) we used
continuous quadratic interpolation for function ojðx;ZÞ ¼P9

i¼1 jioi
j and discontinuous linear interpolation for flux

qjðx;ZÞ ¼
P4

i¼1 fiq
i
j, where oi

j are function values in each function
node, qi

j are flux values in flux nodes and ðx;ZÞ are local coordinate
system axes. The shape functions for function ji are the standard
shape functions for a quadratic nine node Lagrangian surface
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Fig. 1. A hexahedral mesh element with distribution of nodes: (left) nodes for interpolation of flux, (right) nodes for interpolation of function.

�

�

Fig. 2. A boundary element shown with nodes for discontinuous linear interpola-

tion for flux (squares) and nodes for continuous quadratic interpolation for

function (circles). Cartesian R3 space is shown on the left, local coordinate system

on the right.
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element, while the shape functions for flux are

f1 ¼
4
9ðx�

3
4ÞðZ�

3
4Þ; f2 ¼ �

4
9ðxþ

3
4ÞðZ�

3
4Þ,

f3 ¼
4
9ðxþ

3
4ÞðZþ

3
4Þ; f4 ¼ �

4
9ðx�

3
4ÞðZþ

3
4Þ: (4)

The geometry of the hexahedron is defined by the eight corner
nodes, thus each surface is defined by four nodes (numbers 1, 3,
5, 7 in Fig. 2). One may find the location of flux nodes (a, b, c ,d) by
using the following transformation:

xa ya za

xb yb zb

xc yc zc

xd yd zd

����������

����������
¼

1

64

49 7 1 7

7 49 7 1

1 7 49 7

7 1 7 49

���������

���������
�

x1 y1 z1

x3 y3 z3

x5 y5 z5

x7 y7 z7

����������

����������
. (5)

All flux nodes are located within boundary elements, none are
located at corners and edges—thus the unit normal and the flux
value are unambiguously defined in each flux node.

With this, the integrals required to solve the vorticity transport
equation are

Hi
W;G ¼

Z
G
ji
~ru% �~n dG; Gi

W;G ¼

Z
G
fiu

% dG,

~A
i

W;G ¼

Z
G
ji
~nu% dG; ~D

i

W;O ¼

Z
O
Fi
~ru% dO (6)

and the discrete equation is

cð~WÞojð
~WÞ þ

X26

i¼1

oi
jH

i
W;G

¼
X24

i¼1

qiG
i
W;G þ Re

X26

i¼1

ð~voj � ~ovjÞi �
~Ai
W;G

� Re
X27

i¼1

ð~voj � ~ovjÞi �
~Di
W;O. (7)

In order to calculate the integrals, a Gaussian quadrature
algorithm is used. The integrals are calculated in local coordinate
system via weighted summation of up to 48 integration points per
coordinate axis. In the case of high aspect ratios of hexahedral
elements, the boundary elements are divided into parts whose
aspect ratio is approximately equal to one. Calculation of the free
coefficient cð~WÞ is preformed indirectly, by considering a known
solution of the rigid body movement problem.

In order to set up a system of equations the source point is set
in all function and flux nodes of all mesh elements. Additionally,
the source point is set into a node in the center of the hexahedron,
where the function value may be obtained explicitly from known
boundary values. The value in the center of the element is needed
for the formation of the right-hand side of the single domain BEM
solution of the kinematics equation.

Thus all in all we have 51 equations for each element. The
corresponding integrals are stored in rectangular matrices, which
have 51 times the number of elements rows. The ½H� integral
matrix has 26 columns, while the ½G�matrix has 24 columns. Since
neighboring elements share nodes and since boundary conditions
on the outer boundaries of the domain are prescribed, we obtain
an over-determined system of equations. The system is sparse. We
store the system matrix in compressed row storage format. The
system is solved in a least squares manner [15]. Using a
combination of continuous and discontinuous interpolation
schemes increases the required number of collocation points
and results in an increase of the number of non-zero elements in
the matrices and as a results increases computational time.
However, the storage requirements of sub-domain BEM matrices
are much smaller than the full matrices of the single domain part
of the algorithm, thus the overall CPU time and storage
requirements are not greatly increased.

2.2. Solution of the kinematics equation for domain velocity by

subdomain BEM

The integral form of the kinematics equation without deriva-
tives of the velocity and vorticity fields takes the following form
(for derivation, see [6, Eqs. (19)–(24)]):

cð~WÞ~vð~WÞ þ
Z
G
~v~ru% �~n dG

¼

Z
G
~v� ð~n� ~rÞu% dGþ

Z
O
ð~o� ~ru%ÞdO. (8)

The boundary integrals on the left-hand side are stored in the ½H�
matrix, the domain integrals on the right-hand side are the ½~D�
matrices. We define the boundary integral on the right-hand side
as ½~H

t
� integrals in the following manner:

~H
t

W;G;i ¼

Z
G
jið~n�

~rÞu% dG. (9)

Since there are no fluxes in the equation, the source point is set to
function nodes only. Let vectors of nodal values of field functions
be denoted by curly brackets. The discrete kinematics equation
written in component wise form is

½H�fvxg ¼ ½H
t
z�fvyg � ½H

t
y�fvzg þ ½Dz�foyg � ½Dy�fozg, (10)

½H�fvyg ¼ ½H
t
x�fvzg � ½H

t
z�fvxg � ½Dz�foxg þ ½Dx�fozg, (11)

½H�fvzg ¼ ½H
t
y�fvxg � ½H

t
x�fvyg þ ½Dy�foxg � ½Dx�foyg. (12)

Using ½H� as the system matrix the three linear systems of
equations must be solved repeatedly, until convergence is
achieved. This is due to the fact that the right-hand sides depend
on velocity as well. No under-relaxation was needed in our
simulations. We notice, that the ½H� and ½~D� integral matrices are
needed for the vorticity transport equation as well and are thus
used twice.

All in all the subdomain BEM solution of the kinematics and
vorticity transport equations requires the calculation and storage
of ½H�, ½G�, ½~A�, ½~H

t
� and ½~D� matrices. The total number of integrals

that must be calculated and stored is 12 540 times the number of
mesh elements. In comparison with the single domain BEM this is
a very small number. The single domain BEM would require at
least three matrices with the number of elements equal to the
number of nodes squared. On a cubic mesh with 10� 10� 10
elements with 9261 nodes, the ratio between subdomain BEM
storage requirements and single domain BEM storage require-
ments would be approximately 0.04 and on a 20� 20� 20 mesh
it would be approximately 0.007.

2.3. Solution of the kinematics equation for boundary vorticity by

single domain BEM

In order to use the kinematics equation to obtain boundary
vorticity values, we rewrite the system of equations (10)–(12) in a
tangential form by multiplying the system with a normal in the
source point. This improves the conditioning of the system. This
approach has been proposed by Škerget and used in 2D by Škerget
et al. [13] and in 3D by Žunič et al. [14]. We employed the same
procedure as Žunič et al. [14] with the difference of using the
second order shape functions, while they used a first order
interpolation scheme.

3. 3D lid driven cavity

The proposed numerical scheme was tested on the 3D lid
driven cavity numerical example. Flow in a 3D lid driven cavity is

ARTICLE IN PRESS

J. Ravnik et al. / Engineering Analysis with Boundary Elements 33 (2009) 420–424422



Author's personal copy

one of the standard benchmark test cases used in development of
flow solvers. The domain as well as the boundary conditions is
unambiguously defined and do not change with the Reynolds
number. The flow exhibits a wide variety of phenomena, such as:
eddies, complex 3D patterns and instabilities [16].

The simulation was preformed on a unit cube ð0;0;0Þ � ð1;1;1Þ.
We named the walls in the following manner: left wall x ¼ 0,
right x ¼ 1, top z ¼ 1, bottom z ¼ 0, front y ¼ 0 and back y ¼ 1. No
slip velocity boundary conditions are employed on all wall
except the top wall, where a constant velocity in x direction is
prescribed ~v ¼ ð1;0;0Þ. Dirichlet type boundary conditions are
used for the vorticity transport equation. Vorticity on the
boundary is obtained by the solution of the kinematics equation
for all directions and walls, except for ox ¼ 0 on left and right
walls, oy ¼ 0 on front and back walls and oz ¼ 0 on top and
bottom walls.

Simulations were run on meshes of 83 elements with 4913
nodes, 103 elements with 9261 nodes and 123 elements with
15 625 nodes. The elements were concentrated towards the eight
corners. The Reynolds number for this test case is defined with
the length of cavity’s edge and the top wall velocity. We ran
simulations at Re ¼ 100, 400 and 1000.

The moving lid induces a primary vortex inside of the cavity.
The size of the vortex increases with Reynolds number. Secondary
vortices appear in the corners of the cavity, their position and
strength changing with Reynolds number. We compared velocity
profiles within the cavity in the y ¼ 0:5 plane with the results of
Yang et al. [17]. Fig. 3 shows good agreement for Re ¼ 100, 400 on
all meshes, while Re ¼ 1000 profiles are in good agreement with
the reference only on the dense mesh. The high Reynolds number
induces high gradients, which can only be described correctly on a
dense mesh. Comparison with the results of Žunič et al. [14]
BEM–FEM algorithm, which used a linear interpolation scheme,
we observe an increase of accuracy. The present velocity profiles
calculated on a coarser grid are in much better accordance with
the benchmark. The improvement is especially prominent in the
Re ¼ 1000 case.

4. Conclusions

We developed a 3D subdomain boundary element method
based on the continuous quadratic interpolation of function and
discontinuous linear interpolation of flux. Using discontinuous
boundary elements for flux enabled us to avoid the undefined
flux values in the corners and edges. The resulting over-
determined system of linear equations was solved in a least
squares manner.

By combining the subdomain BEM with the single domain BEM
we are able to solve velocity–vorticity formulation of Navier–
Stokes equations and simulate viscous laminar flow in 3D. The
method was successfully tested by simulating the flow in a 3D lid
driven cavity up to Reynolds number Re ¼ 1000.
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