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Abstract

A wavelet transform based BEM and FEM numerical scheme was used to simulate laminar viscous flow. The velocity–vorticity for-
mulation of the Navier–Stokes equations was used. The flow simulation algorithm was coupled with a Lagrangian particle tracking
scheme for dilute suspensions of massless particles and particles without inertia. The proposed numerical approach was used to simulate
flow and particle paths for two test cases: flow over a backward-facing step and flow past a circular cylinder. We present methods of
calculating the pressure and stream function field at the end of each time step. The pressure field was used to calculate drag and lift coef-
ficients, which enable qualitative comparison of our results with the benchmark. The stream function enabled the comparison of stream-
lines and massless particle paths in steady state low Reynolds number value flow fields, and thus provided an estimate on the accuracy of
the particle tracking algorithm. Unsteady higher Reynolds number value flows were investigated in terms of particle distributions in vor-
tex streets in the wake of the cylinder and behind the step. Sedimentation of particles without inertia was studied in the flow field behind a
backward-facing step at Reynolds number value 5000.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Multiphase flows are frequently occurring in various
fields, like unit operations in process engineering, flows in
pipeline systems, environmental flows, etc. Dispersed flow
consists of particles (drops, bubbles, solids), moving in a
continuous phase (air, water). Particles interact with their
surroundings (exchange of momentum, mass and energy),
and in order to accurately compute interactions, particle
locations must be known.

Development of algorithms for numerical simulation of
particle laden flows has been a prime subject among
0045-7825/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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uni-mb.si (Z. Žunič).
researchers in the last decade. Lagrangian and Euler parti-
cle tracking methods have been combined with a wide vari-
ety of flow simulation techniques, for laminar [30] and
turbulent [1] flows in a wide variety of engineering fields-
from chemical, biological and nuclear to mechanical
engineering.

Many times, the particles are small enough and have
negligible inertia, so that their influence on the fluid may
be neglected. Further simplification is possible, if we
neglect the particle’s mass, and thus simulate massless par-
ticles with Stokes number equal to zero. This approxima-
tion is the first to be considered, when combining a CFD
code with a particle tracking algorithm, in order to assess
the versatility and stability of the algorithm.

Flows over bluff bodies, such as flow over a circular cyl-
inder, as well as flows in a channel with sudden expansion,
i.e. flow over a backward-facing step, were investigated in
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this research. In both cases, steady state results exist with
known benchmarks solutions [4,10]. These were used to
check the validity of our flow simulation code. At the same
time, since streamlines are identical to pathlines of massless
particles, steady state simulation results were also used to
check the accuracy and validity of our particle tracking
algorithm. By increasing the Reynolds number values, we
were able to track dilute suspensions of particles in the
wake of the circular cylinder as well as in the vortex street
behind the backward-facing step.

Slater and Young [26] developed a time-marching
method for calculating two-dimensional, dilute, non-turbu-
lent gas-particle flows using an Eulerian formulation and
tested it on a flow over a circular cylinder. Liang et al.
[17] examined particle mixing and reactive front dynam-
ics in an open shallow flow of water past a circular cylin-
der. Wang et al. [32] simulated particle response to
turbulence along its path, by comparing the properties of
the particle phase and the gas phase using Lagrangian
particle tracking for a turbulent flow over a backward-fac-
ing step. Yu et al. [35] simulated gas-particle flow in a
single-side backward-facing step using LES for particles
with Stokes numbers between 0.002 and 11.9. Jacobs
et al. [14] work towards efficient tracking of inertial
particles with high-order multidomain methods using
backward-facing step for benchmarking. Siriboonluckul
and Juntasaro [25] have investigated the performance of
different turbulence models and source-term models for
the turbulent separated particle-laden flows using the
backward-facing step.

In this research we simulate laminar viscous Newtonian
flow using the velocity–vorticity formulation of the incom-
pressible Navier–Stokes equations. The velocity–vorticity
formulation is an alternative to the more common primi-
tive velocity–pressure equations. The pressure is eliminated
from the system and replaced by the vorticity. The system
is composed of a vector equation for the velocity field
(kinematics equation) and a diffusion advection vector
equation for the vorticity field. In two dimensions the vor-
ticity is a scalar, so we need to solve a coupled system of
three partial differential equations. In three dimensions,
however, we are faced with six equations compared to four
in the primitive velocity–pressure formulation. This appar-
ent disadvantage is mitigated by our boundary element
method (BEM) solution of the kinematics equations, which
provides Dirichlet boundary conditions for the three vor-
ticity equations yielding very well posed systems of linear
equations, which may be solved efficiently using iterative
solvers. The vorticity transport equation is written in a
form directly applicable for first kind boundary value prob-
lems. The accurate calculation of boundary vorticity values
is of utmost importance, since the vorticity is generated at
the boundary. The solution of the transport equation only
carries the vorticity, generated at the boundary, into the
flow with diffusion and advection. Other authors proposed
several different schemes for the calculation of boundary
vorticity [34,36]. We propose to use BEM because of its
unique advantage for solving the boundary vorticity values
directly.

For the solution of the domain values Škerget et al. [28]
and Ramšak et al. [21] proposed a subdomain BEM tech-
nique, while Hriberšek and Škerget [13] developed a seg-
mentation technique. Although the subdomain technique
results in sparse matrices, it still requires a considerable
amount of computer memory and CPU time. These
requirements were reduced by Žunič et al. [39], who pro-
posed using FEM for the solution of the domain. We
employed the latter approach.

In order to be able to perform simulations on dense
grids, we used a wavelet compression algorithm on fully
populated matrices, resulting from the BEM calculation
of boundary vorticity, to further decrease the computer
memory and CPU time requirements of the coupled
BEM–FEM algorithm. A discrete wavelet transform for
vectors of arbitrary length, developed by Ravnik et al.
[23,24], was used. Ravnik et al. [24] developed a 2D
large-eddy simulation code, that was based on the combi-
nation of wavelet transform, boundary element method
and finite element method. Using a laminar version of this
code enabled us to make unsteady simulations on dense
grids with small time steps.

The rest of the paper is organized as follows. The second
section states the governing equations: the kinematics
equation, the vorticity transport equation, the pressure
equation, the stream function equation and states pre-
sumptions and approximations for particle movement.
The third section presents the numerical flow simulation
and particle tracking algorithm and explains in detail the
numerical method used to obtain a solution of each equa-
tion. Results of flow simulations and particle tracking for
both numerical examples are given in the fourth section.

2. Governing equations

2.1. Assumptions and approximations

In this paper we assume an incompressible viscous New-
tonian fluid with constant material properties: density
q ¼ q0 and kinematic viscosity m ¼ m0. The continuity equa-
tion (mass conservation law) within this approximation

~r �~v ¼ 0 ð1Þ
requires the velocity field~v to be solenoidal, i.e. divergence
free. The field functions were non-dimensionalized in the
following manner: ~v! ~v

v0
, ~r! ~r

L, ~x! ~xL
v0

, t! v0t
L , p! p

p0
,

where p is pressure, L is the characteristic length and ~x is
vorticity. With the above stated assumptions the momen-
tum transport equation (momentum conservation law) in
non-dimensional form reads as:

o~v
ot
þ ð~v � ~rÞ~v ¼ � 1

Eu
~rp þ 1

Re
r2~v; ð2Þ

with the Euler Eu number defined as Eu ¼ q0v2
0

p0
and the Rey-

nolds number being Re ¼ v0L
m0

.
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2.2. Velocity–vorticity formulation

Let us first sketch the derivation of the velocity–vorticity
formulation of the Navier–Stokes equations. Vorticity ~x is
defined as the curl of the velocity ~x ¼ ~r�~v. By definition
vorticity must be divergence free, ~r � ~x ¼ 0. The continuity
equation (1) is used to transform the vorticity definition
into a kinematics equation. By applying the curl operator
on the vorticity definition, we obtain

r2~vþ ~r� ~x ¼ 0; ð3Þ
the kinematics equation, which relates the velocity and vor-
ticity fields for every point in space and time. Both, the vor-
ticity and the velocity fields must be solenoidal, in order for
this equation to be fulfilled.

Taking a curl of the momentum equation (2) and after
some algebraic manipulation (see [29] or [24] for details),
the final form of the vorticity transport equation reads as

o~x
ot
þ ð~v � ~rÞ~x ¼ ð~x � ~rÞ~vþ 1

Re
r2~x: ð4Þ

Eq. (4) equates the Stokes rate of change of vorticity on
the left hand side with the vortex twisting and stretching
term and the diffusion term on the right hand side. The vor-
tex twisting and stretching term ð~x � ~rÞ~v vanishes in cases
of planar flows, where the vorticity vector is always perpen-
dicular to the plane of motion.

2.3. The pressure equation

In the velocity–vorticity formulation the pressure is elim-
inated from the momentum equation as a primary variable,
while in the primitive variables approach, it appears in a gra-
dient form, and as such it can cause numerical instabilities
specially in solving incompressible viscous flow situations
where the pressure can not be seen as a thermodynamic pres-
sure, but rather as a force. Therefore pressure is calculated in
a post-processor step after each time step has converged
using calculated field functions. A pressure gradient is
expressed from the momentum transport equation (2):

~rp ¼ Eu � o~v
ot
� ð~v � ~rÞ~vþ 1

Re
r2~v

� �
: ð5Þ

Using the kinematics equation (3), the Laplace operator
in Eq. (5) may be expressed with a curl of vorticity. By apply-
ing the divergence operator on Eq. (5) we obtain an elliptic
partial differential equation for pressure of Poisson type:

r2p ¼ Eu ~r � � o~v
ot
� ð~v � ~rÞ~v� 1

Re
~r� ~x

� �
¼ ~r �~f p; ð6Þ

where we introduced a pressure vector ~f p ¼ Euf� o~v
ot�

ð~v � ~rÞ~v� 1
Re
~r� ~xg to simplify notation.

2.4. The stream function equation

The stream function is also not a part of the non-linear
system of equations in the ~v� ~x formulation. Thus, it is
calculated after the non-linear iteration loop at the end of
each time step. The stream function is introduced as a vec-
tor potential ~wð~r; tÞ of the velocity field:

~r �~v ¼ 0; ~v ¼ ~r�~w; ð7Þ

When we apply a curl to Eq. (7), take into account the def-
inition of vorticity and choose ~r �~w ¼ 0, we obtain a Pois-
son type equation for the vector potential:

r2~w ¼ �~x; ð8Þ

which in 2D reduces to the stream function ~w ¼ ð0; 0;wÞ.
2.5. Particle movement

In our simulations we focus on dilute suspensions,
with particle volume fraction low enough, so that the
particle–particle interaction can be neglected. The coupling
between particle and fluid motion is dominated by momen-
tum transfer. We will consider particles with diameter dp

much smaller than the length scales of the smallest flow
structures. Furthermore, the density of the particles qp is
assumed to be much higher than the density of fluid so that
the dominant force on an individual particle is the Stokes
drag. The Stokes drag force for spherical particles with
small particle Reynolds numbers is [19]

~F ¼ 3pmqdpð~v�~vpÞ; ð9Þ

where ð~v�~vpÞ is the difference between the fluid velocity
and the velocity of the particle~vp. Particles with negligible
inertia move with a velocity that is equal to the sum of local
fluid velocity and a settling velocity~vs. The settling velocity
vector has the direction of the gravity force;

~vs ¼
d2

p

18m

qp

q
� 1

� �
~g: ð10Þ

The particle Stokes number is defined by the following
expression

St ¼
d2

pvoqp

18mqL
¼ sp

sf

; ð11Þ

where L is the characteristic length of the flow, such as, the
diameter of the cylinder or the height of the backward-fac-
ing step in our numerical examples. The sp is the relaxation
time scale of the particle and sf ¼ L=vo is the time scale of
the flow.

In our simulations we consider only one way coupling
between particles and the fluid, i.e. only fluid flow affects
the movement of particles.
3. Numerical scheme

The laminar flow of a viscous Newtonian fluid can be
simulated by solving the non-linear system of two partial
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differential equations: the kinematics equation (3) and the
vorticity transport equation (4). At the end of each time
step the pressure and stream function equations are solved
as well as particle tracking is performed.

In this section we describe the complete numerical
scheme, starting with the solution algorithm and explaining
the solution of each individual equation in subsequent
subsections.

3.1. Solution algorithm

The solution of the system of partial differential equa-
tions in vorticity–velocity formulation was obtained in pla-
nar geometry. Vorticity is a scalar quantity in 2D, thus the
vorticity transport equation (4) is a scalar equation. The
stream function is also a scalar quantity in 2D. The solu-
tion algorithm with references to sections of the paper is
presented below:

• calculate integrals, that depend solely on the mesh
geometry

• use wavelet compression on matrices of integrals
• set up starting positions for particle tracking
• begin time step loop

– insert new particles into the flow
– begin nonlinear loop
– calculate boundary values by solving the kinemat-
ics equation by wavelet compressed BEM (Section
3.2)

– calculate domain values by solving the kinematics
equation by FEM (Section 3.4)

– solve vorticity transport equation by FEM using
the boundary values from BEM calculation (Sec-
tion 3.3)

– check convergence-repeat steps in the nonlinear
loop until convergence is achieved
– end nonlinear loop
– calculate boundary pressure values by BEM (Section

3.5)
– calculate domain pressure values by FEM (Section

3.6)
– calculate boundary stream function values by method

of integration (Section 3.7)
– calculate domain stream function values by FEM

(Section 3.7)
– using the pressure, velocity and vorticity fields, calcu-

late drag and lift coefficients (Section 3.8)
– track particles (Section 3.9)
• end time step
• output results
3.2. Solution of the kinematics equation for boundary values

by wavelet compressed BEM

The kinematics equation (3) is an elliptic Poisson type
equation. The basic BEM derivation [33] yields the follow-
ing boundary-domain integral form
cðnÞ~vðnÞ þ
Z

C

~vð~n � ~rÞuI dC

¼
Z

C
uIð~n � ~rÞ~vdCþ

Z
X
ð ~r� ~xÞuI dX; n 2 C ð12Þ

where uq is the fundamental solution of the Laplace equa-
tion (uI ¼ 1

2p ln 1
r in 2D),~n is the unit normal, n is the source

point and c(n) is the geometrical factor. By the use of alge-
braic manipulation, Gauss divergence clause and solenoi-
dality of the fluid, Eq. (12) can be rewritten in a form
without derivatives of the velocity and vorticity fields, i.e.

cðnÞ~vðnÞ þ
Z

C

~vð~n � ~rÞuI dC

¼
Z

C

~v� ð~n� ~rÞuI dCþ
Z

X
ð~x� ~ruIÞdX: ð13Þ

Detailed derivation between (12) and (13) can be found
in Škerget et al. [29] and in Ravnik et al. [24]. In order to
obtain discrete solution of the integral kinematics equation
(13), the boundary C is divided into E boundary elements
Ce and the domain X is divided into C domain cells Xc with
C �

PE
e¼1Ce and X �

PC
c¼1Xc. Within each boundary ele-

ment and each internal cell the field functions are approx-
imated by boundary ub

i and domain ud
i shape functions

~v ¼
Pnb

i¼1~v
iub

i and ~x ¼
Pnd

i¼1~x
iud

i ;wherenb and nd are the
number of nodes in a boundary element and in a domain
cell. In this paper we used three node quadratic boundary
elements and nine node Lagrange domain cells. Inserting
approximations into Eq. (13) we have

cðnÞ~vðnÞ þ
XE

e¼1

Xnb

i¼1

~vi

Z
Ce

ub
i ð~n � ~rÞuI dC

� �

¼
XE

e¼1

Xnb

i¼1

~vi �
Z

Ce

ub
i ð~n� ~rÞuI dC

� �

þ
XC

c¼1

Xnd

i¼1

~xi �
Z

Xc

ud
i
~ruI dX

� �
: ð14Þ

There are three types of integrals in the above equation.
In all, the integrand is a derivative of the fundamental solu-
tion multiplied by the shape function and the unit normal.
The values of integrals depend solely on the mesh and the
shape functions chosen, thus they can be calculated before
starting the non-linear iterative procedure. The integrals
are traditionally named as hi;e, ~ht

i;e and ~di;c respectively. In
order to obtain a non-singular system of equations for
boundary vorticities from Eq. (14), one must use its tangen-
tial form [29], obtained by taking a cross product of Eq.
(14) with the unit normal in the source point:

cðnÞ~nðnÞ �~vðnÞ þ~nðnÞ �
XE

e¼1

Xnb

i¼1

~vihi;e

¼~nðnÞ �
XE

e¼1

Xnb

i¼1

~vi �~ht
i;e þ~nðnÞ �

XC

c¼1

Xnd

i¼1

~xi �~di;c:

ð15Þ
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We now define the planar geometry. The fluid flows in
the x–y plane, vorticity has only one non-zero component
in the z direction. Since we are dealing with velocity on
the boundary, it is convenient to introduce normal velocity
vn ¼ nxvx þ nyvy and tangential velocity vt ¼ nxvy � nyvx and
treat vorticity as a scalar quantity ~x! xz ¼ x. The inte-
gral vector ~ht has also only one non-zero component and
will be also treated as scalar ht. When the cross products
of Eq. (15) are calculated and the system of equations is
simplified to planar geometry, we obtain a non-zero equa-
tion in z direction only:

cðnÞvtðnÞ þ
XE

e¼1

Xnb

i¼1

vi
thi;e ¼ �

XE

e¼1

Xnb

i¼1

vi
nht

i;e

þ
XC

c¼1

Xnd

i¼1

xiðnxd
x
i;c þ nyd

y
i;cÞ:

ð16Þ

The source point n is set in all boundary nodes in order
to obtain a system of linear equations. The field function
values in nodes are represented by vectors vi

t ! fvtg,
vi

n ! fvng. The vorticity is divided into a boundary vector
xi

i2C ! fxCg and a domain vector xi
i2XnC ! fxXnCg. The

integrals are assembled into matrices accordingly. With
the boundary vorticities as unknowns, the matrix–vector
form of Eq. (16) is

½DC�fxCg ¼ ð½C� þ ½H �Þfvtg þ ½H t�fvng � ½DXnC�fxXnCg:
ð17Þ

The matrices [DC], [C], [H] and [Ht] are square, fully
populated and unsymmetrical with the number of bound-
ary nodes of rows and columns. Although full, the storage
requirements for these matrices are not large, since the
number of boundary nodes is very small compared to the
number of domain nodes. On the other hand, the matrix
½DXnC� is rectangular and also full and unsymmetrical and
has dimensions of the number of boundary nodes rows
and the number of domain nodes columns. The reason that
the ½DXnC� scales with the number of domain nodes is the
fact that a fundamental solution of a Poisson type of equa-
tion does not exist and that we had to use the Laplace fun-
damental solution. This yielded a domain integral in the
integral representation, which requires discretization of
the domain and ultimately the storage of a matrix that
scales with the number of nodes in the domain. Storing this
matrix in memory requires huge amount of on-board mem-
ory and thus limits the size of meshes that can be used. To
tackle this problem we employed a wavelet transform tech-
nique for rectangular matrices developed by Ravnik et al.
[23]. The transform is based on Haar wavelets and the fast
wavelet transform algorithm of Beylkin et al. [3]. The tech-
nique has already been successfully used for a planar LES
of turbulent natural convection by Ravnik et al. [24].

In order to reduce the storage and CPU time require-
ments we will calculate the matrix vector product
½DXnC�fxXnCg using a wavelet compressed matrix of inte-
grals. Since we will compress only the domain matrix, we
will change only right hand side of our system of equations,
leaving the system matrix unperturbed. By introducing an
error estimation algorithm, we will be able to keep the
error of right hand side calculation of the same order than
the error of the solution of the system.

Let W be a wavelet transform matrix, which transforms
a vector to a wavelet basis. It is set up using the Haar wave-
let transform for vectors of arbitrary length [23] and is
capable of transforming matrices of arbitrary size. The W

transform is still in its essence the Haar wavelet transform.
Before the Haar transformation, the vector is modified in
such manner, that just the right number of wavelet coeffi-
cient end up zero. Not storing zeros makes it possible to
apply the W transform to a vector with an arbitrary num-
ber of components and store only the same number of
wavelet coefficients.

Since the product of wavelet matrix W and its transpose
WT is an identity, we may write

½DXnC�fxXnCg ¼ W TðW ½DXnC�W T|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
½DXnC

W �

W fxXnCgÞ: ð18Þ

The wavelet compressed matrix of integrals ½DXnC
W � ¼

W ½DXnC�W T is the wavelet transform of all rows and col-
umns of the original matrix of integrals ½DXnC�. Small (in
absolute sense) elements of matrix ½DXnC

W � may be zeroed
without diminishing the accuracy of the matrix vector
product in Eq. (18). Wavelet compression is preformed
only once, prior to the iterative process. The matrices W

and WT are not actually stored in memory, but are rather
calculated on the fly, thus omitting the need of additional
storage. During the compression process we measure rela-
tive difference between full matrix times random vector
product and compressed matrix times the same vector.
The compression is stopped, when the relative difference
reaches a prescribed criteria �. In our previous work [24],
we have determined that using compression with
� ¼ 10�5 has virtually no influence on the accuracy of
the flow simulation. The resulting sparse matrix is written
in compressed row storage format to save computer mem-
ory. In each iteration we must instead of one full matrix
time vector product perform a wavelet transform of the
domain vorticity values W fxXnCg, a sparse matrix times
vector product ½DXnC

W �W fxXnCg and an inverse wavelet
transform W Tð½DXnC

W �W fxXnCgÞ. All our tests showed that
full matrix time vector product requires more CPU time,
thus wavelet compression saves storage and CPU time.
However, since the matrix times vector product (18) pre-
sents only a small fraction of the total CPU time require-
ments, the decrease of CPU time is almost negligible. On
the other hand, the decrease of storage requirements is
substantial and enables high density meshes to be used
with our algorithm.

The final wavelet BEM based discrete form of the kine-
matics equation for the calculation of boundary vorticity
values is
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½DC�fxCg ¼ ð½C� þ ½H �Þfvtg þ ½H t�fvng

� W T ½DXnC
W �W fxXnCg

� �
: ð19Þ

Since the system matrix [DC] depends on the mesh geom-
etry only and is constant throughout the simulation, the
solution of the system is obtained using a direct solver with
LU decomposition.
3.3. Solution of the diffusion advection equation by FEM

The vorticity transport equation (4) in 2D is a scalar
partial differential equation of diffusion-advection type
for vorticity x. The partial time derivative is approximated
by the following second order finite difference
approximation

ox
ot
� 3x� 4xn þ xn�1

2Dt
; ð20Þ

where x is the field function to be calculated in the next
time step, xn is the field function in the present time step,
and xn�1 is the previous time step field function. The time
step size is Dt. Having the approximation of the time deriv-
ative in mind, one can state the general scalar diffusion
advection equation in the following form

bxþ Ci
ox
oxi
¼ Dr2xþM ð21Þ

with b, Ci, D and M functions of time and location. Their
values are set in accordance with Eqs. (20) and (4). Einstein
summation notation is employed with i = 1, 2. The classi-
cal Garlekin FEM procedure is employed. One calculates
integrals over each domain cell Xc using shape functions
uk ðk ¼ 1 . . . ndÞ as weighting functions. The order of the
diffusion term is decreased by the Green’s first theorem.
Field functions are approximated across the cells:
x ¼

Pnd

l¼1ulxl, M ¼
Pnd

l¼1ulMl. We use nd ¼ 9 node biqua-
dratic shape functions to interpolate the field function
behaviour in the Lagrangian cells Xc. Using these approx-
imations, the final discrete form of the diffusion advection
equation is

Xnd

l¼1

xl

Z
Xc

bukul dX

� �

þ
Xnd

l¼1

xl

Z
Xc

Ci þ
oD
oxi

	 

uk

oul

oxi
dX

� �

¼ �
Xnd

l¼1

xl

Z
Xc

D
ouk

oxi

oul

oxi

� �
dX

� �

þ
Xnd

l¼1

xl

Z
Cc

ukD ~rul � d~C

� �

þ
Xnd

l¼1

Ml

Z
Xc

ukul dX

� �
: ð22Þ
Solution of the resulting linear system of equations is
obtained by the BI-CGSTAB solver [27]. The FEM solu-
tion method for the vorticity transport equation was devel-
oped by Žunič et al. [39] and tested in 2D by Ravnik et al.
[24] and in 3D by Žunič et al. [37].
3.4. Solution of the kinematics equation for internal values by

FEM

When the kinematics equations are solved by BEM, all
boundary velocities and vorticities are known. It is now
possible to make an explicit BEM calculation to get the
internal velocities. However, for this, a new integral matrix
is needed, which is fully populated and unsymmetrical and
its size is number of all nodes squared, and as such limits
the mesh size.

Alternatively, we have decided to use FEM instead of
the explicit calculation by BEM. The kinematics equation
(3) is of Poisson type and the BEM calculation provided
the Dirichlet boundary conditions. The Poisson type equa-
tion is just a simplification of the general diffusion advec-
tion equation (21), solved in the previous section. Thus,
solution may be obtained by setting b = 0, C = 0, D = 1
and ~M ¼ ~r� ~x and solving Eq. (22) for each velocity com-
ponent separately.
3.5. Calculation of pressure on the boundary by BEM

The pressure is not a part of the velocity–vorticity for-
mulation. It can be calculated in a post-processing step,
out of the converged flow fields for each time step. The
computational time requirements for the calculation of
pressure are virtually negligible compared to the require-
ments for the simulation of flow. The pressure equation
(6) is a Poisson type equation. Its integral form [33] is:

cð~nÞpð~nÞ þ
Z

C
pð~n � ~rÞuI dC

¼
Z

C
uIð~n � ~rÞp dC�

Z
X
ð ~r �~f pÞuI dX; ð23Þ

A vector equation ð ~r �~f pÞuI ¼ ~r � ð~f puIÞ �~f p � ~ruI and
the Gauss clause are used to transform the domain integral
in Eq. (23). The definition (5) stated that fp is equal to the
pressure gradient, thus the following is valid on the bound-
ary ~n �~f p ¼ ð~n � ~rÞp. Using this expression one can elimi-
nate two boundary integrals and Eq. (23) is rewritten into

cð~nÞpð~nÞ þ
Z

C
pð~n � ~rÞuI dC ¼

Z
X

~f p � ~ruI dX: ð24Þ

Since the boundary condition, which was used in the
derivation, is undetermined to a constant, the solution of
Eq. (24) is uniquely defined only, if the pressure in one
node on the boundary is known. Thus, the reference pres-
sure is prescribed in one of the nodes.

The integral equation (24) includes boundary as well as
domain integrals. Using the same type of discretization as
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for the kinematics equation ðp ¼
Pnr

i¼1piub
i ;
~f p ¼Pno

i¼1
~f i

pu
d
i Þ, the discrete form of the pressure equation for

the calculation of boundary pressure values may be stated
as

cð~nÞpð~nÞ þ
XE

e¼1

Xnr

i¼1

pi

Z
Ce

ub
i ð~n � ~rÞuI dC

� �

¼
XC

c¼1

Xno

i¼1

~f i
p �

Z
Xc

ud
i
~ruI dX

� �
: ð25Þ

The integrals depend on mesh geometry only, thus may
be calculated only once. A collocation scheme is employed
to obtain a system of equations for boundary pressure val-
ues. The matrices of integrals are large, full and unsymmet-
rical. Since the calculation can be performed in a post
processing step, we omitted wavelet compression. Instead
we wrote a MPI [9] based parallel code, which divided
the matrices across processors, and made the calculation.

3.6. Calculation of pressure in the domain

With the boundary pressure values known from the
BEM algorithm, we face a problem of calculating the
domain pressure values. A Poisson type equation with
Dirichlet boundary conditions must be solved. Similarly
as with the kinematics equation, we used FEM method
to do this calculation. The following values were used in
Eq. (22): b = 0, C = 0, D = 1, M ¼ � ~r �~f p.

3.7. The stream function

In order to be able to solve the stream function equation
(8) we must first find the boundary stream function values.
Since the stream function is undetermined up to a constant,
we may arbitrarily choose a value in one point on the
boundary. From that point, the values on the boundary
are calculated by means of integration of the stream func-
tion definition. In two dimensions the tangential derivative
of the stream function is

ow
ot
¼ nx

ow
oy
� ny

ow
ox
¼ nxvx þ nyvy : ð26Þ

Starting from the point with a known boundary value,
the following integral

wC ¼
Z

C
nxvx þ nyvy dC ð27Þ

is used to obtain boundary stream function values. They
are then used as Dirichlet type boundary conditions for a
finite element method solution of the stream function equa-
tion (8). The following values were used in Eq. (22): b = 0,
C = 0, D = 1, M = x.

3.8. Drag and lift coefficients

When dealing with flows over bluff bodies qualitative
comparison of the results is usually given by comparing lift
cL and drag cD coefficients. For a 2D case they are the non-
dimensional force acting on the body, defined by

cD

cL

����
���� ¼ 1

qL 1
2
v2

0

~F ; ~F ¼ �
Z

C
p d~Cþ

Z
C

s � d~C; ð28Þ

where C is the boundary of the bluff body and
sij ¼ gðovi=oxj þ ovj=oxiÞ is the strain tensor for a Newto-
nian incompressible fluid. Taking into account the defini-
tions of vorticity and strain tensor, the coefficients may
be expressed by

cD

cL

����
���� ¼ 2

Z
C
� 1

Eu
p~nþ 2

Re
ð~n � ~rÞ~vþ 1

Re

ny

nx

����
����x

� �
dC;

ð29Þ

where ~n ¼ ðnx; nyÞ is the unit normal on the boundary,
pointing out of the flow domain. By looking at Eq. (6),
we observe that the pressure is multiplied with the Euler
number. In the equation for drag and lift coefficients (29)
the pressure is divided by the Eu number value, thus cD

and cL are independent of the Euler number, and depend
solely on the Reynolds number value.

3.9. Particle tracking

We developed a Lagrangian particle tracking scheme,
which requires that particle positions must be updated
every time step using the simulated flow field and the par-
ticle settling velocity. Using small particle tracking time
steps (usually 1/10 of the flow field simulation time step)
we advanced the particle positions in time between subse-
quent flow fields by small displacements d~s ¼ ð~vþ~vsÞdt.
The velocity of the particle was set to be equal to the
sum of the local fluid velocity~v and particle settling veloc-
ity~vs (Eq. (10)).

The main problem with the numerical implementation
of this approach is the efficient calculation of the fluid
velocity at the location of each particle. This task requires
two actions: firstly, to find the mesh element, within which
the particle is located, and secondly to interpolate the
velocity flow field inside the element to find the flow veloc-
ity at the exact location of the particle.

In our numerical model, we use 9 node Lagrange ele-
ments with 4 node geometry. This means that four nodes
are corner nodes, four nodes are located on straight lines
between the corner nodes and the ninth node is inside the
elements. Thus, mathematically the problem may be for-
mulated as: there are four points in R2 connected with
straight lines. We must figure out, whether the fifth (parti-
cle location) is inside or outside the element formed by the
straight lines.

Fig. 1 shows such an element, defined by corner nodes
ðxi; yiÞ and its transformation to the local coordinate sys-
tem (n, g). A point inside the element x, y may be written
in local coordinate system (n, g) by using shape functions
(30):



Fig. 1. An element with linear geometry and its transformation to the
n, g coordinate system.
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u1 ¼
1

4
ð1� gÞð1� nÞ; u2 ¼

1

4
ð1� gÞð1þ nÞ;

u3 ¼
1

4
ð1þ gÞð1þ nÞ; u4 ¼

1

4
ð1þ gÞð1� nÞ

ð30Þ

as

xðn; gÞ ¼
X4

i¼1

uiðn; gÞxi; yðn; gÞ ¼
X4

i¼1

uiðn; gÞyi: ð31Þ

We are interested in exactly the inverse transformation;
based on a known location (x, y) find the coordinates (n, g)
in the local coordinate system. When (n, g) are known we
can interpolate any field function, which was the result of
a CFD simulation, to the location x, y. When shape func-
tions (30) are inserted into Eq. (31) we obtain the following
expressions for g

g ¼ 4x� ðx1 þ x2 þ x3 þ x4Þf g þ n x1 � x2 � x3 þ x4f g
x4 � x1 þ x3 � x2f g þ n x1 � x4 þ x3 � x2f g

¼ Aþ Bn
C þ Dn

; ð32Þ

g ¼ 4y � ðy1 þ y2 þ y3 þ y4Þf g þ n y1 � y2 � y3 þ y4f g
y4 � y1 þ y3 � y2f g þ n y1 � y4 þ y3 � y2f g

¼ E þ F n
Gþ Hn

; ð33Þ

where capital letters stand for linear combinations of cor-
ner node coordinates. Eqs. (32) and (33) are used to solve
for n. A second degree polynomial equation is obtained:

ðBH � FDÞn2 þ ðAH þ BG� ED� FCÞnþ ðAG� ECÞ ¼ 0:

ð34Þ

If the discriminant of the polynomial (34) is negative or
the equation is trivial, the element is not regular-for exam-
ple, lines between corners cross each other. This does never
happen, if the mesh is generated correctly. If both solutions
for n are outside the interval ½�1 . . . 1�, the point in ques-
tion (x, y) does not lie within the element. If at least one
of the n is in the interval ½�1 . . . 1�, we use it to calculate
g out of Eq. (32) or Eq. (33). The solution of Eq. (34)
answers two questions at the same time-whether the point
is located within the element and at the same time provides
the local coordinates, which may be used for interpolation
of flow field within the element.

The following summarises our particle tracking
algorithm.

• The algorithm maintains a list of particles. It keeps
record of position of each particle, and weather the par-
ticle is active or inactive. A particle becomes inactive,
when the flow carries it out of the domain through the
outflow boundary or when it settles down onto the bot-
tom boundary of the domain. The particle active/inac-
tive status is updated after each time step by
comparing its position against the fluid computational
mesh boundaries. All of the particles that hit the bottom
of the domain settle there permanently, i.e. become inac-
tive and are not released back into the flow.

• The algorithm divides each flow simulation time step to
10 particle path integration steps. It uses the interpola-
tion routine to find the flow velocity at the particle loca-
tion and integrates the particle path between two flow
simulation time steps.

• When the next flow simulation time step is reached, the
algorithm uses the new flow field and repeats the pro-
cedure.

• The flow simulation time step must be small enough, so
that particles do not move for more than one element
within one time step.
4. Numerical examples

To show the efficiency and accuracy of the proposed
numerical scheme, flow simulation and particle tracking
was examined for two numerical examples: flow past a cir-
cular cylinder and flow over a backward-facing step.
4.1. Flow past a circular cylinder

Consider a fluid flowing in a laminar fashion on a infi-
nite x–y plane in x direction. A pressure gradient drives
the fluid. The velocity profile is uniform, the streamlines
are parallel lines y = const. The flow is two-dimensional,
the domain extents infinitely in the z direction. In this sec-
tion we will examine what happens, when such fluid
encounters a circular obstacle. The nondimensional param-
eter that governs the flow fields in this case is the Reynolds
number, defined as Re ¼ v0D=m0;wherev0 is the velocity of
the unperturbed flow field, D is the diameter of the cylinder
and m0 is the fluid viscosity.

Since it is impossible the model an infinite domain, we
chose the domain large enough to enable setting of bound-
ary conditions. The domain dimensions are 16 · 32, the
diameter of the cylinder is 1, its centre is located at (8, 8).
The computational domain is presented in Fig. 2. The fluid
enters the domain on the left side with constant velocity
~v ¼ ð1; 0Þ. The boundary condition at the top and
bottom walls assumes fully developed horizontal flow



Fig. 2. Geometry and boundary conditions of the flow past a circular
cylinder.

Fig. 4. Vorticity contours (top) and streamlines (bottom) for Re = 20.
Calculated streamlines (lines) are in a very good agreement with the
massless particles tracked through the flow field (circles).
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ðvy ¼ 0; ox
oy ¼ 0Þ, i.e. the upper and lower boundary of the

domain are assumed far enough so the perturbation of
the flow field, caused by the cylinder, does not cause any
mass or vorticity flux through them. The cylinder is
assumed to be solid with non-slip boundary conditions
ð~v ¼ 0Þ. The flow exits the domain on the right hand side.
Since vortices are formed behind the cylinder they must be
transported through the outflow boundary without causing
any disturbance of the flow field, such as cause reflections
from the outflow back into the flow field. To achieve this,
a convective outflow boundary condition [20,16] is used.
A monochromatic wave equation

o/
ot
þ c

o/
on
¼ 0; ð35Þ

is used to transport normal velocity and vorticity
ð/ ¼ vx;xÞ from the nodes nearest to the outflow boundary
to the boundary nodes. We have used the inlet velocity for
the wave speed c ¼ vinlet

x ¼ 1.
Three mesh densities were employed to solve the prob-

lem. The coarsest mesh consisted of 4060 nodes (see
Fig. 3), the other two had 8200 and 32,400 nodes
respectively.

The flow at Re = 20 and Re = 40 is steady. A nondimen-
sional time step of 1 was used; steady state was achieved
after around 100 time steps. The flow is symmetric across
y = 8.0, hence there is no lift; cL = 0.0. Two additional
parameters are measured at steady state. The separation
Fig. 3. The coarsest computational mesh with 4060 nodes for the flow
past a circular cylinder.
angle H is the angle between the y = 8 line and the line con-
necting the cylinder centre and the point on the cylinder
where vorticity vanishes. The recirculation length L is
the length of the recirculation zone behind the cylinder
measured along the y = 8.0 line. The steady state results
for Re = 20 and Re = 40 are presented graphically in Figs.
4 and 5 respectively. Both the vorticity contours and the
stream lines are shown in both figures.
Fig. 5. Vorticity contours (top) and streamlines (bottom) for Re = 40.
Calculated streamlines (lines) are in a very good agreement with the
massless particles tracked through the flow field (circles).
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In a steady state flow field, the streamlines are identical
with pathlines, i.e. massless particle paths must coincide
with the streamlines. These two steady state results were
used to check the accuracy and validity of the particle
tracking algorithm. For both Reynolds numbers, a nearly
perfect match is obtained when comparing streamlines
and particle paths. Comparison is shown in Figs. 4 and 5.

The calculated separation angle, recirculation length
and drag coefficient are shown in Table 1. For comparison
results of other authors are presented along with a FVM
commercial code CFX. We can clearly see, that our present
results are in very good agreement with the reference
results.

At Re = 100 the flow behind the cylinder is unsteady.
There is no need to artificially induce the instability. The
system starts oscillating at around t = 100. Our calculation
was preformed with a nondimensional time step of 0.1 until
t = 200. The time variation of the lift coefficient is charac-
terized by the Strouhal number Str ¼ D

v0t0
, where t0 is the

shredding period of the lift. The vorticity contours and
Table 1
Flow past a circular cylinder (separation angle H, recirculation length L and

Re = 20

L H (�)

Tritton [31] (exp) – –
Coutanceau and Buoard [6] (exp) 0.73 42.3

Fornberg [8] (num) 0.91 –
Dennis and Chang [7] (num) 0.94 43.7
Calhoun [5] (num) 0.91 45.5
Ramšak et al. [21] (num) 0.94 43.0

CFX 5.7 N = 4.060 0.96 –
CFX 5.7 N = 8.200 0.95 –
CFX 5.7 N = 32.400 0.94 –

Present N = 4.060 0.93 43.59
Present N = 8.200 0.93 43.86
Present N = 32.400 0.94 44.04

Fig. 6. Vorticity contours (top) and s
streamlines for t = 200 are shown in Fig. 6. The drag
coefficient, the amplitude of the lift coefficient and Strou-
hal number are presented in Table 2. The time depen-
dence of both coefficients is shown graphically in Fig. 7.
It may be noted, that the frequency of oscillations of the
drag coefficient is twice the oscillating frequency of the lift
coefficient.

Analysing the results in Table 2 we can see, that the
Strouhal number is in good agreement with reference
results. The cD value and the amplitude of cL are slightly
lower than the reference results, however in good agree-
ment with the commercial FVM code CFX.

Massless particles were released into the Re = 100 flow
field. Four particles were released each time step at location
x ¼ 7 and y ¼ 7:8; 7:9; 8:1; 8:2. Bearing in mind that the
cylinder centre is at (8, 8) and its diameter is 1, we have
released the particles just upstream of the cylinder. When
the flow is still under development, the recirculation region
is very long. This is illustrated with massless particles at
t = 50 in Fig. 8. When the flow is fully developed,
drag coefficient cD for Re = 20 and Re = 40)

Re = 40

cD L H (�) cD

2.22 – – 1.48
– 1.89 52.8 –

2.00 2.24 – 1.50
2.05 2.35 53.8 1.52
2.19 2.18 54.2 1.62
2.14 2.27 53.3 1.59

2.21 2.29 – 1.64
2.22 2.32 – 1.65
2.23 2.26 – 1.66

2.16 2.23 53.93 1.57
2.20 2.23 53.80 1.61
2.23 2.24 53.99 1.65

treamlines (bottom) for Re = 100.



Table 2
Flow past a circular cylinder (the drag coefficient cD, the amplitude of the
lift coefficient cL and Strouhal number Str for Re = 100)

Re = 100

cD cL Str

Calhoun [5] N = 204.800 1.330 ± 0.014 ±0.298 0.175
Braza et al. [4] (num) 1.364 ± 0.015 ±0.25 –
Liu et al. [18] (num) 1.350 ± 0.012 ±0.339 0.164
Ramšak et al. [21] N = 112.500 1.283 ± 0.007 ±0.149 0.168

CFX 5.7 N = 4.060 1.198 ± 0.0012 ±0.118 0.161
CFX 5.7 N = 8.200 1.335 ± 0.0038 ±0.210 0.161
CFX 5.7 N = 32.400 1.346 ± 0.042 ±0.225 0.161
CFX 5.7 N = 129.600 1.335 ± 0.033 ±0.216 0.161

Present N = 4.060 1.217 ± 0.003 ±0.186 0.159
Present N = 8.200 1.250 ± 0.0026 ±0.190 0.158
Present N = 32.400 1.300 ± 0.006 ±0.195 0.159
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t = 200, the flow field is periodically symmetric, which can
also be seen by examining the distribution of massless par-
ticles in Fig. 9.

4.2. Flow over a backward-facing step

Consider a two-dimensional channel. An incompressible
fluid, driven by a pressure gradient, is flowing in a laminar
fashion along the channel. The flow rate is constant; the
streamlines are parallel to the channel walls. The velocity
profile is parabolic, with zero velocity on the walls of the
channel and the maximal velocity in the middle of the
Time [
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Fig. 8. Massless particle flow behind a circular cylinder at R
channel. In this section we examine what happens, when
such flow encounters a one-sided sudden expansion of the
channel, i.e. flows over a backward-facing step.

Flow over a two-dimensional backward-facing step is
one of the classical examples, which is used to check the
accuracy and stability of numerical schemes. Two decades
ago, Armaly and co-workers [2] measured the velocity
field using laser Doppler measurements. Gartling [10] made
a numerical benchmark. Later, the backward-facing
step flow at Re = 800 was used for validation of different
numerical algorithms Keskar and Lyn [15] and Gresho
et al. [11]. Among others Grigoriev and Dargush [12] and
Ramšak et al. [22] checked the boundary element based
code.

The height of the step is one half of the channel height.
The characteristic length scale is the height of the channel
H. At inflow a parabolic velocity profile is prescribed. It
is non-dimensionalized by the velocity v0. The velocity v0

is chosen is such a manner that it ensures the same flow rate
with an uniform profile. The Reynolds number is defined as
Re ¼ Hv0

m0
. The ratio between the length and height of the

channel was the same as in the benchmark solution;
L=H ¼ 30. The channel with boundary conditions is
sketched in Fig. 10. The walls have a non-slip boundary
condition. When we simulated a steady state solution, we
employed a developed profile boundary condition at the
outflow boundary, i.e. all normal fluxes were set to zero.
When the simulation was unsteady, the convective outflow
boundary condition was used.
s]

D
ra

g
co

ef
fic

ie
nt

120 140 160 180 200
1.15

1.2

1.25

1.3

1.35

1.4

s with respect to time, Re = 100.

e = 100 when the flow is still under development; t = 50.



Fig. 10. Flow over a backward-facing step in a channel. The centre of the bottom eddy is marked with xc,l, yc,l, the recirculation length on the bottom wall
is xr,l. On the top wall, the flow separation takes place at xs,u and the recirculation is finished at xr,u. The centre of the top eddy is at xc,u, yc,u.

Fig. 9. Massless particle flow behind a circular cylinder at Re = 100 in the developed flow stage; t = 200.
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We compared solutions with different wavelet compres-
sion ratios, with the aim to find a wavelet compression
ratio, which does not affect the accuracy of simulation.
Other authors claim, that the mesh with 500 · 50 nine-node
Lagrange elements, which has 101,101 uniformly distrib-
uted nodes, is dense enough to solve the problem at
Re = 800. Using this mesh, we changed the wavelet com-
pression ratio and compared the solution with benchmark
results of Gartling [10] and solutions of other authors. The
comparison is shown in Tables 3 and 4. We noticed, that
the difference to the benchmark solution is negligible for
� � 10�5. At higher compression ratios, the accuracy of
the solution deteriorates. Fig. 11 shows velocity profiles
for different compression ratios. We observe, that the pro-
Table 3
Laminar flow over a backward-facing step at Re = 800 (presentation of result

Author Grigoriev and Dargush
[12]

Keskar and Lyn
[15]

Gartling
[10]

Method BEM Spectral FEM
Mesh 17.878 3737 E:129.681

xr,l 6.10 6.0964 6.10
xc,l 3.392 3.350
yc,l 0.296 0.3
xðxc;l; yc;lÞ �2.2620 �2.283
wðxc;l; yc;lÞ �0.03420 �0.0342
xr,u 10.47 10.4785 10.48
xs,u 4.85 4.8534 4.85
xc,u 7.447 7.400
yc,u 0.815 0.8
xðxc; ycÞ 1.1527 1.322
wðxc; ycÞ 0.50653 0.5064
files up to � ¼ 10�5 are virtually identical. At higher com-
pression ratios, the difference between profiles is the
largest in the area where recirculation regions end. At
� ¼ 10�4 the lower eddy is too short, while the upper eddy
is moved towards the left. Thus we conclude, that � ¼ 10�5

is the compression ratio, which may be used in simulation
without wavelet compression diminishing the accuracy of
results.

This finding is in accordance with findings for a lid dri-
ven cavity test case and for natural convection in a cavity
test case, where � ¼ 10�5 was reported as the right compres-
sion ratio in our previous work [24].

Vorticity contours and streamlines with particles are
shown in Figs. 12 and 13. Contour values are the same
s of other authors and their methods)

Gresho et al.
[11]

Gresho et al.
[11]

Ramšak et al.
[22]

Žunič et al.
[38]

Finite diff. Spectral BEM BEM-FEM
1920 · 128 �8.000 400.000 32.000

6.082 6.10 6.10 6.11
3.375
0.2968

�0.034195 �0.0342
10.4648 10.49 10.48 10.49

4.8388 4.86 4.86 4.87
7.4375
0.8125

0.50661 0.5065



Table 4
Laminar flow over a backward-facing step at Re = 800 (presentation of present results for different compression ratios)

�

Compression
10�4 2 · 10�5 10�5 10�6 10�7

0.956 0.879 0.847 0.748 0.536

xr,l 5.62 6.045 6.087 6.100 6.096
xc,l 3.09 3.33 3.33 3.36 3.36
yc,l 0.32 0.3 0.3 0.3 0.3
xðxc;l; yc;lÞ �2.420 �2.277 �2.269 �2.29 �2.29
wðxc;l; yc;lÞ 0.0454 0.03509 0.03439 0.0340 0.0342
xr,u 10.58 10.435 10.489 10.478 10.478
xs, u 4.57 4.818 4.847 4.855 4.851
xc,u 7.02 7.41 7.41 7.47 7.47
yc,u 0.77 0.81 0.81 0.82 0.82
xðxc; ycÞ 1.407 1.187 1.197 1.09 1.10
wðxc; ycÞ 0.473 0.503727 0.505824 0.506964 0.506607
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Fig. 11. Flow over a backward-facing step, Re = 800. Comparison of velocity profiles for different compression ratios. Profiles at x=H ¼ 3; 6; 9; 12 (from
left to right) are shown.
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Fig. 12. Flow over a backward-facing step, Re = 800, � ¼ 10�6. Lines of constant vorticity (�8, �6, �4, 0, 2, 4, 6, 8, 10). The vertical axis is scaled by a
factor of 4.
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Fig. 13. Flow over a backward-facing step, Re = 800, � ¼ 10�6. Streamlines (�0.03, �0.025,�0.02, �0.015. �0.01, �0.005, 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3,
0.35, 0.4, 0.45, 0.5, 0.502, 0.504). The vertical axis is scaled by a factor of 4.
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Table 5
Particle diameters and Stokes numbers used for tracking a dilute
suspension of particles in a flow field behind a backward-facing step

St dp (lm) vs (m/s)

3 · 10�4 60 3.92 · 10�3

1.2 · 10�5 12 1.57 · 10�4

1.2 · 10�7 1.2 1.57 · 10�6

0 200 400 600 800 1000
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20000
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Fig. 14. Number of particles in the computational domain through time
for Stokes numbers Sta ¼ 3� 10�4, Stb ¼ 1:2� 10�5 and Stc ¼ 1:2� 10�7.
This graph was used to determine the start of the statistical analysis at
t = 400.

802 J. Ravnik et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 789–805
as in the benchmark paper of Gartling [10]. By tracking
particles in the steady flow field we were again able to con-
firm good agreement between streamlines and particle
pathlines.

With the compression ratio established, we proceeded to
increase the Reynolds number to have an unsteady flow sit-
uation which enables particle tracking. In order to be able
to see formation of larger eddies, we increased the ratio
between the height of the channel and the height of the step
from 1 to 6. The Reynolds number, based on the height of
the step, was Re = 5000.

Considering water as our fluid ðq ¼ 103 kg=m3;
m ¼ 10�6 m2=sÞ, particles with density qp ¼ 3� 103 kg=m3,
the step height 10 cm and inflow fluid velocity v0 ¼
5 cm=s, three cases were considered. The Stokes number
was set to 3 · 10�4, 1.2 · 10�5 and 1.2 · 10�7. Correspond-
ing particle diameters and settling velocities are shown in
Table 5. Simulation duration was 10,000 time steps span-
ning 1000 time units. Fig. 14 shows the number of particles
in the computational domain through time for the three
Stokes numbers considered. In order to do statistical anal-
ysis on the same dataset, we decided to start analyses at
t = 400. The first 4000 time steps were not used, since the
flow has not yet reached self similar state in all three Stokes
number cases. The average number of particles in the
domain in each time step, t > 400, was 29,497 ± 432 for
St = 1.2 · 10�7, 27,357 ± 311 for St = 1.2 · 10�5 and
18,583 ± 171 for St = 3 · 10�4. The average ratio between
the area occupied by particles and the domain area
was � 10�7 for St = 1.2 · 10�7, � 10�5 for St ¼ 1:2�
10�5 and � 10�4 for St = 3 · 10�4, thus the assumption
of dilute particle suspension is valid for all three cases.

We presume that the particle distribution at the inflow is
statistically uniform, thus particles were inserted into the
flow directly above the step with a uniform distribution.
Let us define the number of particles per unit of length
0 5 10 15 20
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Fig. 15. Relative particle flux for Stokes numbers Sta ¼ 3� 10�4, Stb ¼ 1:2�
right graph shows the outflow region, vo. The particle flux in areas, where rel
and time at the inflow as particle flux J0. At the bottom
of the domain, the sedimentation particle flux is J s, while
at the outflow of the domain, we have Jo. When simulation
reached a statistically steady state regime (t � 400; number
of particles in the domain does not change significantly
over time), we measured relative particle flux in the sedi-
mentation region vs ¼ J s=J 0 and in the outflow region
0 0.2 0.4 0.6 0.8 1 1.2
0
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10�5 and Stc ¼ 1:2� 10�7, left graph shows the sedimentation region vs,
ative particle flux is equal to one, is equal to the inflow particle flux.
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vo ¼ J o=J 0. Fig. 15 shows vs and vo for the three particle
Stokes numbers. Almost all of the particles with the lowest
Stokes number flow out of the domain through the outflow
boundary. Only a small fraction vs � 10�4 settle on the
lower boundary. On the other hand, a much larger share
of particles at the highest Stokes number settle on the lower
boundary vs � 10�1.

Fig. 16 shows particle distribution behind the step for all
three Stokes numbers at the same time instant t = 672. In
order to achieve clear representation of particles in the fig-
ure, the size of the particles has been vastly (� 104 times)
exaggerated. The vortices forming in the wake of the step
capture the particles and carry them through the flow field.
The vortex forming on the top wall does not capture parti-
cles in the case of the largest Stokes number St ¼ 3� 10�4,
since the particle settling velocity is too large and particles
settle below the top wall vortex. The largest number of par-
ticles caught in the top wall vortex is, as expected, in the
case of the lowest Stokes number. The lager the Stokes
number the less effect does a fluid vortex have on particle
Fig. 16. Particle flow over a backward-facing step Re = 5000. Particle location
and St = 3 · 10�4 (bottom).
dispersion. These findings are in accordance with the
results provided by Yu et al. [35]. Since we are dealing with
dilute particle suspension, where particles do not influence
the fluid flow, we can observe exactly the same location of
vortices in all three Stokes number cases, the only
difference being the number of particles dispersed by the
vortex.

5. Conclusions

We presented a numerical algorithm for simulation of
2D incompressible viscous Newtonian fluid flow with
tracking of dilute suspensions of particles. The algorithm
solves the velocity–vorticity formulation of Navier–Stokes
equations using the wavelet transform, boundary element
method and finite element method. The particles are
tracked in a Lagrangian manner under the assumptions
that they do not have an impact on the fluid and have neg-
ligible inertia, so that their velocity can be modelled as a
sum of local fluid velocity and a settling velocity.
s at t = 672 are shown for St = 1.2 · 10�7 (top), St ¼ 1:2� 10�5 (middle)
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Using the developed numerical scheme, we simulated
incompressible viscous flow and particle tracking past a cir-
cular cylinder. The flow simulation results and comparison
of particle paths and streamlines show exceptionally good
agreement for the steady state ðRe ¼ 20; 40Þ. We have calcu-
lated the drag coefficient and the amplitude of the lift coef-
ficient and the Strouhal number for the unsteady flow at
Re = 100. The Strouhal number is in good agreement with
the reference values, while drag and lift coefficient ampli-
tudes are slightly smaller than reference values, however in
good agreement with the commercial code CFX. Particle
tracking demonstrated that particles are caught in vortices
in the wake of the cylinder and are thus carried downstream.
Comparison of lines of constant stream function in the
steady state example with massless particle paths demon-
strated the accuracy of our particle tracking algorithm.

The steady state backward-facing step flow at Re = 800
was used to determine the optimal wavelet compression
ratio. We were able to confirm our previous statement
[24], which was obtained using different numerical exam-
ples. Locations of vortex centres and recirculation lengths
were found to be in good agreement with reference results.
Comparison of lines of constant stream function and mass-
less particle paths also showed nearly perfect agreement.

By tracking a dilute particle suspension in a flow over a
backward-facing step at Re = 5000 with three different par-
ticle Stokes numbers, we were able to compare particle flow
behaviour and sedimentation in a very dynamic unsteady
flow field. Comparing the settled particle flux and the out-
flow particle flux, we observed that the settled particle flux
increases dramatically with the increasing Stokes number.
We also found good correlation between the increasing
Stokes number and the decreasing number of particles
caught by vortices in the flow field.
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