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a b s t r a c t

In this paper we present an integral equation formulation for the time dependent diffu-
sion–convection equation with variable coefficient and velocity with sources. The formu-
lation is based on usage of the steady fundamental solution of the convection–diffusion
equation. For a known velocity and coefficient fields, which may change with location
and time, the formulation avoids the usage of the gradient of the unknown field function
and thus avoids making the problem nonlinear. Two discretization approaches are pro-
posed and compared: a standard single domain boundary–domain element technique and
a domain decomposition approach. The validity of the formulation and comparison of dis-
cretization approaches is preformed on several challenging test cases. Mesh convergence
is reported and the advantages and disadvantages of both approaches are examined.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Convective and diffusive transport processes occur frequently in nature and engineering. Since fluid flow is in general an
unsteady three-dimensional phenomenon, the transport processes taking place in such flows are governed by a velocity
field, which changes with time and location. Furthermore, the transport coefficient (i.e. diffusivity in the case of mass
transfer, heat conductivity in the case of heat transfer or viscosity in the case of momentum transfer) may also change
with time and location. The change may be due to physical processes, such as a change in fluid temperature or pressure.
Changes in diffusivity may also be due to the use of modelling of different physical phenomena as diffusion type processes
with the introduction of a model based diffusivity. A prominent example of such modelling is the Reynolds averaged
turbulence model, which introduces time and spatially varying turbulent viscosity. The turbulent viscosity is added to
molecular viscosity in the convection–diffusion momentum transfer equation. In many disciplines, like environmental
flows, soil physics, petroleum engineering, chemical engineering and biosciences, diffusive and convective processes with
variable coefficients occur. There are many other application areas, where variable diffusion coefficients are used, such as,
for example, in lithium ion battery electrodes (Renganathan and White [1]).

Since the convection–diffusion type equations govern many physical processes, many researchers worked on finding
new solution methods. Most of the work was done with constant coefficients. Recently, Dehghan [2] proposed a numerical
method for the solution of the three-dimensional advection–diffusion equation. Pudykiewicz [3] derived a finite volume
algorithm for the solution of the reaction–advection–diffusion equation on the sphere. Sakai and Kimura [4] used a spectral
method to solve a nonlinear two-dimensional unsteady advection–diffusion equation, which they transformed into a
linear equation. Remešikova [5] proposed an operator splitting scheme for the numerical solution of two-dimensional
convection–diffusion–adsorption problems.
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Kumar et al. [6] derived analytical solutions for the one-dimensional advection–diffusion equation with variable
coefficients in a longitudinal finite initially solute free domain. Mikhailov [7] considered a solution of the heat equation
with a time dependent coefficient. Ang et al. [8] used the boundary element method for a second order elliptic partial
differential equation with variable coefficients. Similarly, Grzhibovskis et al. [9] considered a Dirichlet problem for the
linear second order elliptic PDE in a bounded domain with variable coefficient. A boundary–domain integral equation was
used, accelerated by the H-matrix/ACA technique. Several other authors also considered variable coefficient diffusion and
Helmholtz equations in non-homogeneous media [10–16].

In this paper we propose an integral formulation, which leads to an efficient solution of unsteady diffusion–convection
problems with variable velocity field and coefficient. This work is based on the formulation proposed by Ravnik and
Škerget [17] for steady diffusion–convection problems. The gradient of the unknown field function is not included in the
final integral formulation. Instead, the gradient of the coefficient is needed and thus, the final integral equation includes
only the unknown function on the boundary and in the domain and its flux on the boundary. The proposed equation is
linear and after discretization requires only a single solution of a system of linear equations to obtain the solution.

2. Governing equation

Let us consider a domain Ω in R3 with boundary Γ . The domain is filled with an incompressible fluid. Let r⃗ be a vector
representing a point in the domain and let v⃗ be the fluid velocity. An unknown field function, u, which is subjected to
convective and diffusive processes in the domain, is governed by the following PDE:

∂u
∂t

+ v⃗(r⃗, t) · ∇⃗u = ∇⃗ ·


α(r⃗, t)∇⃗u


+ f (r⃗, t), r⃗ ∈ Ω, (1)

with the following Dirichlet and/or Neumann type boundary conditions

u(r⃗, t) = u(r⃗, t), r⃗ ∈ ΓD,

n⃗ · ∇⃗u(r⃗, t) = q(r⃗) = q(r⃗, t), r⃗ ∈ ΓN , (2)

where ΓD and ΓN are the Dirichlet and Neumann parts of the boundary with Γ = ΓD ∪ ΓN . Boundary conditions vary with
time, while the initial conditions are

u(r⃗, 0) = u0. (3)

The fluid is incompressible, thus ∇⃗ · v⃗ = 0 and the fluid velocity varies in space and in time. The diffusion coefficient,
α, in the domain is isotropic, time dependent and non-homogeneous, thus α(r⃗, t) is a function of the location and time.
Furthermore, there are sources f (r⃗, t) in the domain, which also vary in space and time.

3. Integral representation

The governing equation (1) may be recast into an integral form using the boundary–domain integral method (Škerget
et al. [18]). The method relies on the fact that a fundamental solution of the steady diffusion–convection problem exists. It
is defined by (Driessen [19])

α0∇
2u⋆

+ v⃗0 · ∇⃗u⋆
= −δ(r⃗, ξ⃗ ), (4)

where α0 and v⃗0 are the constant parts of the transport coefficient and velocity and ξ⃗ is a source (collocation) point. Eq. (4)
in 3D has the following fundamental solution:

u⋆(r⃗, ξ⃗ ) =
1

4π |r⃗ − ξ⃗ |α0
exp


v⃗0 · (r⃗ − ξ⃗ ) − v0|r⃗ − ξ⃗ |

2α0


, (5)

where v0 = |v⃗0| and its gradient is

∇⃗u⋆(r⃗, ξ⃗ ) =


1

|r⃗ − ξ⃗ |
+

v0

2α0


r⃗ − ξ⃗

|r⃗ − ξ⃗ |
−

v⃗0

2α0


u⋆(r⃗, ξ⃗ ). (6)

The variable coefficient and the velocity field are decomposed into constant and variable parts as follows:

α(r⃗) = α0 + α′, v⃗(r⃗) = v⃗0 + v⃗′, (7)

where α′ and v⃗′ are the variable parts.
At time t for a time step∆t the backward Euler finite difference approximation is used to approximate the time derivative

as
∂u
∂t

= β1u + β2uc (8)

where β1 =
1

∆t and β2 = −
1

∆t . The u is the function in the next time step and uc is the function in the current time step.
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Using this decomposition, we may rewrite Eq. (1) as

− α0∇
2u + v⃗0 · ∇⃗u = ∇⃗ ·


α′

∇⃗u


− v⃗′
· ∇⃗u + f − (β1u + β2uc). (9)

Considering for a moment the terms on the right hand side of Eq. (9) as source terms, the standard BEM derivation
(Wrobel [20]) yields the following integral representation for a source point ξ⃗ ∈ Γ located on the boundary:

c(ξ⃗ )u(ξ⃗ ) +


Γ

α0u∇⃗u⋆
· dΓ⃗ =


Γ

u⋆α0∇⃗u · dΓ⃗ −


Γ

u⋆uv⃗0 · dΓ⃗ +


Ω

u⋆
∇⃗ · (α′

∇⃗u)dΩ  
due to variable coef.

−


Ω

u⋆v⃗′
· ∇⃗udΩ  

due to var. velocity

+


Ω

u⋆fdΩ  
sources

−


Ω

u⋆(β1u + β2uc)dΩ  
unsteady term

, (10)

where c(ξ⃗ ) is the free coefficient given by the solid surface angle at ξ⃗ . The domain integrals in Eq. (10) are due to the source
terms of Eq. (9). These domain integrals include the variable parts of the coefficient α′ and the variable part of velocity
v⃗′, sources f and the unsteady accumulation term. The first two domain integrals have a gradient of the solution, ∇⃗u, in
their kernels. Integral equation (10) could be used as the basis for discretization, but since the gradient of the solution is
needed to construct the source terms, numerical differentiation would be needed. Furthermore, an iterative scheme would
be needed, where the solution of (10) and the numerical calculation of the gradient ∇⃗u would be alternatively calculated
until convergence is achieved.

Thus, in the following, we rewrite Eq. (10) into an expression that avoids the gradient of the unknown function. Let us
first focus on the domain integral due to the variable coefficient. Using rules for chain differentiation, we may write

Ω

u⋆
∇⃗ · (α′

∇⃗u)dΩ =


Ω

∇⃗ · (u⋆α′
∇⃗u)dΩ +


Ω

u∇⃗α′
· ∇⃗u⋆dΩ −


Ω

∇⃗ · (α′u∇⃗u⋆)dΩ +


Ω

α′u∇2u⋆dΩ. (11)

The two integrals that feature a divergence of the kernel can bewritten as boundary integrals using theGauss clause, yielding
Ω

u⋆
∇⃗ · (α′

∇⃗u)dΩ =


Γ

u⋆α′
∇⃗u · dΓ⃗ +


Ω

u∇⃗α′
· ∇⃗u⋆dΩ −


Γ

α′u∇⃗u⋆
· dΓ⃗ +


Ω

α′u∇2u⋆dΩ. (12)

The kernel of the last domain integral in Eq. (12) includes a Laplacian of the fundamental solution. This can be rewritten by
using the definition in Eq. (4) as

Ω

α′u∇2u⋆dΩ = −
1
α0


Ω

α′uδ(r⃗, ξ⃗ )dΩ −
1
α0


Ω

α′uv⃗0 · ∇⃗u⋆dΩ. (13)

At his point we choose the constant part of the coefficient to be α0 = α(ξ⃗ ). Thus α′ is equal to zero at the source point, and
since the Kronecker delta is zero everywhere else, the first integral on the right hand side of Eq. (13) vanishes. Using this,
Eq. (12) simplifies to

Ω

u⋆
∇⃗ · (α′

∇⃗u)dΩ =


Γ

u⋆α′
∇⃗u · dΓ⃗ −


Γ

α′u∇⃗u⋆
· dΓ⃗ +


Ω

u


∇⃗α′
−

α′

α0
v⃗0


· ∇⃗u⋆dΩ. (14)

Next, we turn our attention to the domain integral of Eq. (10), which is due to the variable velocity field. By using the
definition of divergence and the fact, that the velocity field is solenoidal, we can write:

Ω

u⋆v⃗′
· ∇⃗udΩ =


Ω

∇⃗ · (u⋆uv⃗′)dΩ −


Ω

uv⃗′
· ∇⃗u⋆dΩ

=


Γ

u⋆uv⃗′
· dΓ⃗ −


Ω

uv⃗′
· ∇⃗u⋆dΩ, (15)

where the Gauss clause has been used to transform the domain integral into a boundary integral.
Noticing that ∇⃗α = ∇⃗α′, α′/α0 = α/α0 − 1, using (14) and (15) we rewrite Eq. (10) as

c(ξ⃗ )u(ξ⃗ ) +


Γ

αu∇⃗u⋆
· dΓ⃗ =


Γ

u⋆α∇⃗u · dΓ⃗ −


Γ

u⋆uv⃗ · dΓ⃗ +


Ω

u


∇⃗α + v⃗ −
α

α0
v⃗0


· ∇⃗u⋆dΩ

+


Ω


f − (β1u + β2uc)


u⋆dΩ. (16)

Here α is the coefficient and v⃗ is the fluid velocity, which both vary in space and time. Also, α0 and v⃗0 are the constant
parts, which are used to calculate the fundamental solution and its gradient, where α0 is the coefficient at the location of the
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source point. The constant part of the velocity can be chosen arbitrarily, for example, it can be the average of the velocity
field in the domain or the velocity at the source point.

Eq. (16) includes boundary values of the function u as well as boundary values of the normal flux, q = ∇⃗u · n⃗. Time
dependent boundary conditions in the form of either function or flux must be known in order to use (16) to solve for the
other. With the boundary values of function and flux known, this formula may be used to find the time development of the
unknown field u within the domain. Within each time step Eq. (16) is solved to obtain the new field based on the known
velocity field, transport coefficient and sources. Since none of the fields depend on the function u, the problem is linear and
within each time step only one solution of (16) is needed.

4. Discretization

The integral equation (16) features both boundary and domain integrals, thus a boundary-only discretization procedure
is not possible. The variable velocity field and variable coefficient as well as presence of sources in the domain require the
discretization of the whole domain.

A computational mesh, consisting of hexahedral elements, is set up in the domain, i.e. Ω =


e Ωe. The sides of the
elements, which make up the outer boundary of the domain are deemed boundary elements, Γ =


b Γb. With such a

mesh, Eq. (16) may be rewritten as

c(ξ⃗ )u(ξ⃗ ) +


b


Γb

αu∇⃗u⋆
· dΓ⃗ =


b


Γb

u⋆αqdΓ −


b


Γb

u⋆uv⃗ · dΓ⃗ +


e


Ωe

u


∇⃗α + v⃗ −
α

α0
v⃗0


· ∇⃗u⋆dΩ

+


e


Ωe


f − (β1u + β2uc)


u⋆dΩ. (17)

The hexahedral domain elements have 27 nodes, which are used for continuous quadratic interpolation of the function by
employing Lagrangian interpolation functions Φi. Nine nodes on each boundary element allow for the continuous quadratic
interpolation of a function using boundary interpolation functions ϕi. Finally, each boundary element includes four nodes
for the discontinuous interpolation of the flux using linear interpolation functions φi. Thus, a function, u, is interpolated
over a boundary element as u =


ϕiui, inside each domain element as u =


Φiui, while the flux is interpolated over the

boundary element as q =


φiqi. Inserting these interpolations into (17) we have

c(ξ⃗ )u(ξ⃗ ) +


b


i

αb,iub,i


Γb

ϕi∇⃗u⋆
· dΓ⃗ =


b


i

αb,iqb,i


Γb

φiu⋆dΓ −


b


i

ub,iv⃗b,i ·


Γb

ϕiu⋆n⃗dΓ

+


e


i

ue,i


∇⃗αe,i + v⃗e,i −

αe,i

α0
v⃗0


·


Ωe

Φi∇⃗u⋆dΩ

+


e


i


fe,i − (β1ue,i + β2uc

e,i)
 

Ωe

Φiu⋆dΩ. (18)

Please note that the integrals in (18) depend solely on themesh shape and on the fundamental solution. Thus, after choosing
the collocation point ξ⃗ and the constant part of the velocity field, they may be calculated beforehand and do not change
through the time stepping simulation procedure. In order to calculate the integrals, a Gaussian quadrature algorithm is used.
The integrals are calculated in a local coordinate system via weighted summation of 16 integration points per coordinate
axis. In the case of high aspect ratios of hexahedral elements, the elements are divided into parts whose aspect ratio is
approximately equal to one.

Calculation of the free coefficient c(ξ⃗ ) is preformed indirectly.We consider a known solution of the rigid bodymovement,
u = 1, q = 0 and use it to calculate c(ξ⃗ ). If the source point is located on the surface, we know that c = 1/2, also if the
source point is inside of the element then c = 1. These two relationships are used to check the accuracy of the calculated
integrals, which depends on the number of integration points.

In order to set up a system of linear equations, one needs to place the collocation point ξ⃗ at different locations, each
yielding a single equation. The integrals are calculated and grouped into matrices. We have

[H] =


Γ

ϕi∇⃗u⋆
· n⃗dΓ , [G] =


Γ

φiu⋆dΓ , (19)

[A⃗] =


Γ

ϕin⃗u⋆dΓ , [D⃗] =


Ω

Φi∇⃗u⋆dΩ, [B] =


Ω

Φiu⋆dΩ, (20)

where the square brackets denote matrices of integrals. Let the curly brackets denote vectors of nodal values of functions.
Then, the discrete version of Eq. (18) may be written as

[H]{αu} = [G]{αq} − [A⃗] · {v⃗u} + [D⃗] ·


u


∇⃗α + v⃗ −
α

α0
v⃗0


+ [B]


f − (β1u + β2uc)


. (21)
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Fig. 1. Setup of system of linear equation for the BDIE (left) and the SDBDIE (right). A 2D domain is presented, where Neumann boundary conditions are
known on the top wall and Dirichlet boundary conditions on all other walls. Empty circles denote nodes where function is unknown, full circles denote
function nodes, where function is known via boundary conditions. Squares denote flux nodes. A short line coming out of a node denotes an equation with
collocation point in that node. Solid line is the external boundary of the domain, dashed lines are subdomain boundaries and dotted lines are the mesh
element boundaries.

In this work, we examine two collocation based discretization approaches. Both are based on Eq. (21) but differ in the
placement of collocation points and in the setup of the linear system of equations. The first approach, abbreviated BDIE
(boundary–domain integral equation), utilizes a single domain and produces a fully populated system of linear equations.
The collocation point is placed at boundary nodes in accordance with boundary conditions, i.e. in boundary elements
where Dirichlet boundary conditions are given, the collocation point is placed at flux nodes and where Neumann boundary
conditions are known, the collocation point is placed at function nodes. Furthermore the collocation point is placed at all
internal nodes aswell, to facilitate simultaneous calculation of the solution in the entire domain. The resulting systemmatrix
is full and a LU-decomposition based solver is used to solve the system.

The second approach, abbreviated SDBDIE (subdomain BDIE), employs a domain decomposition technique (Ramšak
et al. [21]). It considers eachmesh element to be a subdomain and sets up a separate system of equations for each individual
subdomain. The six sides of each subdomain are treated as boundary elements and the collocationpoint is placed at boundary
nodes according to the boundary conditions. The final solution is obtained, when compatibility boundary conditions are
employed between subdomains. The conditions require the function and flux to be continuous across subdomains. Finally, a
sparse over-determined system of linear equations is obtained. The system is over-determined due to the fact that nodes are
shared between subdomains. A least-squares based solver with diagonal preconditioning (Paige and Saunders [22]) is used
to obtain the solution of this system. The solver approximates a pseudo inverse of the over-determined system of equations,
thus the diagonal preconditioner is calculated via a product of transpose of the system matrix multiplied by the system
matrix.

Fig. 1 shows a 2D cut through a sample domain to graphically illustrate the collocation node placement and the setup of
the linear system of equations for BDIE and SDBDIE. On the boundary, both methods have the same number of unknowns
(either function or flux nodes, based on boundary conditions). In the domain, only the function values at the nodes are
unknown in the BDIE, while the function values and fluxes at nodes are unknown in the SDBDIE. This makes the system of
linear equations in the case of SDBDIE larger.

4.1. Complexity estimates

If we consider a cubic domain meshed by n3 elements (in case of the BDIE or n3 subdomains in case of the SDBDIE), we
notice that the number of unknowns in case of the BDIE is (2n+1)3+(6·4)n2

−b, while for the SDBDIE it is (6·4+33)·n3
−b.

Here b is the number of values known through boundary conditions. For large problems, where n is large, we can estimate
that the SDBDIE system of linear equations has approximately 51/8 =6.375 times more equations than the BDIE system.
However, when looking at the number of nonzero entries in the matrices, the situation is reversed. In case of the BDIE, the
[D⃗] and [B] matrices are full. The number of rows in these matrices is equal to the number of collocation point, while the
number of columns is equal to the number of function nodes. All together they have ≈ n6 nonzero entries. In the SDBDIE
case, the matrices are sparse and the number of nonzero columns is determined by the number of subdomains surrounding
the collocation point. In the worst case, when the collocation point belongs to eight subdomains, the number of nonzero
entries is 53

+ 108 = 233 and the total number of nonzero entries is ≈ 233 · n3. Thus, the BDIE system of equations has
n3/233 times more nonzero matrix elements that the SBDIE. Since memory requirements for the SDBDIE scale as ∝ n3 and
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Fig. 2. Comparison of SDBDIE compression ratio with H-matrix/ACA approach of Grzhibovskis et al. [9].

for the BDIE they scale as∝ n6, computermemory availability limits the BDIEmesh size, while with the SDBDIEmuch larger
meshes can be considered.

The SDBDIEmemory requirements can be compared to fast techniques of other authors such aswavelet compression, fast
multipole method or adaptive cross approximation. For example, Grzhibovskis et al. [9] considered a linear second order
elliptic PDE with variable coefficient and used the H-matrix/ACA compression for domain integrals. They report a ≈ 0.5
compression ratio for a [D] integral matrix emerging from a 104 node mesh of a ball shaped geometry and a compression
ratio of ≈ 0.15 for 7 · 104 nodes. Let us define the compression ratio of the SDBDIE as the ratio between the computer
memory needed by the SDBDIE divided by the memory needed by the full matrix the BDIE approach. In Fig. 2 we compare
the SDBDIE compression ratio with data reported by Grzhibovskis et al. [9]. A cubical domain was used to generate the
SDBDIE compression ratios. Both approaches show a similar compression increase with increasing number of nodes. The
SDBDIE yields compression for a low number of nodes, while the ACA does not. The reason for this is that the SDBDIE does
not need any additional data structure, while for the ACA a hierarchical tree is needed which allows for the computation of
matrix vector products. Looking at compression ratios we see that the SDBDIE compression is about an order of magnitude
better than that of the ACA. This is due to the fact that through the use of domain decomposition the SDBDIE becomes a local
method, while the ACA merely approximates a standard non-local approach. The main drawback of the local nature of the
SDBDIE becomes evident in cases of simulation of high Peclet number flows, which feature sharp solution gradients, as it is
shown in the test cases section.

5. Test cases

In order to verify the validity of the proposed integral equation (16) and to compare the BDIE and the SDBDIE
discretization approaches, we considered several test cases and compared the approximate solutions to the analytical
solutions. The test cases have been designed to test the validity of the proposed numerical algorithms. Oscillating solutions
and different ratios between convection and diffusion processes were used to highlight the features of the methods.
Furthermore, in order to examine the convergence properties of the algorithms, the test cases have been solvedwith several
meshes and using different time steps.

As the algorithmwas developed in 3D it requires a three-dimensional domain with Dirichlet and/or Neumann boundary
conditions applied on the sides of the domain. In the case, where a 2D example was solved, it was solved in the x − y plane
with a Neumann zero flux boundary condition applied on the top and bottom z planes. For a 1D example, a Neumann zero
flux boundary conditionwas used on both top and bottom z planes and front and back y planes and the solutionwas obtained
in the x direction.

To estimate the approximation error, the root mean square norm was used. It is based on the difference between the
simulation result u and the analytical solution ua as

∥u − ua∥RMS =


n

i=1
(ui − ua,i)

2

n
i=1

u2
a,i


1/2

, (22)

where i denotes a nodal value and n is the number of all nodes in the domain. In the case of 2D problems, only nodes in one
plane are used, while for 1D problems only nodes on a line profile through the domain are considered.
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Fig. 3. Test case I — RMS versus n at time t = 1 calculated using BDIE (right) and SBDIE (left) for three values of parameter ν = 0.5, 1, 2. Time step of
∆t = 0.1 was used.

Fig. 4. Test case I — RMS versus n at time t = 1 calculated using single domain BEM (BDIE) for three values of parameter ν = 0.5, 1, 2. Left: ∆t = 0.01,
right: ∆t = 0.001.

5.1. Test case I

Let us consider a 2D case where the domain is Ω = [1, 2]2 and let ν be a parameter. The fluid velocity is constant;
v⃗ = (1, 1). The transport coefficient depends on time and changes linearly within the domain; α = (t + x + y)/ν. The
sources are defined by f = ν(t + x + y)ν−1. Dirichlet boundary conditions are considered on the left and right walls,
u(1, y, t) = (t + 1 + y)ν and u(2, y, t) = (t + 2 + y)ν . Neumann boundary conditions are applied on the top and bottom
walls, q(x, 1, t) = −ν(t + x + 1)ν−1 and q(x, 2, t) = ν(t + x + 2)ν−1. At time t = 0, the field is initialized to u = (x + y)ν .
The analytical solution of this test case is ua = (t + x + y)ν .

This case features a constant velocity field. The fluid is flowing across the domain at a 45° angle. The transport coefficient
and sources are time and position dependent. We solved this test case for three values of the parameter ν = 0.5, 1 and 2.
Meshes had 1, 22, 42, 82 and 162 equal sized elements in the solution plane. The total number of nodes used for discretization
of u in these meshes was from 9 to 1089.

Some results are presented in Figs. 3–5 for the RMS norm versus the number of nodes in the computational mesh at time
t = 1. At ν = 1 this test case is particularly simple, as the solution is simply a linear function of position and time. This is
reflected in the results, as the norms are ≈ 10−6 regardless of the mesh density and time step size. This was expected, as
linear functions are fully captured by the discretization scheme.

However, in the case of ν = 0.5 and ν = 2 the solution is not a linear function of the location and time, thus, the
accuracy of the solution depends on the mesh density and time step. For a large time step of ∆t = 0.1 (Fig. 3) improvement
of the solution accuracy is observed only up to a certainmesh density. After that point, increasing themesh density does not
improve the accuracy, as the time step is too coarse to allow improvement. When using a shorter time step, (Figs. 4 and 5)
the accuracy improves with the mesh density. On the other hand, the solution accuracy is limited by ≈ 10−6. This is caused
by the limited accuracy of the calculation of the integrals and the accuracy of the solution of systems of linear equations.
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Fig. 5. Test case I — RMS versus n at time t = 1 calculated using subdomain domain BEM (SDBDIE) for three values of parameter ν = 0.5, 1, 2. Left:
∆t = 0.01, right: ∆t = 0.001.

5.2. Test case II

Let us consider a 3D casewhere the domain isΩ = [1, 2]3 and ν a parameter. The coefficient varieswith location and time
in an oscillatorymanner,where the parameter ν defines the frequency of oscillations;α = 2+sin(t+ν(x+y+z)π). The fluid
velocity is constant v⃗ = (1, 1, 1). The sources are defined by f = xyz+t(yz+xy+xz)(1−πν cos(t+π(x+y+z)ν)). Dirichlet
boundary conditions are considered on the left and right walls, u(1, y, z, t) = tyz and u(2, y, z, t) = 2tyz. Neumann
boundary conditions are applied on the top and bottom walls, q(x, y, 1, t) = −txy and q(x, y, 2, t) = txy as well as on
the front and back walls q(x, 1, z, t) = −txz and q(x, 2, z, t) = txz. At time zero, the field is initialized to u = 0. The
analytical solution of this test case is ua = txyz.

The meshes used consisted of 23, 43 and 83 elements with 125, 729 and 4913 nodes. The SDBDIE was tested on the 163

(35937) mesh as well, while due to computer memory constraints, the BDIE was not tested on this mesh. All mesh elements
of a single mesh have the same size and shape.

Fig. 6 presents the norms for the BDIE and the SDBDIE calculated using ∆t = 0.1. Both methods show good
convergence properties. The accuracy of the approximation deteriorateswith increasing frequency of coefficient oscillations
and improves with mesh density. The size of the time step is not a limiting factor in this case, as using shorter time steps
does not improve the results. This is due to the fact, that the solution is a linear function of time. The solution accuracy in
this case is determined by the relationship between the degree to which the coefficient oscillates in the domain and the
mesh density.

Since the size of the elements in our meshes decrease by a factor of 2, we were able to use the Richardson extrapolation
to estimate the order of ourmethods. Comparing the simulation errors at mesh element sizes h and h/2, we define the order
of the method O as

∥u − ua∥RMS, h2
=


1
2

O

∥u − ua∥RMS,h. (23)

Using the results of case II and averaging over different mesh sizes and ν, we obtain O = 2.51 ± 0.4 for the BDIE and
O = 2.38 ± 0.4 for the SDBDIE, establishing more than second order accuracy for the proposed methods.

5.3. Test case III

In this test case we consider a generalization of a well known 1D entry flow problem. The entry flow problem balances
diffusion and convection using the Peclet number ν, and features constant diffusivity and time independent boundary
conditions. Here, we introduce a generalized entry flow problem, where diffusivity changes in the domain according to
xm, wherem is a new parameter. The 1D transport equation for generalized entry flow is

ν
∂u
∂x

=
∂

∂x


xm

∂u
∂x


, (24)

which is a steady 1D version of Eq. (1) with f = 0, v⃗ = (ν, 0, 0) and α = xm. Considering a domain Ω = [a, b], where
0 ∉ Ω and boundary conditions u(a) = 0, u(b) = 1 the following solution may be found:

u(x) =


xν

− aν

bν − aν
m = 1

exp

−

ν
m−1


x1−m

− a1−m


− 1

exp

−

ν
m−1


b1−m − a1−m


− 1

m ≠ 1 & m ≥ 0.
(25)
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Fig. 6. Test case II — RMS versus n at time t = 1 calculated BDIE (right) and SDBDIE (left) for three values of parameter ν = 0.5, 1, 2 using a time step of
∆t = 0.1. Second order slope is also shown.

The derivative of the solution du/dx at x = a is ≈ 0, while at x = b the derivative limits for high Peclet number values to
limν→∞ du/dx|x=b = ν/bm.

The case without varying coefficient (m = 0) has been solved by Qiu et al. [23] for high Peclet number values. They
used the standard BEM in two dimensions and a special treatment of the singular integrals. Furthermore, they used
transformations to avoid directly evaluating Bessel functions for Cauchy principal value and hypersingular integrals, which
yielded virtually analytical results for Peclet numbers up to ν = 107. Other methods, such as the finite volume method [21]
are unable to reach such high values of the Peclet number, as they cannot capture the sharp solution profile.

We solved this test case for several values of ν andm examining the properties of our proposed solution algorithms. We
choose a = 1 and b = 2 in a block shaped domain (a, 0, 0) × (b, 0.01, 0.01). Dirichlet boundary conditions were applied at
x = a and x = bwhile no-flux Neumann boundary conditions were used on four other walls.

As the solution features a very sharpprofile at x = b, themeshes used in our calculationwere concentrated towards x = b.
Mesh concentration was performed using a geometrical series using a mesh concentration ratio R. The mesh concentration
ratio R is defined as the ratio between the longest and the shortest element of the mesh.

The most challenging part of this test case is the correct estimation of the flux at x = b. As this value is proportional to
the Peclet number, it becomes very large in cases of high Peclet numbers and the corresponding function resembles a step
function. In Fig. 7 the RMS error of the flux at x = b is shown for ν = 103 andm = 0 . . . 4. Two different mesh concentration
ratios have been used alongwith severalmeshes.We observe good convergence properties. The results for R = 100 aremore
accurate, since a short element in the area where a high gradient is expected, yields a better estimation of the solution.

In Table 1 we compare the performance of the BDIE and the SDBDIE. All simulations are done on a 17 node mesh with
R = 100. We observe that the BDIE yields reasonably accurate results for a Peclet number ≤ 105. At ν = 106 the results
for m = 0 and m = 1 are poor, while for larger m they are still accurate. In the case of the SDBDIE results only up to
ν = 103 are accurate, while for higher values of the Peclet number, the method fails. The reason for this is the local nature
of the SDBDIM, which is a consequence of the usage of domain decomposition. Since the integral equation is solved for each
individual subdomain, the approximation is limited to the subdomain and the fundamental solution is not able to correctly
approximate the solution. On the other hand, in the case of the BDIE, which is non-local, the fundamental solution is able to
capture the flow physics through the whole domain. Thus the results show that the SDBDIE behaves like a finite-element or
finite-volume approach, which are also local and governed by sparse system matrices.

Table 2 shows the influence of mesh compression on the accuracy of the results. We can observe that for low Peclet
number values an uncompressed (R = 1) mesh yields best results, while the accuracy deteriorates for high compression
ratios. This behaviour is expected, as for a lowPeclet number the solutionprofile resembles a linear function, thus equidistant
mesh elements are the most appropriate choice. However, for very large Peclet number values, the solution has a very steep
gradient at x = b, thus mesh compression towards the area of high gradients is necessary to achieve accurate results and
the uncompressed mesh yields inaccurate results. This is clearly observed when looking at ν ≥ 103 results in Table 2.

5.4. Test case IV

Let us consider a 3D case where the domain is Ω = [1, 2]3 and ν a parameter. The coefficient varies linearly with
location and time as α = t + x + y + z. The fluid velocity varies with location and increases with increasing parameter;
v⃗ = ν(yz, xz, xy). The sources are described by f = ν(t + x + y + z)ν−1(1 + (−3 + yz + x(y + z))ν). Dirichlet boundary
conditions are considered on the left and right walls, u(1, y, z, t) = (1 + t + y + z)ν and u(2, y, z, t) = (2 + t + y + z)ν .
Neumann boundary conditions are applied on the front and back walls, q(x, 1, z, t) = −ν(1 + t + x + z)ν−1 and
q(x, 2, z, t) = ν(2 + t + x + z)ν−1 as well as on the top and bottom walls q(x, y, 1, t) = −ν(1 + t + x + y)ν−1 and
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Fig. 7. Test case III — RMS versus n calculated using BDIE for ν = 1000 using two different mesh concentration ratios, R = 10 and R = 100.

Table 1
Comparison of end node flux value du/du|x=b . A 17 node mesh was used
with R = 100. BDIE and SDBDIE solutions are compared with analytical
values.

ν m = 0 m = 1 m = 2 m = 3 m = 4

Analytical solution of du/du|x=b
100 1.582 1 0.635 0.3997 0.247
101 10.0005 5.0049 2.517 1.28 0.661
102 100 50 25 12.5 6.25
103 1000 500 250 125 62.5
104 10000 5000 2500 1250 625
105 100000 50000 25000 12500 6250
106 1000000 500000 250000 125000 62500

BDIE, 17 nodes mesh with R = 100

100 1.578 1.0000001 0.634 0.393 0.233
101 9.97 4.96 2.45 1.22 0.612
102 99.94 49.95 24.96 12.47 6.24
103 999.19 499.27 249.73 124.92 62.45
104 10000.003 5000.3 2501.2 1249.5 624.1
105 100007.4 50000 25000 12500 6250.1
106 2068237 623279 257233 125065 62500.012

SDBDIE, 17 nodes mesh with R = 100

100 1.575 0.999999 0.633 0.390 0.228
101 9.94 4.92 2.41 1.18 0.58
102 100.0 49.94 24.92 12.42 6.18
103 943.7 497.8 250.1 124.9 62.33

Table 2
Comparison of end node flux value du/du|x=b in the case of
m = 4 simulated with BDIE using a 9 node mesh and different
compression ratios R.

ν Analytical R = 1 R = 10 R = 100

100 0.247 0.245 0.226 0.193
101 0.66 0.65 0.59 0.52
102 6.25 5.98 6.23 5.4
103 62.5 37 59 61.7
104 625 336 475 620
105 6250 5168 6183 6251
106 62500 62738 62501 62500

q(x, y, 2, t) = ν(2 + t + x + y)ν−1. At time t = 0, the field is initialized to u = (x + y + z)ν . The analytical solution of this
test case is ua = (t + x + y + z)ν .

To solve this test case we used a mesh with only one element (and 27 nodes) and meshes with 23, 43 and 83 elements
with 125, 729 and 4913 nodes. All mesh elements of each mesh have the same size and the same cubical shape. Two time
step sizes were considered; ∆t = 0.1 and ∆t = 0.01.
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Fig. 8. Test case IV — RMS versus n calculated using BDIE (left) and SBDIE (right) using time step of ∆t = 0.1 (top) and ∆t = 0.01 (bottom).

The test case is designed in such a way, that the velocity of the flow is proportional to the value of the parameter ν. Also,
the solution field has an exponential dependence on the parameter ν. Thus, for large values of the parameter, the flow is
fast and the solution features exponential growth based on a large exponent. Fig. 8 shows RMS errors for the solutions of
the test case with ν = 2, ν = 5 and ν = 10.

We observe a deterioration of the solution accuracy with increasing values of the parameter ν. This is expected, as it is
increasingly more difficult to capture the sharp solution profiles as the parameter increases. On the other hand, in the case
of the short time step (∆t = 0.01) we observe that the methods keep good mesh convergence properties regardless of the
value of the parameter ν. Thus, the order of the methods does not depend on ν. When using a longer time step (∆t = 0.1),
the convergence properties are lost, as the increase of mesh density does not contribute to an increase of accuracy, since the
long time step limits the solution accuracy.

6. Conclusions

Wederived an integral formulation of an unsteady convection–diffusion problemwith sources and variable velocity field
and variable diffusion coefficient. Themain advantage of this formulation over previously proposed solutions is the fact that
it does not include the gradient of the unknown function. Without the gradient, the problem is linear and can be, after
discretization, solved by a single solution of a linear system of equations.

We proposed two three-dimensional discretization approaches for the proposed formulation. Both are based on the
use of the boundary element method combined with domain integration. The first employs the boundary–domain integral
equationmethod, which requires the calculation of domain integrals in full and yields a fully populated system of equations.
The second approach is based on domain decomposition, treating each mesh element as a subdomain and employing
the boundary–domain integral equation method for each individual subdomain. After the application of the compatibility
conditions between subdomains a sparse over-determined system of equations is obtained.

The test cases show that in most cases both discretization approaches yield results of comparable accuracy. The mesh
convergence of bothmethods is of second order. An analysis of the time step showed that in order to have good convergence
a sufficiently short time step must be used. Only in extreme cases of very sharp solution profiles, the non-local nature of the
boundary–domain integral equation method outperforms the local domain decomposition approach.

The proposed integral formulation will in the future be used in a turbulent flow solver for the solution of momentum
transport equation, which features a spatially and time varying velocity field. Additionally, when turbulence is modelled
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with the eddy viscosity approach, it requires the use of turbulent viscosity, which varies in space and in time, making the
proposed formulation an ideal choice.
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