
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Comparison between wavelet and fast multipole data sparse approximations
for Poisson and kinematics boundary – domain integral equations

J. Ravnik *, L. Škerget, Z. Žunič
Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia

a r t i c l e i n f o

Article history:
Received 22 May 2008
Received in revised form 16 December 2008
Accepted 22 December 2008
Available online 6 January 2009

Keywords:
Wavelets
Fast multipole method
Poisson equation
BEM

a b s t r a c t

The boundary element method applied on non-homogenous partial differential equations requires calcu-
lation of a fully populated matrix of domain integrals. This paper compares two techniques: the fast mul-
tipole method and the fast wavelet transform, which are used to reduce the complexity of such domain
matrices. The employed fast multipole method utilizes the expansion of integral kernels into series of
spherical harmonics. The wavelet transform for vectors of arbitrary length, based on Haar wavelets
and variable thresholding limit, is used. Both methods are tested and compared by solving the scalar Pois-
son equation and the velocity–vorticity vector kinematics equation. The results show comparable accu-
racy for both methods for a given data storage size. Wavelets are somewhat better for high and low
compression ratios, and the fast multipole methods gives better results for moderate compressions. Con-
sidering implementation of the methods, the wavelet transform can easily be adapted for any problem,
while the fast multipole method requires different expansion for each integral kernel.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

There are numerous techniques for solving partial differential
equations. Most of them, such as FVM or FEM, require discretiza-
tion of the problem domain. The solution is obtained by solving a
sparse system of linear equations, with the number of degrees of
freedom equal to the number of nodes in the domain. The bound-
ary element method (BEM), on the other hand, uses the fundamen-
tal solution of the differential operator and the Green’s theorem to
write an equivalent boundary integral equation. After discretiza-
tion of only the boundary of the problem domain, a fully populated
system of equations emerges. The number of degrees of freedom is
equal to the number of boundary nodes. This reduction of the
dimensionality of the problem is a major advantage over the vol-
ume based methods. Fundamental solutions are known for a wide
variety of differential operators [26], making BEM applicable for
solving a wide range of problems.

When dealing with more general linear or non-linear differen-
tial operators or with non-homogenous problems, for which the
fundamental solutions do not exist, the integral equation can not
be written completely by boundary integrals only. A domain inte-
gral is also present, requiring the discretization of the domain. In
order to write a system of linear equations for boundary un-
knowns, a matrix of domain integrals must be evaluated. This ma-

trix is fully populated, its order is nb � nd, where nb is the number
of nodes on the boundary and nd is the number of nodes in the do-
main. The storage requirements and CPU times needed to perform
matrix vector operations with such a matrix are huge. The primary
advantage of BEM is lost.

The dual reciprocity BEM [15,7] is one of the most popular tech-
niques to eliminate the domain integrals. It uses expansion of the
non-homogenous term in terms of radial basis functions. Several
other approaches, that enable construction of data sparse approx-
imations of fully populated matrices, are also known. Hackbusch
and Nowak [12] developed a panel clustering method, which also
enables approximate matrix vector multiplications with decreased
amount of arithmetical work. A class of hierarchical matrices was
introduced by Hackbusch [10,11] with the aim of reducing the
complexity of matrix–vector multiplications. Bebendorf and Rjasa-
now [2] developed an algebraic approach for solving integral equa-
tions using collocation methods with almost linear complexity.

In this paper, we are comparing the following two techniques
for avoiding the domain integral matrix problem: the fast multi-
pole method (FMM) and the wavelet transform method (WTM).
Both are used to provide a sparse approximation of the fully pop-
ulated domain matrix. The element count of the sparse approxima-
tions scales as OðndÞ. This makes the domain matrix storage
requirements lower than the storage requirements of the system
matrix, which scales as number of boundary nodes squared
Oðn2

bÞ. Both techniques eliminate the storage and CPU time prob-
lems, so BEM can be efficiently applied on any partial differential
equation.

0045-7825/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.cma.2008.12.012

* Corresponding author. Tel.: +386 22207745; fax: +386 22207990.
E-mail addresses: jure.ravnik@uni-mb.si (J. Ravnik), leo@uni-mb.si (L. Škerget),

zoran.zunic@uni-mb.si (Z. Žunič).

Comput. Methods Appl. Mech. Engrg. 198 (2009) 1473–1485

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier .com/locate /cma



Author's personal copy

The origins of the FMM can be found in a fast algorithm for par-
ticle simulations developed by Greengard and Rokhlin [9]. The
algorithm decreases the amount of work required to evaluate mu-
tual interaction of particles by reducing the complexity of the
problem from quadratic to linear. Ever since, the method was used
by many authors for a wide variety of problems using different
expansion strategies. Recently, Englund [8] used the FMM to per-
form matrix vector multiplication in algorithm for crack growth
simulations. Schwab and Todor [24] used a kernel independent fast
multipole method based algorithm for evaluation of Karhunen–
Loève eigenvalues. The boundary integral Laplace equation was
accelerated with FMM by Popov et al. [16]. In contrast to the con-
tribution of this paper, where the subject of study is the application
of FMM to obtain a sparse approximation of the domain matrix, the
majority of work done by other authors dealt with coupling BEM
with FMM for the boundary matrices.

The wavelet transform is a recent mathematical tool, developed
specially for saving computational time and computer storage. It
has been widely used for image compression and signal processing
and recently for providing faster solutions of boundary element
algorithms. Rathsfeld [18] presented a wavelet algorithm for the
boundary element solution of a geodetic boundary value problem.
Beylkin et al. [3] proposed the fast wavelet transform algorithm,
which ensures Oðn log nÞ non-zero elements at a fixed thresholding
limit, using Daubechies [6] wavelets. In our previous work [19], we
developed a wavelet technique that provides sparse approximation
of fully populated domain integral matrices of any size. It was used
for acceleration of a 2D BEM numerical method for simulations of
fluid flow [21]. In this work, the same technique will be improved
with the introduction of variable thresholding limit [5] and used in
3D. Its properties will be compared with the newly developed
FMM algorithm. The wavelet transform is a purely algebraic tech-
nique. It can be applied on any matrix of any size. On the other
hand, the FMM requires the expansion of the integral kernel, thus
each kernel must be dealt with separately.

The Poisson equation is known to describe many processes in
physics and engineering. Its solution is among prime interest
among researchers [14]. In this work, we are solving two types of
Poisson equations. Firstly, a scalar Poisson equation in 3D, where
the integral kernel is the Laplace fundamental solution, and sec-
ondly the boundary-domain integral form of the velocity–vorticity
vector kinematics equation, where the domain integral kernel is
the gradient of the Laplace fundamental solution. In both cases,
we set up sparse representations of the full domain matrix by
the wavelet and fast multipole methods.

The rest of this paper is organized as follows: in the second sec-
tion BEM for a scalar Poisson equation is introduced and the third
section BEM for the velocity–vorticity vector kinematics equation
is explained. Section 4 develops the FMM for the domain matrix
and Section 5 the wavelet transform. The techniques are thor-
oughly tested and examined in Section 6. The main findings and
conclusions are summarized in the last section.

2. BEM for the poisson equation

The Poisson equation is a partial differential equation with a diffu-
sion differential operator and a non-homogenous right hand side, i.e.

r2uð~rÞ ¼ bð~rÞ; ~r 2 X; ð1Þ

where the unknown scalar field function uð~rÞ and the non-homog-
enous source term bð~rÞ are defined in a domain X. The solution
can be found when suitable boundary conditions are applied, i.e.
known scalar function or its flux (q ¼~n � ~ru) on the boundary
C ¼ @X. An integral form of Poisson type equation for a scalar field
function uð~rÞ 2 X is [26]:

cð~nÞuð~nÞ þ
Z

C
uð~rÞ~n � ~ruHdC ¼

Z
C

qð~rÞuHdC�
Z

X
bð~rÞuHdX; ~n 2 C;

ð2Þ

where~n is the collocation point on the boundary, ~n is the unit nor-
mal, c is the geometrical factor and uH ¼ 1=4pj~r �~nj is the funda-
mental solution of the Laplace equation in 3D. The domain is
approximated by domain cells X �

Pnc
c¼1Xc and its boundary by

boundary elements C �
Pne

e¼1Ce. Within each domain cell and
boundary element the field functions are approximated using shape
functions. In this paper, domain cells are hexahedra and boundary
elements are parallelepipeds. In each domain cell domain shape
functions U with 27 nodes are used to achieve quadratic interpola-
tion of function. Boundary shape functions u with nine continuous
nodes are used in boundary elements for quadratic interpolation of
function. Flux is interpolated linearly using boundary flux shape
functions / with four discontinuous nodes. A sketch of a boundary
element and a domain cell is given in Fig. 1 showing locations of
nodes. Considering these approximations in Eq. (2) we have:

cð~nÞuð~nÞ þ
Xne

e¼1

X9

i¼1

ue
i

Z
Ce

ue
i
~n � ~ruHdC

¼
Xne

e¼1

X4

i¼1

qe
i

Z
Ce

/e
i uHdC�

Xnc

c¼1

X27

i¼1

bc
i

Z
Xc

Uc
i uHdX: ð3Þ

The integrals are traditionally named as

he;~n
i ¼

Z
Ce

ue
i
~n � ~ruHdC; ge;~n

i ¼
Z

Ce

/e
i uHdC; bc;~n

i ¼
Z

Xc

Uc
i uHdX:

ð4Þ

For a given collocation point~n we must calculate integrals for each
internal cell c, each boundary element e and each shape function i.
When the collocation point ~n is placed into all of boundary nodes,
integrals are arranged into matrices and the system of linear equa-
tions is written in matrix–vector form. Let ½ � denote matrices and fg
denote vectors. In matrix–vector form Eq. (3) is:

½H�fug ¼ ½G�fqg � ½B�fbg: ð5Þ

Since the integral kernels are non-zero for all collocation points, the
matrices of Eq. (5) are unsymmetrical and fully populated. Consider-
ing the boundary conditions, the system of Eq. (5) is rearranged so
that the unknown values of function and flux are gathered on the left
side. A direct solver with LU decomposition is used to solve the
resulting system. In order to evaluate the right hand side of the sys-
tem, we must calculate the domain matrix times vector product
½B�fbg. Since the domain matrix is fully populated, we have lost
the advantage of the boundary element method. The non-homoge-
nous part of the Poisson equation requires the discretization of the
domain and the calculation of a fully populated domain matrix.

Fig. 1. A boundary element (left) in a local coordinate system with locations of
function nodes (circles) and flux nodes (squares). A domain cell (right) with
function node locations.

1474 J. Ravnik et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 1473–1485



Author's personal copy

The order of the boundary matrix ½H� is the number of boundary
nodes (function nodes nu

b plus flux nodes nq
b; nb ¼ nu

b þ nq
b) times the

number of boundary function nodes nb � nu
b . The order of the

boundary matrix ½G� is nb � nq
b. These sizes are small compared to

the order of the domain matrix ½B�, which is nb � nd, since
nd � nb for all 3D geometries meshed by a dense mesh. Thus the
number of elements in boundary matrices scales as Oðn2

bÞ and the
number of elements in the domain integral matrix scales as
Oðnd � nbÞ. Considering a cube, one can estimate nd ¼ N3 and
nb � N2. So the complexity of the domain integral matrix is
OðN5Þ, where N is the number of nodes on one edge of our model
cube, while the boundary matrices scale as OðN4Þ. Since, clearly,
the domain integral matrix takes up most of the CPU time and stor-
age space, this paper presents an application of the fast multipole
method and wavelet transform method to build a sparse approxi-
mation of the domain matrix in such a way that the number of
non-zero elements scales linearly as OðndÞ.

3. BEM for the kinematics equation

We are considering flow of an incompressible fluid. Let its
velocity vector field be denoted by ~v and its vorticity field by
~x ¼ ~r�~v . The kinematics equation is a vector elliptic partial dif-
ferential equation of Poisson type, which links the velocity and vor-
ticity fields for every point in space and time. It is equivalent to the
Biot–Savart law, which connects the electric current and magnetic
field density. For an incompressible fluid it can be stated as

r2~v þ ~r� ~x ¼ 0; ð6Þ
where we must bear in mind, that both velocity and vorticity fields
are divergence free.

The kinematics equation is a Poisson equation with a curl of vor-
ticity on the right hand side, so its integral form is analogous to (2):

cðnÞ~vðnÞ þ
Z

C

~vð~n � ~rÞuHdC ¼
Z

C
uHð~n � ~rÞ~vdC

þ
Z

X
ð~r� ~xÞuHdX; n 2 C: ð7Þ

By taking into account the fact that both velocity and vorticity fields
are solenoidal, it is possible to rewrite Eq. (7) into a form without
derivatives of the velocity and vorticity fields (for derivation, see
Ravnik et al. [20] Eqs. (19)–(24)):

cð~nÞ~vð~nÞ þ
Z

C

~v~ruH �~ndC ¼
Z

C

~v � ð~n� ~rÞuHdCþ
Z

X
ð~x� ~ruHÞdX:

ð8Þ
In order to use the kinematics equation to obtain boundary vorticity
values, we rewrite Eq. (8) in a tangential form to improve the con-
ditioning of the system. This is done by multiplying the equation
with a normal in the source point ~nð~nÞ:

cð~nÞ~nð~nÞ �~vð~nÞ þ~nð~nÞ �
Z

C

~v~ruH �~ndC

¼~nð~nÞ �
Z

C

~v � ð~n� ~rÞuHdCþ~nð~nÞ �
Z

X
ð~x� ~ruHÞdX: ð9Þ

This approach has been proposed by Škerget and was used in 3D by
Ravnik et al. [23] and Zunič et al. [27]. Since there are no fluxes in
Eq. (9) only boundary function and domain shape functions are re-
quired to write its discrete counterpart:

cð~nÞ~nð~nÞ �~vð~nÞ þ~nð~nÞ �
Xne

e¼1

X9

i¼1

~ve
i

Z
Ce

ue
i
~ruH �~ndC

¼~nð~nÞ �
Xne

e¼1

X9

i¼1

~ve
i �

Z
Ce

ue
i ð~n� ~rÞuHdC

þ~nð~nÞ �
Xnc

c¼1

X27

i¼1

~xc
i �

Z
Xc

Uc
i
~ruHdX: ð10Þ

Similarly to the Poisson equation, we may name the integrals as

he;~n
i ¼

Z
Ce

ue
i
~ruH �~ndC; ~hte;~n

i ¼
Z

Ce

ue
i ð~n� ~rÞuHdC;

~bc;~n
i ¼

Z
Xc

Uc
i
~ruHdX: ð11Þ

We observe an important difference between the domain integral in
(11) and the domain integral (4) of the Poisson equation. Namely,
we now have three components of the domain integral leading to
three domain matrices. Their kernels are the components of the gra-
dient of the fundamental solution, while the kernel of the domain
integral in Eq. (4) is the fundamental solution itself.

In order to write linear systems of equations for the unknown
boundary vorticity values, we place the collocation point into every
boundary node of the whole computational domain. This yields
three full system matrices and several right hand side matrices
of the order number of boundary nodes squared and three domain
matrices of the order nb � nd. The systems are solved using a LU
decomposition method.

The same reasoning regarding storage space and CPU time as is
Section 2 applies for the kinematics equation as well. The domain
integral matrices take up most resources, thus we will apply FMM
and WTM for them.

4. Fast multipole method for the domain matrix

Let us consider the domain integrals in Eqs. (4) and (11). Since
for each collocation point~n integrals for all domain cells c must be
evaluated, we are obviously faced by a Oðn2Þ type problem. This is
analogous to the problem of interaction of n particles [1], where
the origins of the FMM can be found.

4.1. Series expansion

The FMM is based on the fact that it is possible to expand the
domain integral kernel, (i.e. the fundamental solution in Eq. (4)
and its gradient in Eq. (11)) into a series and by doing so, separate
the variables – the collocation point~n and the domain integration
point~r. Fig. 2 states the geometry of the problem.

In this work, we will use spherical harmonics to expand the
integral kernels into series. Other expansions are also possible,
such as Taylor series, Lagrangian polynomials, etc. The Laplace fun-
damental solution is expanded into a series in the following
manner:

uH ¼ 1

4pj~r �~nj
¼ 1

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 2rn cos cþ n2

q
¼ 1

4pn

X1
l¼0

r
n

� �l

Plðcos cÞ; ð12Þ

where Pl are the Legendre polynomials and c is the angle between~n
and~r. In order for the series (12) to converge we must have r=n < 1.
This condition is not satisfied for all~n and~r combinations in an arbi-
trary domain. However, since the integral kernel depends only on
the distance between the collocation and domain points, we may
swap ~n and ~r in order to meet the convergence criteria. Further-
more, it is also possible to move the origin of the coordinate system
so that the series convergence is improved. Each Legendre polyno-
mial can be written as a finite series of spherical harmonics Y. In po-
lar coordinate system, where ~r ¼ ðr;ur ; hrÞ and ~n ¼ ðn;un; hnÞ, we
write

Plðcos cÞ ¼ 4p
2lþ 1

Xl

m¼�l

ð�1ÞmY�m
l ðhn;unÞY

m
l ðhr ;urÞ: ð13Þ

J. Ravnik et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 1473–1485 1475



Author's personal copy

Using Eq. (13) in (12) we obtain an expression for the integral
kernel

1

4pj~r �~nj
¼
X1
l¼0

Xl

m¼�l

ð�1Þm

2lþ 1
1

nlþ1 Y�m
l ðhn;unÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

f ð~nÞ

rlYm
l ðhr ;urÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

gð~rÞ

; ð14Þ

where the dependence on the collocation point and domain point
are separate. The spherical harmonics are calculated using their
relationship to associated Legendre polynomials Pm

l

Ym
l ðh;uÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4p
ðl�mÞ!
ðlþmÞ!

s
Pm

l ðcos hÞeimu: ð15Þ

The associated Legendre polynomials are evaluated using recur-
rence relations as described in Press et al. [17]. Using the same rea-
soning, we may expand the gradient of the fundamental solution as:

~ruH ¼ ~r 1

4pj~r �~nj
¼
X1
l¼0

Xl

m¼�l

ð�1Þm

2lþ 1
1

nlþ1 Y�m
l ðhn;unÞ~r rlYm

l ðhr;urÞ
� �

¼
X1
l¼0

Xl

m¼�l

ð�1Þm

2lþ 1
1

nlþ1 Y�m
l ðhn;unÞ

� lYm
l ðhr ;urÞrl�2~r þ rl~rYm

l ðhr;urÞ
n o

: ð16Þ

The gradient of spherical harmonics may be written as

~rYm
l ðh;uÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4p
ðl�mÞ!
ðlþmÞ!

s
~r Pm

l ðcos hÞeimu� 	

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4p
ðl�mÞ!
ðlþmÞ!

s
~r

� Pm
l ðcos hÞ @eimu

@u
~ru� sinðhÞ @Pm

l ðcos hÞ
@ cos h

~rh


 �
: ð17Þ

The derivatives of associated Legendre polynomials are obtained
using the following recurrence relation:

@Pm
l ðxÞ
@x

¼ lxPm
l ðxÞ � ðlþmÞPm

l�1ðxÞ
x2 � 1

; ð18Þ

while the polar angles derivatives written in Cartesian coordinate
system are

~rh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
x2 þ y2 þ z2

zx
x2 þ y2 ;

zy
x2 þ y2 ;�1

� �
;

~ru ¼ 1
x2 þ y2 �y; x;0ð Þ:

ð19Þ

Using the above expansions, the domain integrals of Eqs. (4) and
(11) may now be written with separate variables, as

bc;~n
i �

XL

l¼0

Xl

m¼�l

Fm
l ð~nÞ

Z
Xc

Gm;i
l ð~rÞdX; ð20Þ

where F and G represent the above derived relationships. We are
able to approximately calculate each entry in the domain matrices
with the above sum. The number of expansion terms
nexp ¼ ðLþ 1Þ2 in the series controls the accuracy of the
approximation.

4.2. Cluster trees

Let us consider a cluster of nr nearby collocation points and a
cluster of nc nearby domain cells, as illustrated in Fig. 3. These cor-
respond to a nr � nc matrix block, which is a part of the domain
matrix. Since the variables in Eq. (20) are separated, it is possible
to evaluate two lower order matrix blocks (nr � nexp) and
(nexp � nc), where nexp is the number of expansion terms. In the first
one expansion terms F are evaluated for all collocation points. In
the second one integrals of expansion terms G are evaluated for
all domain cells. Multiplication of the two lower order matrix
blocks gives the full nr � nc matrix block up to an expansion error,
which is defined by the number of terms in the expansion. But this
is never done; rather we store the two lower order matrices in-
stead of the full matrix. This technique saves memory if the
amount of data, that must be stored in the two lower order matri-
ces, is smaller than the amount of data in the full matrix block, i.e.

2ðnrnexp þ ncnexpÞ < nrnc; ð21Þ

the factor 2 on the left hand side is due to the fact that spherical
harmonics are complex and must be stored as such, while real val-
ues are stored in the full matrix. As long as the collocation node
cluster and the domain cells cluster are far apart from each other
the integral kernels are slowly varying functions, so we can expect
a low number of expansion terms to yield a suitable approximation.
When the clusters are nearby, they should be smaller and a larger
number of expansion terms must be used. When the clusters coin-
cide, i.e. the collocation nodes are a part of the integration cells, the
kernels are singular. Such cluster pairs are called inadmissible and
the corresponding matrix block is evaluated in full, not approxi-
mated with two lower order matrices.

Fig. 2. A problem domain X, its boundary C, a collocation point ~n and a domain
integration point~r.

Fig. 3. A problem domain shown with a cluster of collocation points~n and a cluster
of domain cells.

1476 J. Ravnik et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 1473–1485



Author's personal copy

In order to be able to build a sparse approximation of the whole
domain matrix, we must divide the collocation points and domain
cells into clusters. We constructed a tree of collocation point clus-
ters and a tree of clusters of domain cells. The trees were con-
structed in a recursive hierarchical manner. The problem domain
was enclosed by a parallelepiped. All collocation points and all of
the domain cells are within this root parallelepiped. They make
up root clusters of both trees. The parallelepiped is cut in half by
a plane, breaking the root clusters into two. The cutting process
is repeated recursively, so the clusters on each level have less
and less collocation points and domain cells. Each branch in the
tree of clusters has two child branches corresponding to the clus-
ter’s domain being cut in half. The cutting planes are parallel to
the coordinate system axes, a sequence of x� y, x� z and y� z is
used. Thus three cuts are needed to cut a cube into eight equal
parts. The cutting sequence is stopped, when the number of collo-
cation nodes and domain cells in the cluster is so small, that the
condition (21) can no longer be satisfied.

With both cluster trees in place, the next step is to pair them, so
a tree of pairs of clusters can be formed. Each branch of the collo-
cation tree is paired with each branch of the domain cells tree on
the same level and with each branch of the domain cells tree on
the next level thus forming branches on the tree of pairs of clusters.
For each pair a decision is taken based on the admissibility crite-
rion whether a sparse approximation for this cluster pair is possi-
ble or not. If the pair is admissible, the branch on the tree becomes
an admissible leaf, where the two low-order matrices will be calcu-
lated. If admissibility criterion is not reached until the last level of
the tree, such cluster pairs are inadmissible and will be calculated
in full and not with the sparse approximation.

4.3. Admissibility criterion

The admissibility criterion is devised as follows. Let us consider
one branch of the tree of pairs of clusters, which has a cluster of
collocation points and a cluster of domain cells. Firstly, we try to
find an origin of the coordinate system in nodes within the domain
cells of the cluster. We choose such origin that the ratio r=n is min-
imal for all pairs of collocation nodes and domain cells so the series
will converge as fast as possible. If the minimal ratio is above one,
series expansion for this pair of clusters is not possible. Thus this

pair is not admissible. Secondly, if the r=n ratio is below one, we
calculate the number of expansion terms needed to have the accu-
racy of calculation of the integral kernel less than user’s prescribed
criteria �. If the number of expansion terms is low enough, so that
condition (21) is fulfilled, this cluster pair is admissible. At this
point the tree of pairs of clusters gets a leaf - no further branching
is necessary.

To illustrate the algorithm, a cubic domain is considered
meshed by 43 domain cells having in total 93 nodes. The tree of
cluster pairs for this mesh is shown in Fig. 4. The corresponding
matrix block structure is shown in Fig. 5. As the mesh density in-
creases, the ratio between admissible and inadmissible blocks
turns in favour of admissible blocks, yielding more saved memory.
This can readily be seen by examining the matrix structure of a 163

cells mesh with 333 nodes on Fig. 6.

Fig. 4. The tree of pairs of clusters of a very small mesh (4 � 4 � 4) is shown along with two subsequent zooms. Each circle represents a branch in the tree of pairs of clusters
with a cluster of collocation points paired with a cluster of domain cells. Green (light colour) circles represent admissible leaves; red (dark colour) circles represent
inadmissible leaves. (For interpretation of the references in colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Matrix structure of a cubic mesh (43 cells, 93 nodes). The depicted dashed
rectangles correspond to tree parts in Fig. 4. Dark areas show inadmissible matrix
blocks, white areas are admissible matrix blocks.

J. Ravnik et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 1473–1485 1477



Author's personal copy

4.4. Implementation

A set of routines was written to form a hierarchical tree struc-
ture with evaluated matrices on each of the admissible or inadmis-
sible leaves. Let ½B0� denote such a tree and represent the FMM data
sparse approximation of the domain matrix.

The described FMM based algorithm was implemented into the
BEM Poisson and kinematics equation solver codes. It is capable of
constructing an approximation of the domain matrix ½B0 �, which
can be used to evaluate the right hand side of the system of equa-
tions. The advantages of using ½B0� instead of the fully populated ½B�
are summarized in the following points.

� Since we have taken careful care that the amount of data
required to store matrices in all admissible leaves is smaller than
data storage of their fully populated counterparts, we know that
the memory required to store the FMM sparse approximation of
the domain matrix ½B0 � will be less than the memory required to
store ½B�.

� The computer memory requirements needed to store the fully
populated matrix scale as Oðnd � nbÞ. By using FMM we were able
to decrease the memory requirements to a linear dependence of
the number of nodes, i.e. they scale as OðndÞ. Proof of this is given
in the numerical tests section below.

� Evaluation of the two lower order matrices for each admissible
leaf is computationally less expensive than the computation of
their full matrix block counterpart. For one, there are less matrix
elements to evaluate; secondly one of the low-order matrices
holds values only (see Eq. (20)) and not integrals. The elements
of the second low-order matrix are integrals of slowly varying
functions, thus less effort is needed to evaluate them.

� There are three domain matrices of Eq. (11), each holding inte-
grals of one component of the gradient of the fundamental solu-
tion. Since one of the low-order matrices in admissible leaves
holds values independent of ~r, they are also independent of
the gradient direction. Thus only one set of these matrices,
which is common for all three directions, needs to be stored.
This saves additional data storage space.

5. Wavelet transform for the domain matrix

Let ½B� be a domain matrix. In order to solve the Poisson or kine-
matics equations we must multiply the domain matrix with a vec-
tor to calculate the right hand side of the system. In this section we
explain how to use wavelet transform to obtain a sparse approxi-
mation of the domain matrix, thus saving storage space and CPU
time needed to make matrix vector multiplication.

Let W be a wavelet matrix, which if multiplied by a vector,
transforms the vector into a vector of wavelet coefficients. It is

set up using the Haar wavelet transform for vectors of arbitrary
length and is capable of transforming matrices of arbitrary size.
The W transform is still in its essence the Haar wavelet transform.
Before the Haar transformation, the vector is modified in such
manner, that just the right number of wavelet coefficient end up
zero. Not storing zeros makes it possible to apply the W transform
to a vector with an arbitrary number of components and store only
the same number of wavelet coefficients. The matrix W is never
stored in memory. Its structure and layout of non-zero elements
are known, so the matrix is set up on the fly, during matrix vector
multiplication. Algorithms for performing the wavelet matrix time
vector product were developed by Ravnik et al. [19].

The transpose of the wavelet matrix is equal to its inverse,
WT ¼W�1. If fbg is a vector, we may write domain matrix times
a vector product as

½B�fbg ¼WT W½B�WT
� 


Wfbg: ð22Þ

The product W½B� is the wavelet transform of all columns in ½B�,
while ðW½B�ÞWT transforms all rows in the product W½B�. Thus the
majority of information is written in large elements of
½Bw� ¼W½B�WT , while the redundant information of ½B� is repre-
sented in small elements in ½Bw�. Small elements of ½Bw� may be
set to zero without greatly diminishing the accuracy of the ma-
trix–vector product (22). This operation is called thresholding [4].
Elements in the matrix, whose absolute value is less than the thres-
holding limit, are set to zero. The zeros in the wavelet approxima-
tion of the domain matrix ½Bw� are not stored, thus saving storage
space. Compressed row storage matrix format is used.

By setting the thresholding limit we can arbitrarily choose the
amount of data in the wavelet approximation of the domain ma-
trix ½Bw�. In contrast to FMM, where it is not possible to arbitrarily
choose the number of expansion terms and through them the size
of the FMM approximation of the domain matrix ½B0�. The number
of expansion terms is always a square of a natural number. This
property is inherited from the spherical harmonic series
expansion.

In Ravnik et al. [19], a fixed thresholding limit was used to zero
out small elements in the wavelet matrix. It was shown by Dah-
men et al. [5], Harbrecht and Schneider [13] and von Petersdorff
and Schwab [25] that the thresholding limit should rather be
wavelet level dependent. In the numerical tests we compared the
fixed and three variable thresholding limits:

� ¼

jm . . . FT

2J�jþj0
2 jm; 0 6 j; j0 6 J . . . VT2ffiffiffi

2
p J�jþj0

2 jm; 0 6 j; j0 6 J . . . VT20:5

0:5J�jþj0
2 jm; 0 6 j; j0 6 J . . . VT0:5

8>>>>><
>>>>>:

ð23Þ

Fig. 6. Matrix structure of a cubic mesh (163 cells, 333 nodes). Filled areas show inadmissible matrix blocks, white areas are admissible matrix blocks obtained using an
admissibility criteria of � ¼ 10�5. The corresponding tree of pairs of clusters has 19 levels.

1478 J. Ravnik et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 1473–1485



Author's personal copy

where m is the average matrix element value, j is the user pre-
scribed value, J is the maximal wavelet level and j and j0 are the
wavelet levels of the matrix element.

Since the wavelet transform method is purely algebraic, it can
work on any matrix without any change to the algorithm. This is
an advantage over the FMM, which is based on expansion of the
integral kernel and thus requires major changes for each integral
kernel. On the other hand, in order to construct the data sparse
wavelet matrix, we require the calculation of the full matrix, while
the FMM never requires the calculation of the full matrix.

6. Numerical tests

We developed two methods, which enable construction of data
sparse approximations of domain integral matrices: the fast multi-
pole expansion method was described in Section 4 and the wavelet
transform method in Section 5. In this section we present several
tests for the scalar Poisson equation (1) and vector kinematics
Eq. (6), which were devised to compare the methods.

We made several tests in order to check the accuracy of using
½B0� and ½Bw� as data sparse approximations of fully populated ma-
trix ½B�. By using coarse meshes (up to 333 nodes), we were able
to compare results obtained by all three domain matrices and com-
pare the accuracy of the results. The differences between results
are presented in terms of the uniform norm and RMS value. For gi-
ven vectors of nodal values ffg and fgg we define:

kffg � fggk1 ¼maxfjf1 � g1j; . . . ; jfn � gnjg;

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðfi � giÞ

2P
f 2
i

s
: ð24Þ

In Section 6.1, we are testing domain matrices, which were obtained
by integration of the Laplace fundamental solution in 3D. Section

6.2 deals with domain matrices, whose integral kernel is the gradi-
ent of the Laplace fundamental solution in 3D.

6.1. The Poisson equation

Let the problem domain be a unit cube. A structured mesh with
equally spaced hexahedral cells fills the cube. Let N be the number
of nodes in each direction. The number of nodes in the domain is
N3 and the number of nodes on the boundary scales as OðN2Þ.
The number of elements in the fully populated right hand side ma-
trix ½B� thus scales as OðN5Þ. This fact is confirmed by the data of Ta-
ble 1, where the storage requirements of ½B� and ½B0 � are compared
for different meshes and different numbers of expansion terms.
Naturally the storage requirements for ½B0� increase, when the
number of expansion terms is increased. However, looking at the
storage requirement at a chosen number of expansion terms, we
observe (see Fig. 7), that it increases linearly with the number of
nodes, i.e. scales as OðN3Þ. This relationship holds regardless of
the number of expansion terms. Thus, by employing the FMM,
we were able to decrease the storage requirements from
Oðnd � nbÞ to a linear dependence of OðndÞ.

6.1.1. Matrix–vector multiplication
We chose one hundred random vectors fbg and compared the

results of multiplication with the fully populated matrix
ffg ¼ ½B�fbg, the FMM data sparse matrix fg0g ¼ ½B0 �fbg and the
wavelet data sparse matrix fgwg ¼ ½Bw�fbg. We calculated uniform
norms and RMS values for FMM sparse approximations of matrices
obtained with different number of expansion terms and wavelet

Table 1
Comparison of memory requirements between the full matrix ½B� and the FMM data
sparse matrix ½B0 � in megabytes [MB].

No. of nodes ½B� Number of expansion terms of ½B0 �

4 9 16 25 36

173 115 37 46 59 75 95
253 824 127 163 214 279 358
333 3369 296 408 565 768 1015
493 24,818 1157 1617 2260 3086 4097
653 102,988 2345 3503 5125 7210 9758

st
or
ag
e
[G
B]

100000 200000
0

2

4

6

8

10
4
9
16
25
36

st
or
ag
e
[G
B]

100000 200000
0

20

40

60

80

100
[B]
4
9
16
25
36

Fig. 7. The graphs show a comparison of the memory required to store a full matrix ½B� (thick solid line) and FMM data sparse matrices ½B0 �with different number of expansion
terms. We observe the linear dependence of storage requirements with the number of domain nodes nd regardless of the number of expansion terms.

Table 2
Relationship between the data ratio D and the number of multipole expansion terms
for different meshes is linear.

No. of terms D

173 253 333

4 0.317 0.154 0.088
9 0.397 0.198 0.121
16 0.509 0.260 0.168
25 0.652 0.339 0.228
36 0.827 0.435 0.301
49 0.549 0.388
64 0.681 0.488
81 0.830 0.601
100 0.728
121 0.868

J. Ravnik et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 1473–1485 1479



Author's personal copy

matrices with different thresholding limits. The geometry was a
unit cube. Three meshes with equal sized elements were consid-
ered: the first had 83 elements with 173 nodes, the second 123 ele-
ments with 253 nodes and the last 163 elements with 333 nodes.

In order to be able to compare all of the results, we decided to
plot them against the data ratio. The data ratio D is defined as the
amount of data required to store the sparse approximation of a ma-
trix (½B0� or ½Bw�) divided by the amount of data in the full ½B�matrix.
Since the choice of the thresholding limit, which is used to zero out
elements in the wavelet approximation of the matrix, is arbitrary,
we can choose any data ratio. But, in the FMM, we are limited by

the number of terms in the expansion, which can only be chosen
as a square of a natural number. Table 2 shows the relationship be-
tween the data ratio and number of terms in the expansion for the
three above mentioned meshes. The relationship is linear because
of Eq. (21). The slope of the line gets steeper with increasing mesh
density. The denser is the mesh the lower is data ratio at the same
number of expansion terms. The FMM admissibility condition was
set to � ¼ 10�3.

In Fig. 8, we compare the fixed and three variable wavelet thres-
holding approaches of Eq. (23). We are able to conclude that, espe-
cially for the low data ratios, the variable thresholding limit

Fig. 8. The graphs present uniform norms of random vector multiplication with the full and wavelet matrices for three thresholding strategies of Eq. (23). Results of the 253

mesh are shown on the left and mesh 333 is shown on the right.

Fig. 9. The graphs present uniform norms of random vector multiplication with the full and FMM matrices (left) and full and wavelet matrix (right). For a given norm the data
ratio of a dense mesh is smaller than the data ratio of a coarse mesh.

Fig. 10. The graphs present RMS values of random vector multiplication with the full and FMM matrices (left) and full and wavelet matrix (right).

1480 J. Ravnik et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 1473–1485



Author's personal copy

approach give roughly an order of magnitude more accurate results
than the fixed thresholding approach. Results show that VT20:5 ap-
proach works best, thus we employed it for all subsequent
calculations.

Graphs in Fig. 9 show uniform norms versus data ratio of the
matrix vector multiplication test case. The largest norm of the
one hundred random vectors is shown. FMM approximation of
the domain matrix was used to obtain the results in the left graph
while wavelet approximation was used for the right graph. Simi-

larly, the RMS values are shown in Fig. 10. We observe that the data
ratio, which corresponds to a certain norm, is lower in case of den-
ser meshes. In other words, as the mesh density increases lower
data ratios will yield the same accuracy.

Comparing the FMM and wavelet methods, we observe that the
decrease of the uniform norm and RMS value with increasing data
ratio is approximately exponential for the wavelet method and
even faster for the FMM. For low data ratios (D < 0:2), and for high
data ratios (D > 0:8) the wavelet method gives more accurate re-
sults than the FMM. For moderate data ratios, the FMM gives
slightly better results.

6.1.2. Comparison of FMM and full matrices
The FMM sparse domain matrix approximation stores the ma-

trix as a tree of admissible and inadmissible leaves. Inadmissible
leaves store full matrices, while in admissible leaves, two lower or-
der complex matrices of expansion terms are stored. If we multiply
the two lower order matrices in admissible leaves together, we ob-
tain an approximation of the full matrix. This technique was used
to calculate back the full matrix out of the FMM sparse approxima-
tion. The difference between such full matrix and the original full
matrix was measured in terms of the uniform norm and RMS value.
The results are shown on a graph in Fig. 11. We observe similar
behaviour as in the matrix times vector test. Higher mesh density
enables lower data ratio for the same accuracy. For a given data ra-
tio, the accuracy gets better as the mesh density increases.

6.1.3. Solving the Poisson equation
The third series of tests was preformed by solving the Poisson

equation with known analytical solutions. The numerical solution
was obtained with the use of the full domain matrix and by using

Fig. 11. The graphs present uniform norm and RMS values of comparison of FMM and full matrices.

Table 3
Poisson equations with analytical solutions. The geometry was a unit cube. The
boundary conditions in all cases were uðx ¼ 0Þ ¼ 0, uðx ¼ 1Þ ¼ 1, qðy ¼ 0; y ¼
1; z ¼ 0; z ¼ 1Þ ¼ 0.

Equation Analytical solution

(a) r2u ¼ 2 ua ¼ x2, qa;x¼0 ¼ 0, qa;x¼1 ¼ 2
(b) r2u ¼ 6x ua ¼ x3, qa;x¼0 ¼ 0, qa;x¼1 ¼ 3
(c) r2u ¼ 12x2 ua ¼ x4, qa;x¼0 ¼ 0, qa;x¼1 ¼ 4

Table 4
Solutions of Poisson equations in Table 3. Uniform norms for the full domain matrix
½B� solution against the analytical solution are presented.

Problem 173 253 333

(a) ku� uak1 6:2� 10�6 2:8� 10�6 1:6� 10�6

(a) kq� qak1 6:4� 10�5 4:0� 10�5 3:9� 10�5

(b) ku� uak1 2:4� 10�5 7:4� 10�6 3:1� 10�6

(b) kq� qak1 7:7� 10�4 3:4� 10�4 1:9� 10�4

(c) ku� uak1 9:0� 10�5 2:8� 10�5 1:2� 10�5

(c) kq� qak1 2:9� 10�3 1:3� 10�3 6:8� 10�4

Fig. 12. The graphs present uniform norms versus the data ratio D of solutions of problem (a) in Table 3 using FMM matrices ½B0 � (left) and wavelet matrices ½Bw� (right).
Results for three mesh densities are presented.

J. Ravnik et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 1473–1485 1481



Author's personal copy

its FMM and wavelet approximations. The problem geometry was
a unit cube. Table 3 summarizes the equations and boundary con-
ditions. The equations were chosen in such a way, that the solution
is a polynomial with an increasing leading exponent; it is 2 in
equation (a) and 4 in equation (c). The function was known on
two opposite sides of the cube, while flux was known on the other
four. We solved the problem for function on four sides and for flux
on two sides.

Similarly to the tests in previous sections, this problem was also
solved on three meshes that still enable computation with the full

domain matrix. Let ua; qa be the analytical solution and let u; q
represent the solution obtained using the full matrix ½B�. Uniform
norms of the full matrix solution against the analytical solution
are given in Table 4. As the mesh density increases we observe a
decrease of the norms. Since the domain cells size of 173 mesh is
exactly twice as large as at 333, we were able to use the Richardson
extrapolation to estimate the order of our method. The order is the
log of the uniform norm at 173 mesh over the uniform norm at 333

mesh divided by the log of 2. The average order obtained using val-
ues in Table 4 was 2.1.

Fig. 13. The graphs present uniform norms versus the data ratio D of solutions of problem (b) in Table 3 using FMM matrices ½B0 � (left) and wavelet matrices ½Bw� (right).
Results for three mesh densities are presented.

Fig. 14. The graphs present uniform norms versus the data ratio D of solutions of problem (c) in Table 3 using FMM matrices ½B0 � (left) and wavelet matrices ½Bw� (right).
Results for three mesh densities are presented.

Fig. 15. The graphs present uniform norms versus the data ratio D of flux solutions of problem (a) in Table 3 using FMM matrices ½B0 � (left) and wavelet matrices ½Bw� (right).
Results for three mesh densities are presented.

1482 J. Ravnik et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 1473–1485



Author's personal copy

Let u0; q0 denote the solution obtained using the FMM sparse
approximation of the domain matrix, ½B0�. The results obtained
using the wavelet approximation of the domain matrix ½Bw� are de-
noted by uw; qw. The equations were solved for different numbers
of expansion terms and different thresholding limits. Figs. 12–14
show uniform norms of the function solution of our equations
using FMM and wavelet approximations of domain matrix for
equations (a), (b) and (c), respectively. Norms of calculated fluxes
are shown in the same manner in Figs. 15–17.

Comparing the graphs, we are again able to observe that a den-
ser mesh requires a lower data ratio for the same accuracy of solu-

tion. Comparison of the FMM and wavelet method reveals better
accuracy of the wavelet method for low and high data ratios, while
FMM gives more accurate results for moderate data ratios. The first

Fig. 16. The graphs present uniform norms versus the data ratio D of flux solutions of problem (b) in Table 3 using FMM matrices ½B0 � (left) and wavelet matrices ½Bw� (right).
Results for three mesh densities are presented.

Fig. 17. The graphs present uniform norms versus the data ratio D of flux solutions of problem (c) in Table 3 using FMM matrices ½B0 � (left) and wavelet matrices ½Bw� (right).
Results for three mesh densities are presented.

Table 5
Velocity and vorticity fields that are the solution of the kinematics equation. The
geometry is a unit cube. All fields except boundary values of xy are known.

Velocity, ~v Vorticity, ~x

(d) ðy2z; y;�zÞ ð0; y3;�3y2zÞ
(e) ðsinðzÞ; sinðxÞ sinðyÞÞ ðcosðyÞ; cosðzÞ; cosðxÞÞ
(f) ðez; ex; eyÞ ðey; ez; exÞ

Table 6
Solutions of kinematics equations in Table 5. RMS values of full domain matrix
solution against the analytical solution are presented.

Mesh (d) (e) (f)

253 1:2� 10�5 2:1� 10�4 2:0� 10�4

333 5:1� 10�6 1:2� 10�4 1:1� 10�4

Table 7
Solutions of kinematics equations in Table 5 on the 253 mesh. RMS values of FMM
domain matrix solution against the analytical solution are presented.

Terms D (d) (e) (f)

4 0.250 1:9� 10�1 4:5� 10�2 6:9� 10�2

9 0.326 9:3� 10�2 1:7� 10�2 2:5� 10�2

16 0.433 2:2� 10�2 5:4� 10�3 8:2� 10�3

25 0.571 6:6� 10�3 1:5� 10�3 2:2� 10�3

36 0.739 2:2� 10�3 5:5� 10�4 8:9� 10�4

49 0.938 1:1� 10�3 3:1� 10�4 4:0� 10�4

Table 8
Solutions of kinematics equations in Table 5 on the 253 mesh. RMS values of the
solution obtained by wavelet approximation of the domain matrix against the
analytical solution are presented.

D (d) (e) (f)

0.063 8:9� 10�1 1:7� 10�1 2:8� 10�1

0.111 5:3� 10�1 1:0� 10�1 1:6� 10�1

0.158 3:6� 10�1 6:8� 10�2 1:1� 10�1

0.243 2:0� 10�1 3:8� 10�2 6:0� 10�2

0.304 1:4� 10�1 2:6� 10�2 4:1� 10�2

0.419 6:8� 10�2 1:3� 10�2 2:0� 10�2

0.629 1:6� 10�2 2:9� 10�3 4:6� 10�3

0.907 4:0� 10�4 2:2� 10�4 2:2� 10�4

J. Ravnik et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 1473–1485 1483



Author's personal copy

equation (a) is an exception of this conclusions, since using the
wavelet transform does not introduce any additional error and
the problem is solved with the accuracy of the full matrix. This
can be explained by the fact, that the right hand side of equation
(a) is constant. The wavelet transform uses Haar wavelets, which
require only one non-zero coefficient when transforming constant
functions.

Comparing the rate of decrease of the norms with increasing
data ratio, we observe, that they decrease approximately exponen-
tially for the wavelet solutions, while they decrease even faster for
the FMM solutions. This fact is especially prominent for the low
data ratios, which are of practical importance.

6.2. The kinematics equation

Consider the three velocity and vorticity fields given in Table 5.
They are all solenoidal and solve the kinematics equation. The
fields were chosen so, that they are analytical and that they ensure
variations are present in all three spatial dimensions. Such fields
enable a thorough test of the algorithm and are the solution of

the kinematics equation. However, they are not physical, since
they do not satisfy the Navier–Stokes equation.

The geometry for three test cases was a unit cube. We chose the
y component of vorticity as the unknown. The kinematics equation
was solved for xy, with the right hand side evaluated by full do-
main matrices and by their data sparse approximations. Table 6
presents the RMS values of the solution obtained by the full domain
matrices using the 253 and 333 meshes. The errors obtained, using
data sparse approximations of domain matrices, are larger than the
errors of the full domain matrix solution. They depend heavily on
the number of terms used in the expansion and on the threshold-
ing limit. Tables 7 and 9 present the RMS value obtained using the
FMM data sparse approximation of domain matrices with 4 to 64
expansion terms. The RMS value obtained by the wavelet data
sparse approximation with different thresholding limits are pre-
sented in Tables 8 and 10. All tables show an increase in accuracy
when the data ratio is increased. The error decreases towards the
error obtained by the full matrix solution.

The RMS values of problems (e) and (f) are shown graphically in
Fig. 18. Several conclusions can readily be drawn. Firstly, using a
denser mesh yields more accurate results and it enables better data
ratio for the same error. Secondly, at moderate data ratios, the
FMM method yields lower error than the wavelet method. At high
data ratios (D > 0:8) the wavelets yield better results. This is due to
the fact that as the data ratio increases towards one, the wavelet
data sparse approximation of a matrix converges towards the full
matrix. Without any thresholding (at D ¼ 1) the wavelet method
yields identical results to the full matrix. On the other hand, only
an infinite number of terms in the FMM expansion would give
identical results. At low data ratios (D < 0:2) the wavelets also
present better accuracy than the FMM.

Comparing the results between (e) and (f) test cases, we observe
that the sparse matrix approximation RMS curves are approxi-
mately similar, even tough the full matrix solution yields more
than an order of magnitude more accurate solution in the (e) test
case. This means that the domain matrix approximation is the
main source of error. The error of solution will be approximately
equal regardless of the problem we are solving and regardless of
the accuracy of the full domain matrix solution.

7. Concluding remarks

The boundary-domain integral formulation of a non-homoge-
nous Poisson type equation includes a domain integral. After
discretization it yields a fully populated domain matrix. We pre-
sented the usage of the fast multipole method and the wavelet trans-
form method for obtaining a sparse approximation of the domain

Table 9
Solutions of kinematics equations in Table 5 on the 333 mesh. RMS values of FMM
domain matrix solution against the analytical solution are presented.

Terms D (d) (e) (f)

4 0.135 2:4� 10�1 5:7� 10�2 8:8� 10�2

9 0.194 4:2� 10�1 3:6� 10�2 8:7� 10�2

16 0.275 4:5� 10�2 1:2� 10�2 1:8� 10�2

25 0.380 1:2� 10�2 2:7� 10�3 4:2� 10�3

36 0.510 3:2� 10�3 7:5� 10�4 1:2� 10�3

49 0.660 1:2� 10�3 3:6� 10�4 5:5� 10�4

64 0.835 9:7� 10�4 2:2� 10�4 3:1� 10�4

Table 10
Solutions of kinematics equations in Table 5 on the 253 mesh. RMS values of the
solution obtained by wavelet approximation of the domain matrix against the
analytical solution are presented.

D (d) (e) (f)

0.097 6:1� 10�1 1:3� 10�1 1:8� 10�1

0.138 4:2� 10�1 7:9� 10�2 1:2� 10�1

0.213 2:4� 10�1 4:4� 10�2 7:0� 10�2

0.267 1:6� 10�1 3:0� 10�2 4:8� 10�2

0.374 8:2� 10�2 1:5� 10�2 2:4� 10�2

0.580 1:9� 10�2 3:6� 10�3 5:8� 10�3

0.880 5:5� 10�4 1:7� 10�4 2:0� 10�4

Fig. 18. The graphs present RMS values versus the data ratio D of solutions of problems (e) (left) and (f) (right) of Table 5. FMM and wavelet data sparse approximations were
used. The full matrix errors are presented with horizontal lines. Results for two mesh densities are presented.

1484 J. Ravnik et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 1473–1485



Author's personal copy

matrix. We reduced the storage requirements for the domain matrix
from Oðnd � nbÞ to OðndÞ, where nd is the number of nodes in the do-
main and nb is the number of nodes on the boundary.

The methods were tested on scalar Poisson equations and on
velocity–vorticity vector kinematics equations in 3D. We found
that the FMM yielded results of better accuracy for moderate data
ratios (0:2 < D < 0:8), while the wavelet method gives better re-
sults for high and low data ratios. The FMM does not require the
calculation of the full matrix, whereas the wavelet method needs
the full matrix in order to make the transform. Since the wavelet
method is purely algebraic, it can be applied without modification
on any matrix. The FMM is based on an expansion of the integral
kernel, thus requiring modification before it can be applied on a
different integral matrix. In this work we used spherical harmonic
expansion of the Laplace fundamental solution and its gradient;
however, other expansions may be used as well.

This work is continued by incorporating the developed FMM
vector kinematics equation solver into a 3D BEM based fluid flow
solver [22].

References

[1] J. Barnes, P. Hut, A hierarchical O(N logN) force calculation algorithm, Nature
324 (1986) 446–449.

[2] M. Bebendorf, S. Rjasanow, Adaptive low rank approximation of collocation
matrices, Computing 70 (2003) 1–24.

[3] G. Beylkin, R. Coifman, V. Rokhlin, Fast wavelet transforms and numerical
algorithms, Commun. Pure Appl. Math. 44 (1991) 141–183.

[4] H.F. Bucher, L.C. Wrobel, W.J. Mansur, C. Magluta, A novel approach to applying
fast wavelet transforms in boundary element method, Elem. J. Bound. Elem.
BETEQ 2001 (2) (2002) 187–195.

[5] W. Dahmen, H. Harbrecht, R. Schneider, Compression techniques for boundary
integral equations – optimal complexity estimates, SIAM J. Numer. Anal. 43
(2006) 2251–2271.

[6] I. Daubechies, Orthonormal bases of compactly supported wavelets, Commun.
Pure Appl. Math. 41 (1988) 909–996.

[7] M. Dehghan, D. Mirzaei, The dual reciprocity boundary element method
(DRBEM) for two-dimensional sine-Gordon equation, Comput. Methods Appl.
Mech. Engrg. 197 (2008) 476–486.

[8] J. Englund, A higher order scheme for two-dimensional quasi-static crack
growth simulations, Comput. Methods Appl. Mech. Engrg. 196 (2007) 2527–
2538.

[9] L. Greengard, V. Rokhlin, A fast algorithm for particle simulations, J. Comput.
Phys. 73 (1987) 325–348.

[10] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part I:
Introduction to H-matrices, Computing 62 (1999) 89–108.

[11] W. Hackbusch, B. Khoromskij, S. Sauter, On H2-matrices, Lect. Appl. Math.
(2002) 9–29.

[12] W. Hackbusch, Z.P. Nowak, On the fast multiplication in the boundary element
method by panel clustering, Numer. Math. 54 (1989) 463–491.

[13] H. Harbrecht, R. Schneider, Wavelet Galerkin schemes for boundary integral
equations – implementation and quadrature, SIAM J. Sci. Comput. 27 (2006)
1347–1370.

[14] H.-Y. Hu, Z.-C. Li, Collocation methods for Poisson’s equation, Comput.
Methods Appl. Mech. Engrg. 195 (2006) 4139–4160.

[15] P. Partridge, C. Brebbia, L. Wrobel, The Dual Reciprocity Boundary Element
Method, Computational Mechanics Publications, Southampton, UK, Boston,
London, New York, 1992.

[16] V. Popov, H. Power, S.P. Walker, Numerical comparison between two possible
multipole alternatives for the BEM solution of 3D elasticity problems based
upon Taylor series expansions, Engrg. Anal. Bound. Elem. 27 (2003) 521–
531.

[17] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes –
The Art of Scientific Computing, second ed., Cambridge University Press, 1997.

[18] A. Rathsfeld, A wavelet algorithm for the boundary element solution of a
geodetic boundary value problem, Comput. Methods Appl. Mech. Engrg. 157
(1998) 267–287.

[19] J. Ravnik, L. Škerget, M. Hriberšek, The wavelet transform for BEM
computational fluid dynamics, Engrg. Anal. Bound. Elem. 28 (2004) 1303–
1314.

[20] J. Ravnik, L. Škerget, M. Hriberšek, 2D velocity vorticity based LES for the
solution of natural convection in a differentially heated enclosure by wavelet
transform based BEM and FEM, Engrg. Anal. Bound. Elem. 30 (2006) 671–
686.

[21] J. Ravnik, L. Škerget, M. Hriberšek, Z. Žunič, Numerical simulation of dilute
particle laden flows by wavelet BEM–FEM, Comput. Methods Appl. Mech.
Engrg. 197 (6–8) (2008) 789–805.

[22] J. Ravnik, L. Škerget, Z. Žunič, Fast single domain–subdomain BEM algorithm
for 3D incompressible fluid flow and heat transfer, Int. J. Numer. Methods
Engrg., doi:10.1002/nme.2467.

[23] J. Ravnik, L. Škerget, Z. Žunič, Velocity–vorticity formulation for 3D natural
convection in an inclined enclosure by BEM, Int. J. Heat Mass Transfer 51
(2008) 4517–4527.

[24] C. Schwab, R.A. Todor, Karhunen–Loève approximation of random fields by
generalized fast multipole methods, J. Comput. Phys. 217 (2006) 100–122.

[25] T. von Petersdorff, C. Schwab, Multiscale Wavelet Methods for PDEs, Chap.
Fully Discrete Multiscale Galerkin BEM, Academic Press, 1997.

[26] L.C. Wrobel, The Boundary Element Method, John Wiley & Sons Ltd., 2002.
[27] Z. Žunič, M. Hriberšek, L. Škerget, J. Ravnik, 3-D boundary element-finite

element method for velocity–vorticity formulation of the Navier–Stokes
equations, Engrg. Anal. Bound. Elem. 31 (2007) 259–266.

J. Ravnik et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 1473–1485 1485


