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Abstract

A wavelet transform based boundary element method (BEM) numerical scheme is proposed for the solution of the kinematics

equation of the velocity-vorticity formulation of Navier–Stokes equations. FEM is used to solve the kinetics equations. The proposed

numerical approach is used to perform two-dimensional vorticity transfer based large eddy simulation on grids with 105 nodes. Turbulent

natural convection in a differentially heated enclosure of aspect ratio 4 for Rayleigh number values Ra ¼ 1072109 is simulated. Unstable

boundary layer leads to the formation of eddies in the downstream parts of both vertical walls. At the lowest Rayleigh number value an

oscillatory flow regime is observed, while the flow becomes increasingly irregular, non-repeating, unsymmetric and chaotic at higher

Rayleigh number values. The transition to turbulence is studied with time series plots, temperature–vorticity phase diagrams and with

power spectra. The enclosure is found to be only partially turbulent, what is qualitatively shown with second order statistics—Reynolds

stresses, turbulent kinetic energy, turbulent heat fluxes and temperature variance. Heat transfer is studied via the average Nusselt number

value, its time series and its relationship to the Rayleigh number value.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Over the last few decades two-dimensional (2D) buoy-
ancy driven flows have been investigated thoroughly by
several authors. Besides the Rayleigh–Bernard type pro-
blems, enclosures heated from the side and insulated on the
top and bottom were also of prime interest. Usually a
rectangular domain is under consideration with different
width to height ratios. Natural convection in a rectangular
enclosure is present in many industrial applications, such as
cooling of electronic circuitry, nuclear reactor insulation
and ventilation of rooms.
e front matter r 2006 Elsevier Ltd. All rights reserved.
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A benchmark solution for 2D flow of Boussinesq fluid in
a square differentially heated enclosure was presented by
De Vahl Davies and Jones [1]. They used the stream
function-vorticity formulation. Vierendeels et al. [2,3] used
a multigrid method to obtain a solution of a compressible
fluid in a square enclosure for Rayleigh numbers between
Ra ¼ 102 and 107. Škerget and Samec [4] confirmed these
results using a compressible 2D boundary element method
(BEM) formulation. Weisman et al. [5] studied the
transition from steady to unsteady flow for compressible
fluid in a 1:4 enclosure. They found that the transition
occurs at Ra � 2� 105. Different geometrical arrangement
may lead to an unsteady behaviour at intermediate
Rayleigh number values, while steady behaviour was
observed at high Rayleigh number values, as reported by
Oosthuizen and Paul [6]. Ingber [7] used the vorticity

www.elsevier.com/locate/enganabound
dx.doi.org/10.1016/j.enganabound.2006.02.008
mailto:leo@uni-mb.si
mailto:matjaz.hribersek@uni-mb.si


ARTICLE IN PRESS
J. Ravnik et al. / Engineering Analysis with Boundary Elements 30 (2006) 671–686672
formulation to solve both square and 1:8 differentially
heated enclosures. Simulations as well as experiments of
turbulent flow were also extensively investigated. Hsieh and
Lien [8] considered numerical modelling of buoyancy-
driven turbulent flows in enclosures using RANS ap-
proach. 2D DNS was performed by Xin and Le Quéré [9]
for an enclosure with aspect ratio 4 up to Rayleigh number,
based on the enclosure height, 1010 using expansions in
series of Chebyshev polynomials. For aspect ratio larger
than or equal to 4, the onset of unsteadiness is due to the
instability of vertical boundary layers independently of the
boundary conditions imposed on the horizontal walls. The
onset of unsteadiness proceeds through a bifurcation which
is of Hoph supercritical type. Salat et al. [10] compared the
results of modelling turbulent natural convection at high
Rayleigh number value between experimental data, 2D
large eddy simulation (LES), 2D DNS and three-dimen-
sional (3D) LES computations. They reported that only
minor differences are observed between the 2D and 3D
results and concluded that a 2D calculation could be used
as a first approximation for general flow structure in
cavities at Rayleigh number value about 1010. Peng and
Davidson [11] performed a LES study of turbulent buoyant
flow in a 1:1 enclosure at Ra ¼ 1:59� 109 using a dynamic
Smagorinsky model as well as the classical Smagorinsky
model with Van Driest damping.

In present work we have studied the onset of natural
convection in a 1:4 differentially heated enclosure within
the incompressible Boussinesq approximation. Transition
from 2D steady laminar flow at enclosure width based
Rayleigh number Ra ¼ 106 via oscillatory motion at Ra ¼

107 to chaotic (turbulent) fluid flow at Ra ¼ 108; 109 is
simulated. The planar LES is used for velocity-vorticity
formulation of the incompressible Navier–Stokes equa-
tions. The velocity-vorticity formulation of the Navier–
Stokes equations in combination with the BEM is a
promising concept for numerical solution of fluid flow
problems. Solution of the flow kinematics equation is
obtained by the BEM and provides boundary vorticity
values, leading to a well posed vorticity transport equation.
It is written in a form directly applicable for first kind
boundary value problems. Velocity-vorticity LES has been
investigated by Tenaud et al. [12] and Mansfield et al. [13],
each having a different solution for boundary vorticity. We
propose to use BEM because of its unique advantage for
solving the boundary vorticity values directly.

For the solution of the domain values Škerget et al. [14]
and Ramšak et al. [15] proposed a subdomain BEM
technique. Although the subdomain technique results in
sparse matrices, it still requires a considerable amount of
computer memory and CPU time. These requirements were
reduced by Žunič et al. [16], who proposed using FEM for
the solution of the domain and was able to simulate 2D
laminar flows in velocity-vorticity formulation. In order to
be able to perform a LES simulation, we propose using a
wavelet compression algorithm on fully populated ma-
trices, resulting from the BEM calculation of boundary
vorticities, to further decrease the computer memory and
CPU time requirements of the coupled BEM–FEM
algorithm. A discrete wavelet transform for vectors of
arbitrary length, developed by Ravnik et al. [17], was used.
The paper is organized as follows: we first introduce the

velocity-vorticity based LES. Section 3 explains the use of
wavelet transformed BEM and FEM to perform LES. The
numerical scheme, especially the wavelet compression
algorithm, is thoroughly tested and validated on known
benchmark and analytical examples in Section 4. Turbulent
natural convection is simulated and the results are analysed
and compared with other authors in Section 5. Finally,
conclusions and remarks are given in the last section.

2. Velocity-vorticity based large eddy simulation

In this paper we assume an incompressible viscous
Newtonian fluid with constant material properties: density
r ¼ r0, viscosity n ¼ n0 and diffusivity a ¼ a0. The
continuity equation (mass conservation law) within this
approximation

~r �~v ¼ 0 (1)

requires the velocity field ~v to be solenoidal, i.e. divergence
free. In order to write the Navier–Stokes equations
buoyancy is modelled within the Boussinesq approxima-
tion. Density variations with temperature rðTÞ ¼ r0½1�
bT ðT � T0Þ� are considered only in the buoyancy term and
defined by the thermal volume expansion coefficient bT and
the temperature difference. Since we are solving a coupled
momentum–heat transport problem, the field functions
were non-dimensionalized in the following manner:
~v! ~v=v0, ~g! ~g=g0, ~r!~r=L, ~o! ~oL=v0, t! v0t=L,
T ! ðT � T0Þ=DT , p! p=p0, v0 ¼ a0=L, where p is the
pressure, L the width of the enclosure and ~o the vorticity.
With the above stated assumptions the momentum
transport equation (momentum conservation law) in non-
dimensional form reads as

q~v
qt
þ ð~v � ~rÞ~v ¼ �PrRa T~g�

1

Eu
~rpþ Prr2~v, (2)

with the Prandtl Pr, enclosure width based Rayleigh Ra

and Euler Eu numbers defined as: Pr ¼ n0=a0,
Ra ¼ g0bTDTL3=n0a0, Eu ¼ r0v20=p0. We further assume
that no internal energy sources are present in the fluid. We
will not deal with high velocity flow of highly viscous fluid,
hence we will neglect irreversible viscous dissipation. With
this, the internal energy conservation law, written with
temperature as the unknown variable, reads as

qT

qt
þ ð~v � ~rÞT ¼ r2T . (3)

Since it is, due to limited computer power, not possible to
solve the system of equations (1)–(3) for all scales of
turbulent fluid motion, the LES approach was chosen.
Assuming a high Reynolds number value and isotropic
turbulence, Kolmogorov stated (pope [18]) stated that the
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effect of small scales of turbulent motion is purely
energetic. The small scales are responsible for dissipating
the kinetic energy coming from disintegration of large
eddies into internal energy of the fluid. By the low pass
spatial filtering of the flow fields (velocity, vorticity,
pressure, temperature), we eliminate the small scales of
turbulent motion. On the other hand, we provide a
computational mesh dense enough to capture all the
physics of the filtered flow field. It has been shown [19],
that the mesh element size is of the same order of
magnitude as the filter width. For sharp spectral filter,
both quantities are identical. The well established [18,19]
LES approach is to filter the equations of continuity,
momentum and heat transport and rewrite them in a form,
having the same terms as the original equation with an
additional term, describing the difference between the two
equations, i.e. the dissipation effects. However, we will use
velocity-vorticity based LES, where the vorticity transfer
equation is filtered instead of the momentum transfer
equation. Similarly to the Richardson’s energy cascade,
Taylor’s [20] vorticity transfer hypothesis also proposes
transfer of vorticity from the large scales towards the small
scales and its dissipation by the small scales.

Let us first sketch the derivation of the velocity-vorticity
formulation of the Navier–Stokes equations. Vorticity ~o is
defined as the curl of the velocity ~o ¼ ~r �~v. By definition
vorticity must be divergence free ~r � ~o ¼ 0. The continuity
equation (1) is used to transform the vorticity definition
into a kinematics equation. Applying the curl operator on
the vorticity definition we obtain

~r � ~o ¼ ~r � ~r �~v ¼ ~rð~r �~vÞ � r2~v ¼ �r2~v

¼)r2~vþ ~r � ~o ¼ 0 ð4Þ

the kinematics equation, which relates the velocity and
vorticity fields for every point in space and time. Both, the
vorticity and velocity fields must be solenoidal, in order for
this equation to be fulfilled.

The advection term in the momentum transport equa-
tion (2) may be rewritten in the following way:
ð~v � ~rÞ~v ¼ 1

2
~rv2 �~v� ~o. Using this relationship and the

expression for the Laplacian of velocity field (4) in Eq. (2)
we find

q~v
qt
þ

1

2
~rv2 �~v� ~o ¼ �PrRaT~g�

1

Eu
~rp� Pr~r � ~o. (5)

We now apply the curl operator to Eq. (5) and thus
eliminate both gradient terms. This eliminates pressure
from the equation. Taking into account the definition of
vorticity, we arrive at

q~o
qt
� ~r � ð~v� ~oÞ ¼ �PrRa~r � T~g� Pr~r � ~r � ~o (6)

a form of vorticity transfer equation, which is appropriate
for LES filtering. The filtering operation is defined by the
following domain integral. If a field function is uð~x; tÞ, its
filtered counterpart is

ūð~x; tÞ ¼

Z
O

Gð~r; ~xÞuð~x�~r; tÞd~r, (7)

where the integral includes the whole flow domain O. We
will use the sharp spectral filter kernel G ¼ sinðpr=DÞ=pr,
which is normed and homogenous, thus filtering and
derivation commute with respect to time as well as with
respect to coordinate. It is a low pass filter defined by its
width D. It filters out all wave numbers above the critical
wave number kc ¼ p=D.
The application of the filter to Eq. (6) filters all field

functions in linear terms. Special consideration is needed
for the nonlinear term ~r � ð~v� ~oÞ, which requires an
introduction of a residual vorticity vector ~to that
represents the difference of a filtered product and a
product of filtered quantities ~to ¼ ~v� ~o�~v� ~o. The
filtered Eq. (6) reads as

q~o
qt
� ~r � ð~v� ~oÞ ¼ � PrRa~r � T~g

� Pr~r � ~r � ~oþ ~r �~to, ð8Þ

where we have, due to clarity of notation, omitted the bars
indicating that all field functions have been filtered. By
comparing non-filtered Eq. (6) with the filtered Eq. (8) we
see, that the difference is only in the residual vorticity
vector term ~r �~to. Thus the residual vorticity vector ~to

represents the dissipation of vorticity by the small scales
according to the turbulent vorticity transfer theory of
Taylor [20].
In order to derive the final form of the vorticity transport

equation, the following two vector equations are needed,
~r � ~r � ~o ¼ �r2~o and ~r � ð~v� ~oÞ ¼ ð~o � ~rÞ~v� ð~v � ~rÞ~o,
where the solenoidality of velocity and vorticity fields were
already taken into account. Using both in Eq. (8), the final
form of the vorticity transport equation reads as

q~o
qt
þ ð~v � ~rÞ~o ¼ ð~o � ~rÞ~vþ Prr2~o

� PrRa~r � T~gþ ~r �~to. ð9Þ

Equation (9) equates the Stokes rate of change of vorticity
on the left-hand side with the vortex twisting and stretching
term, the diffusion term, buoyancy and subgrid dissipation
term on the right-hand side. The vortex twisting and
stretching term ð~o � ~rÞ~v is responsible for the 3D character
of turbulent flow. This term vanishes in cases of planar
flows, where the vorticity vector is always perpendicular to
the plane of motion.
The filtered form of the heat equation (3) is

qT

qt
þ ð~v � ~rÞT ¼ r2T � ~r �~th, (10)

where the residual temperature vector ~th is defined as the
difference between the filtered product of temperature and
velocity field minus the product of filtered fields~th ¼ T~v� T~v.
Numerous LES studies used the Smagorinsky [21] and

vorticity based [13] models for modelling the dissipative
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effect of subgrid scales. Both types of models model the
contribution of subgrid scales via the turbulent viscosity
hypothesis. We are modelling the subgrid scales with
analogy to molecular transfer of kinetic energy to heat; the
process which is defined by viscosity. The residual heat
vector is modelled using the gradient hypothesis. Here we
are introducing a non-dimensional subgrid scale viscosity
nsgs ! nsgs=v0L ¼ Prðnsgs=n0Þ and subgrid diffusivity asgs ¼

asgs=a0 by

~to ¼ �nsgs
~r � ~o; ~th ¼ �asgs

~rT . (11)

When inserting the residual vorticity vector (11) into Eq.
(9) we obtain

q~o
qt
þ ð~v � ~rÞ~o ¼ ð~o � ~rÞ~vþ Prr2~o

� PrRa~r � T~g� ~r � ðnsgs
~r � ~oÞ. ð12Þ

Further simplification is possible by using ~r � ~r � ~o ¼
�r2~o, the fact that the curl of a gradient is zero and the
rule for a cross product of a product of a vector and scalar
fields. When common terms are added we arrive at

q~o
qt
þ ð~v � ~rÞ~o ¼ ð~o � ~rÞ~vþ ðPrþ nsgsÞr

2~o

� PrRa~r � T~gþ ð~r � ~oÞ � ~rnsgs. ð13Þ

Inserting the residual heat vector (11) into diffusion–advec-
tion equation for temperature (10) we obtain

qT

qt
þ ð~v � ~rÞT ¼ ð1þ asgsÞr

2T þ ~rT � ~rasgs. (14)

Several models for the subgrid scale viscosity have been
proposed. For vorticity transport equation (13) we decided
to use the enstrophy based model given by Mansour [22,23]:

nsgs ¼ ðCDÞ2
ffiffiffiffiffiffiffiffiffiffiffi
~o � ~o
p

. (15)

A sharp spectral filter is used; thus the filter width equals
D ¼ ðDxDyDzÞ

1=3. It is known [24] that turbulent oscillations
die out in the vicinity of walls. Therefore, the residual
vorticity vector (11) must also limit to zero when
approaching a solid wall. Damping of the filter width is
used to achieve zero residual tensor and vector at the wall
[24]. We employed the Piomelli type damping dP and Van
Driest type damping dvd to bring the subgrid scale viscosity
to zero in the vicinity of solid walls:

dP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e½�yþ=25�3

p
; dvd ¼ 1� e½�yþ=25�,

nsgs ¼ ðCDdPÞ
2
ffiffiffiffiffiffiffiffiffiffiffi
~o � ~o
p

. ð16Þ

On the basis of experimental observations the turbulent
viscosity of isotropic turbulence was found to be compar-
able with the turbulent diffusivity for the complete
turbulent spectrum, their relationship being close to linear:

asgs ¼
1

Prt

nsgs, (17)

where Prt is the empirically defined turbulent Prandtl
number.
3. Coupled wavelet BEM–FEM solution algorithm

The solution of the vorticity-velocity based LES was
obtained in planar geometry. Vorticity is a scalar quantity
in 2D and does not fully describe turbulent motion (vortex
twisting and stretching term vanishes in 2D). However, as
it was reported by Salat et al. [10], for the case of turbulent
natural convection in a differentially heated enclosure, the
planar simulation can be used for the first approximation
of the turbulent flow phenomena.
In planar geometry the kinematics equation (4) connects

the velocity components vx; vy to the scalar vorticity field o.
The vortex twisting and stretching term of the vorticity
transfer equation (13) vanishes. The planar LES vorticity
transport equation is

qo
qt
þ ð~v � ~rÞo ¼ ðPrþ nsgsÞr

2o

� PrRa~r � T~gþ ~ro � ~rnsgs. ð18Þ

Our complete system of equations is thus made of: two
scalar Poisson type kinematic equations for both velocity
components equations (4) and of the diffusion–advection
equations for temperature (14) and vorticity (18). Having
the no-slip velocity boundary conditions on all walls, the
wavelet based BEM is used to calculate boundary
vorticities. For coarse grids, an explicit BEM calculation
is used to obtain domain velocities. For fine grids storage
requirements of BEM are too large, so instead the
kinematics equations (4) are solved again by FEM to
obtain domain velocities. With the new velocity field the
temperature transport equation (14) is solved to obtain a
new temperature field. Finally, the vorticity transport
equation (18) is solved using the new boundary vorticities,
domain velocities and temperatures. Both transport
equations are solved by FEM. The procedure is repeated
until convergence criteria is fulfilled (RMS difference
between vorticity fields in subsequent iterations is used).
In the following subsections the numerical procedure of
wavelet BEM and FEM is explained.
3.1. Solution of the kinematics equation by wavelet based

BEM

The kinematics equation (4) is an elliptic Poisson type
equation. The basic BEM derivation [25] yields the
following boundary-domain integral form

cðxÞ~vðxÞ þ
Z
G
~vð~n � ~rÞu% dG

¼

Z
G

u%ð~n � ~rÞ~vdGþ
Z
O
ð~r � ~oÞu% dO; x 2 G, ð19Þ

where u% is the fundamental solution of the Laplace
equation (u% ¼ 1=4pr in 3D, u% ¼ ð1=2pÞ lnð1=rÞ in 2D), ~n
the unit normal, x the source point and cðxÞ the geometrical
factor. The domain integral on the right-hand side of
Eq. (19) is rewritten with the definition of a curl of a
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product, i.e. ~r � ð~ou%Þ ¼ ð~r � ~oÞu% � ~o� ~ru% into

Z
O
ð~r � ~oÞu% dO ¼

Z
O
ð~r � ð~ou%ÞÞdO

þ

Z
O
ð~o� ~ru%ÞdO. ð20Þ

Using a derived form of the Gauss divergence clause,R
O
~r � ~F dO ¼ �

R
G
~F �~ndG, to change the first domain

integral on the right-hand side of (20) into a boundary
integral, yields

Z
O
ð~r � ~oÞu% dO ¼ �

Z
G
ð~ou%Þ �~ndGþ

Z
O
ð~o� ~ru%ÞdO.

(21)

Equation (21) is inserted into (19) and a new integral form
of kinematics equation is obtained

cðxÞ~vðxÞ þ
Z
G
~vð~n � ~rÞu% dG

¼

Z
G

u% ð~n � ~rÞ~v� ~o�~n
� �

dGþ
Z
O
ð~o� ~ru%ÞdO. ð22Þ

The term in curly brackets in the boundary integral on
the right-hand side of Eq. (22) is for solenoidal fluid
equal to ð~n � ~rÞ~v� ~o�~n ¼ ð~n� ~rÞ �~v. Using this rela-
tionship in Eq. (22) one can further rewrite the boundary
integral as

Z
G

u%ð~n� ~rÞ �~vdG ¼
Z
G
ð~n� ~rÞ � ð~vu%ÞdG

þ

Z
G
~v� ð~n� ~rÞu% dG. ð23Þ

The first integral on the right-hand side of the above
equation represents an integral over a closed surface of a
tangential derivative of a vector function. For a continuous
function, such integral is always equal to zero. When we
apply the Gauss divergence clause on each component of
the integral separately, we see that the terms in the resulting
domain integrals cancel each other and thus the integral
vanishes.

Inserting Eq. (23) into (22) we finally have an integral
kinematics equation without derivatives of the velocity or
vorticity fields:

cðxÞ~vðxÞ þ
Z
G
~vð~n � ~rÞu% dG ¼

Z
G
~v� ð~n� ~rÞu% dG

þ

Z
O
ð~o� ~ru%ÞdO. ð24Þ

In order to obtain discrete solution of the integral
kinematics equation (24) the boundary G is divided into
E boundary elements Ge and the domain O is divided into
C domain cells Oc with G �

PE
e¼1Ge and O �

PC
c¼1Oc.
Eq. (24) may therefore be approximated by

cðxÞ~vðxÞ þ
XE

e¼1

Z
Ge

~vð~n � ~rÞu% dG

¼
XE

e¼1

Z
Ge

~v� ð~n� ~rÞu% dG

þ
XC

c¼1

Z
Oc

ð~o� ~ru%ÞdO. ð25Þ

Within each boundary element and each internal cells the
field functions are approximated by boundary Nb

i and
domain Nd

i interpolation functions ~v ¼
Pnb

i¼1~v
iNb

i and
~o ¼

Pnd

i¼1~o
iNd

i , where nb and nd are the number of nodes
in a boundary element and in a domain cell. In this paper
we used three node boundary elements and nine node
Lagrange domain cells. Inserting approximations into
Eq. (25) we have

cðxÞ~vðxÞ þ
XE

e¼1

Xnb

i¼1

~vi

Z
Ge

Nb
i ð~n � ~rÞu

% dG
� �

¼
XE

e¼1

Xnb

i¼1

~vi �

Z
Ge

Nb
i ð~n� ~rÞu

% dG
� �

þ
XC

c¼1

Xnd

i¼1

~oi
�

Z
Oc

Nd
i
~ru% dO

� �
. ð26Þ

There are three type of integrals in the above equation. In
all, the integrand is a derivative of the fundamental
solution multiplied by the interpolation function and the
unit normal. The values of integrals depend solely on the
mesh and the interpolation functions chosen, thus they can
be calculated before starting the nonlinear iterative
procedure. The integrals are traditionally named as hi;e,
~h

t

i;e and ~di;c, respectively. With the new notation we may
rewrite the discrete form of kinematics equation as

cðxÞ~vðxÞ þ
XE

e¼1

Xnb

i¼1

~vihi;e

¼
XE

e¼1

Xnb

i¼1

~vi~h
t

i;e þ
XC

c¼1

Xnd

i¼1

~oi
� ~di;c. ð27Þ

The boundary conditions of the numerical examples
investigated in this work are prescribed velocity on the
boundary. In order to obtain a non-singular system
of equations for boundary vorticities from Eq. (27),
one must use its tangential form [26], obtained by taking
a cross product of Eq. (27) with the unit normal in the
source point

cðxÞ~nðxÞ �~vðxÞ þ~nðxÞ �
XE

e¼1

Xnb

i¼1

~vihi;e

¼ ~nðxÞ �
XE

e¼1

Xnb

i¼1

~vi � ~h
t

i;e þ~nðxÞ�
XC

c¼1

Xnd

i¼1

~oi
� ~di;c.

ð28Þ
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We now define the planar geometry. The fluid flows in the
x2y plane, vorticity has only one non-zero component in
the z direction. Since we are dealing with velocity on the
boundary, it is convenient to introduce normal velocity
vn ¼ nxvx þ nyvy and tangential velocity vt ¼ nxvy � nyvx

and treat vorticity as a scalar quantity ~o ¼ oz ¼ o. The
integral vector ~h

t
also has only one non-zero component

and will be also treated as scalar ht. When the cross
products of Eq. (28) are calculated and the system of
equations is simplified to planar geometry, we obtain a
non-zero equation in z direction only:

cðxÞvtðxÞ þ
XE

e¼1

Xnb

i¼1

vi
thi;e

¼ �
XE

e¼1

Xnb

i¼1

vi
nht

i;e þ
XC

c¼1

Xnd

i¼1

oiðnxdx
i;c þ nyd

y
i;cÞ. ð29Þ

When the source point x is set in all boundary nodes, we
obtain a system of equations relating E � nb velocities
normal to the boundary, E � nb velocities tangential to the
boundary and C � nd vorticities in the domain and on the
boundary. But, since we are using nine node Lagrange
internal cells and three node bilinear boundary elements,
the boundary nodes of each cell and element are shared by
neighbouring elements and cells. The unknown velocities
are represented by boundary vectors vi

t ! fvtg, vi
n ! fvng.

The vorticity is divided into a boundary vector oi
i2G!

foGg and a domain vector oi
i2OnG! fo

OnGg. The integrals
are assembled into matrices accordingly. With the bound-
ary vorticities as unknowns, the matrix-vector form of
Eq. (29) is

½DG�foGg ¼ ½C� þ ½H�ð Þfvtg þ ½H
t�fvng

� ½DOnG�foOnGg. ð30Þ

The matrices ½DG�, ½C�, ½H� and ½Ht� are square, fully
populated and unsymmetric with the number of boundary
nodes of rows and columns. Although full, the storage
requirements for these matrices are not large, since the
number of boundary nodes is very small compared to the
number of domain nodes. On the other hand, the matrix
½DOnG� is rectangular and also full and unsymmetric and
has dimension of the number of boundary elements rows
and the number of domain nodes columns. Storing this
matrix in memory requires huge amount of onboard
memory. To tackle this problem we employed a wavelet
transform technique for rectangular matrices developed by
Ravnik et al. [17]. The idea is to use wavelet compression
only on the large matrix ½DOnG� and leave all other matrices
unchanged. The integrals needed to assemble the matrix
½DOnG� are calculated by integrating a derivative of the
Green’s function across domain cells. Derivatives of the
Green’s function are singular at the source point and
diminish quickly when going away from the source point.
Thus we expect high integral values on the diagonal of the
matrix and values close to zero away from the diagonal.
The Haar wavelets are step functions of compact support
and are therefore a good choice to describe quick changes
in matrix elements value.
The wavelet transform is a linear process and may be

described with a matrix product. Let W be the wavelet
transform matrix, which can, via matrix vector multi-
plication, transform vectors of arbitrary length. The
transform is based on Haar wavelets and the fast wavelet
transform algorithm of Beylkin [27] combined with the
algorithm, that enables transformation of vectors of
arbitrary length introduced in [17]. An inverse wavelet
transform can be obtained by multiplication with the
transpose of the wavelet matrix WT. The wavelet matrices
W and WT are not stored in memory but calculated on the
fly since the location and values of non-zero elements is
simple and known beforehand. Details on how to construct
the matrix W can be found in [17].
We will calculate the matrix vector product ½DOnG�foOnGg

using a compressed matrix of integrals. In order for the
compression to be efficient it is necessary to transform the
row as well as columns of the matrix [27]. Since the product
of wavelet matrix and its transpose is an identity, we may
write

½DOnG�foOnGg ¼WTðW ½DOnG�WT|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
½D

OnG
W
�

W foOnGgÞ. (31)

The wavelet compressed matrix of integrals ½DOnG
W � ¼

W ½DOnG�WT is calculated only once, prior to the iterative
process. Small (in absolute sense) elements of matrix ½DOnG

W �

may be zeroed without diminishing the accuracy of the
matrix vector product in Eq. (31). The resulting sparse
matrix is written in compressed row storage format to save
computer memory. Regarding CPU time per iteration, the
wavelet version of matrix vector product requires two
additional sparse matrix vector products—wavelet trans-
form of vorticity and inverse transform of the product.
However, the matrix ½DOnG

W � is sparse and compared to the
full matrix vector product requires less CPU time.
Efficiency of compression is tested and proved in the code
validation section below.
The final wavelet BEM based discrete form of the

kinematics equation for the calculation of boundary
vorticity values is

½DG�foGg ¼ ½C� þ ½H�ð Þfvtg þ ½H
t�fvng

�WT ½D
OnG
W �W fo

OnGg

� �
. ð32Þ

The solution of the system is obtained using a direct solver
with LU decomposition.
3.2. Solution of the transport equations by FEM

The vorticity transport equation (18) and temperature
transport equations (14) are both of the diffusion–advec-
tion type. Here we describe a FEM solution of a general
form of equations. Let the unknown scalar field function
(vorticity or temperature) be denoted by u. First of all the
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partial time derivative has to be approximated by the
following second order approximation

qu

qt
�

3u� 4un þ un�1

2Dt
, (33)

where u is the field function to be calculated in the next
time step, un the field function in the present time step, and
un�1 the previous time step field function. The time step size
is Dt. Having the approximation of the time derivative in
mind, one can state the general diffusion–advection
equation in the form

buþ Ci

qu

qxi

¼ Dr2uþ
qGi

qxi

þM (34)

with b, Ci;D;Gi and M functions of time and location.
Einstein summation notation is employed with i ¼ 1; 2.
The classical Garlekin FEM procedure is employed. One
calculates integrals over each domain cell Oc using
interpolation functions Nk ðk ¼ 1 . . . ndÞ as weighting
functions:

Z
Oc

bNkudOþ
Z
Oc

CiNk

qu

qxi

dO

¼

Z
Oc

DNkr
2u dOþ

Z
Oc

Nk

qGi

qxi

dO

þ

Z
Oc

MNk dO. ð35Þ

The order of the diffusion term (the first term on the right-
hand side of Eq. (35)) is decreased by the Green’s first
theorem:Z

Oc

DNkr
2udO

¼ �

Z
Oc

~rðNkDÞ � ~rudOþ
Z
Gc

NkD~ru � d~G

¼ �

Z
Oc

D~rNk � ~rudO�
Z
Oc

Nk
~rD � ~rudO

þ

Z
Gc

NkD~ru � d~G. ð36Þ

Using Eq. (36) in Eq. (35) and summing up similar
operators one obtains

Z
Oc

bNkudOþ
Z
Oc

Ci þ
qD

qxi

	 

Nk

qu

qxi

dO

¼ �

Z
Oc

D
qNk

qxi

qu

qxi

dOþ
Z
Gc

NkD~ru � d~G

þ

Z
Oc

Nk

qGi

qxi

dOþ
Z
Oc

MNk dO. ð37Þ

Field functions are approximated across the cells:
u ¼

Pnd

l¼1Nlul , Gi ¼
Pnd

l¼1NlG
l
i , M ¼

Pnd

l¼1NlMl . We use
nd ¼ 9 node biquadratic interpolation functions to inter-
polate the field function behaviour in the cells Oc. Using
these approximations in Eq. (37) we get

Xnd

l¼1

ul

Z
Oc

bNkNl dO
� �

þ
Xnd

l¼1

ul

Z
Oc

Ci þ
qD

qxi

	 

Nk

qNl

qxi

dO
� �

¼ �
Xnd

l¼1

ul

Z
Oc

D
qNk

qxi

qNl

qxi

� �
dO

� �

þ
Xnd

l¼1

ul

Z
Gc

NkD~rNl � d~G
� �

þ
Xnd

l¼1

Gl
i

Z
Oc

Nk

qNl

qxi

dO
� �

þ
Xnd

l¼1

Ml

Z
Oc

NkNl dO
� �

. ð38Þ

There are nd ðk ¼ 1 . . . nd Þ equations (38) for each internal
cell. When we apply this procedure to all internal cells, we
obtain nd � ncells equations. However, we have less
unknowns, because nodes are shared by adjacent internal
cells. We sum up the equations for each node and so the
number of equations is reduced. During summing we see,
that the contributions of boundary integrals cancel each
other on cell boundaries that are not on the outside
boundary of the whole domain. Hence, the boundary
integrals must be calculated only for the external boundary
and not for boundaries of each internal cell. Solution of the
resulting linear system of equations is obtained by the
BICGSTAB solver [28].

3.3. Solution of the kinematics equations for domain

velocities

When the kinematics equations are solved by BEM all
boundary velocities and vorticities are known. It is now
possible to make an explicit BEM calculation to get the
internal velocities. However, for this, a new integral matrix
is needed, which is fully populated and unsymmetric and its
size is number of all nodes squared. For the 105 node meshes
considered in this paper this means storing 1010 double
precision real numbers. This requires 74:5GB of storage and
is too large even if wavelet compression would be used.
Alternatively, we have decided to use FEM instead of the

explicit calculation by BEM [16]. The kinematics equation
(4) is of Poisson type and the BEM calculation provided
the Dirichlet boundary conditions. The Poisson type
equation is just a simplification of the general diffusio-
n–advection equation (34) solved in the previous section.
The coefficients of the vx equation are b ¼ 0, Cx ¼ Cy ¼ 0,
D ¼ 1, Gx ¼ 0, Gy ¼ o, M ¼ 0 and vy equation are b ¼ 0,
Cx ¼ Cy ¼ 0, D ¼ 1, Gx ¼ �o, Gy ¼ 0, M ¼ 0. The
domain velocities are thus solved by FEM as a simplified
case of the general diffusion–advection equation.

4. Code validation

Our primary concern was the accuracy of the wavelet
based matrix vector product needed to solve the kinematics
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equation. The matrix depends solely on the shape and
distribution of boundary elements and domain cells in the
mesh. We have prepared meshes and calculated matrices,
which were later used to perform numerical simulations. In
order to test the efficiency of the wavelet compression
algorithm, we made matrix vector multiplication tests. We
multiplied uncompressed and compressed versions of the
matrix with random vectors and calculated residual error
with

�res ¼

P
ij½D

OnG�fogi � ½D
OnG
W �fogijP

ij½D
OnG�fogij

. ð39Þ

The residual error �res was compared for different
compression ratios and meshes. The meshes used in this
paper are listed in Table 1. Results of random vector
multiplication tests are presented in Fig. 1. We have
observed that denser mesh enables higher compression
ratio. Based on the results of the test we decided to use
compression ratio of approximately 90%, so that the
matrix vector multiplication error will be around �res ¼

10�5 in the same order of magnitude as the tolerance of the
solver of linear equations.

To further assure that the wavelet compression does not
decrease the accuracy of our code we performed steady
simulation of lid driven cavity numerical example. The top
boundary of a square cavity has a unit horizontal velocity
prescribed, while the other walls have a non-slip boundary
condition. The results for Re ¼ 5000 are shown in Fig. 2
and are in excellent agreement with benchmark velocity
profiles of [29]. To include the energy equation into
benchmarking, we have solved the steady natural convec-
tion of air problem in a 2D closed square cavity. The left
wall is heated, the right wall cooled, both are kept at a
constant temperature. The top and bottom walls are
insulated, i.e. adiabatic. This test case has been studied
by De Vahl Davies and Jones [1] using stream function—
vorticity formulation of the governing equations. The
Prandtl number was taken to be Pr ¼ 0:71 and our
calculations were performed at Rayleigh number values
of Ra ¼ 103, 104, 105. The resulting heat flux through the
walls measured by the Nusselt number value is compared
with the benchmark results in Table 2. Again, we can
confirm that � 90% compression of the domain integrals
matrix on a mesh with 105 nodes gives accurate results.
Table 1

Description of meshes used in this paper

Mesh name Number of Number of Number o

elements bound. nodes nodes

32x32r11 1024 256 65� 65 ¼

128x128r88 16384 1024 257� 257

158x158r88 24964 1264 317� 317

64x128r81-0014 8192 768 129� 257

128x200r81-0014 25600 1321 257� 401

The elements used are nine node bilinear rectangular Lagrange elements.
To test the accuracy of the time scheme we decided to
solve the Taylor problem. Stability analysis of Couette flow
between two cylinders showed the existence of Taylor
vortices [20]. Periodic counter rotation vortices, which
diminish with time due to viscosity are a solution to
Navier–Stokes equations. In the domain ½0; 1; 0; 1� the
analytical velocity field is given by

~v ¼ ð� cosð2pxÞ sinð2pyÞ e�ð8p
2=ReÞt,

þ cosð2pyÞ sinð2pxÞ e�ð8p
2=ReÞtÞ ð40Þ

while the vorticity field and the stream function are

o ¼ 4p cosð2pxÞ cosð2pyÞ e�ð8p
2=ReÞt; c ¼

o
8p2

. (41)

The example was studied at Reynolds number value
Re ¼ 8p2. Non-dimensional time step was Dt ¼ 0:01 and
calculation was performed on 32x32r11 mesh. The results
are compared with analytical values at t ¼ 0:5 and 1 s in
Table 3. Very good agreement is obtained.
f Width:height Max:min el. Max:min el.

ratio width ratio height ratio

4225 1:1 1 1

¼ 66049 1:1 8 8

¼ 100489 1:1 8 8

¼ 33153 1:4 8 1

¼ 103057 1:4 8 1
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Table 2

Comparison of simulated and benchmark [1] Nusselt number values for

natural convection of air in a square cavity

Compression Ra ¼ 103 Ra ¼ 104 Ra ¼ 105

Benchmark 1.118 2.243 4.519

158x158r88 0.917 1.1179 2.2448 4.5214

32x32r11 0.551 1.1198 2.2556 4.5810

Table 3

Comparison of simulated and analytical velocity and vorticity values for

Taylor vortices at Re ¼ 8p2

oð1=2; 1=2Þ vxð1=2; 1=4Þ vyð3=4; 1=2Þ

t ¼ 0:5 s t ¼ 1:0 s t ¼ 0:5 s t ¼ 1:0 s t ¼ 0:5 s t ¼ 1:0 s

Simulation 7.6252 4.6266 0.6068 0.3681 0.6068 0.3681

Analytical 7.6219 4.6229 0.6065 0.3679 0.6065 0.3679

Analytical 4pffiffiffi
e
p

4p
e

1ffiffiffi
e
p

1

e
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e
p

1
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Th Tc

 g
→

Fig. 3. Boundary and initial conditions for the simulation of natural

convective flow in a rectangular enclosure with aspect ratio L:H ¼ 1: 4,
Th ¼ 1 and Tc ¼ 0. The presentation of the 128x200r81-0014 mesh. Only

every fourth node is shown.
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5. Onset of unsteady turbulent natural convection in an

differentially heated enclosure

Natural convection of air ðPr ¼ 0:71Þ in a differentially
heated 1:4 enclosure is simulated with the above described
planar vorticity based LES solved by wavelet BEM and
FEM. The problem with initial and boundary conditions is
presented in Fig. 3. The no slip boundary condition is
prescribed on all walls. The left wall is heated and kept at
constant temperature Th ¼ 1, while the right wall is cooled
and kept at Tc ¼ 0. The temperature was non-dimensio-
nalized by T0 ¼ Th � Tc. The top and bottom walls are
adiabatic. All calculations were made on a 128x200r81-

0014 mesh with 92.2% wavelet compression of the domain
integrals matrix. Further data on the mesh may be found in
Table 1 and in Fig. 3.

Three models were used to investigate the phenomena.
First, we set the subgrid scale viscosity to zero and thus
solve the problem directly, without a subgrid scale model,
secondly LES was performed without damping (15) and
thirdly LES with Piomelli and Van Driest damping (16).
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The LES constant was decreased from the theoretical value
to C ¼ 0:1 [19] and the turbulent Prandtl number was
Prt ¼ 0:6 [30]. The filter width was calculated as a square
root of the cell size, D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx � Dy

p
.

The flow was simulated for enclosure width Rayleigh
number Ra ¼ 1062109. Please note, that the Rayleigh
number used here is defined with respect to enclosure
width, and is 43 ¼ 64 times smaller than the enclosure
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Fig. 5. Temperature fields (1(0.05)0): left to right: steady state at Ra ¼ 106,

results for Ra ¼ 108 and 109.
height based Ra used by some authors (e.g. [9,10]). Direct
numerical simulation was used to simulate the problem at
Rayleigh number Ra ¼ 106. Steady state was reached
regardless of the time step or mesh density. The smallest
time step investigated was Dt ¼ 10�6. The resulting
temperature (shown in Fig. 5) and velocity fields were
used as the initial conditions for all higher Rayleigh
number calculations.
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At Rayleigh number Ra ¼ 107 we used a dimensionless
time step of Dt ¼ 10�5, while at Ra ¼ 108 and 109 we used
Dt ¼ 10�6. In order for the flow field to reach self similar state
we simulated 1000 time steps for Ra ¼ 107 and 4000 time steps
for Ra ¼ 108 and 109 before starting analysing the results.

5.1. Flow dynamics

Steady state temperature field for Ra ¼ 106 and averaged
temperature fields of DNS at Ra ¼ 107 and LES with
Piomelli damping for Ra ¼ 108 and 109 are shown in Fig. 5.
While at Ra ¼ 106 steady state is reached, at Ra ¼ 107 the
boundary layer becomes unstable and vortices are formed
along the top of the hot wall and along the bottom part of
the cold wall. Eddies are transported by convection up the
hot wall and down the cold wall thus mixing the top and
bottom parts of the enclosure. In the central part the
temperature field is stratified and the flow is virtually steady.
The whole flow field is oscillatory and symmetric. At Ra ¼

108 the eddies are formed more frequently. The formation
takes place in the top half of the hot wall and in the bottom
half of the cold wall. The stratified central core becomes
smaller, but still exists. The flow field is no longer symmetric
(although the initial Ra ¼ 106 flow field was) length scales of
the structures in the flow are becoming smaller. At Ra ¼ 109

eddies are formed along the whole length of both vertical
walls, most of them being formed at mid height. The central
core is now thoroughly mixed and one can no longer speak
of temperature stratification. The flow field includes eddies
of various scales and is non-repeating, irregular and chaotic.

Average fields were used to draw temperature, vorticity
and vertical velocity profiles in several heights in the
enclosure (Fig. 6). We can readily observe the thinning of
the boundary layer with the increasing Rayleigh number.
The profiles show the vicinity of the hot wall, thus the
lowest profiles are the thinnest, since vortices are not
formed there. Vorticity increases dramatically at Ra ¼ 109

which indicates the presence of small structures in the flow.
The vertical velocity is largest in the bottom part of the hot
boundary layer. Higher up the eddies are transported into
the flow and thus disturb the boundary layer and decrease
the vertical velocity. Instantaneous temperature fields are
shown in Fig. 7 giving an impression of the wide variety of
scales in the flow fields.

In the core area, the fluid is stratified. Average
temperature fields were used to calculate the non-dimen-
sional stratification parameter, Sp, given by Sp ¼ qT=
qyjx¼L=2;y¼H=2. For Ra ¼ 107 we obtained Sp ¼ 0:25, for
Ra ¼ 108, Sp ¼ 0:30 and for Ra ¼ 109, Sp ¼ 0:77. Tian and
Karayiannis [31] reported Sp ¼ 0:5 for Ra ¼ 1:58� 109 in
a square enclosure, while Xin and Le Quéré [9] reported Sp

around 1 for Ra ¼ 10921010.

5.2. Heat transfer

The heat transfer through the walls is represented by the
average Nusselt number value, defined for our geometry by
Nu ¼ 1=H
RH

0 ðqT=qxÞdy. The Nusselt number values
versus time graphs are shown in (Fig. 4). The average
values are compared with benchmark results of Xin and Le
Quéré [9] in Table 4. The ratios Nu=Ra1=4 and Nu=Ra1=3

are found to be approximately constant. The average
values and ratios are in excellent agreement with the
benchmark for our simulation without a subgrid scale
model ðC ¼ 0Þ at Ra ¼ 107 and LES with damping
simulation for Ra ¼ 1082109. The subgrid scale viscosity
in the LES without damping model does not tend to zero in
the vicinity of the walls, thus the resulting boundary layer
was thicker and the heat transfer lower. The fluid motion is
oscillatory at Ra ¼ 107 thus the direct simulation captures
all the physics, since the subgrid scales do not exist at such
low Rayleigh number. At Ra ¼ 108 the damped LES model
is virtually identical with the C ¼ 0 simulation, while the
non-damped LES results in lower heat transfer. The
turbulence level at this Rayleigh number is still very low.
Comparing the LES calculation with and without damping
at Ra ¼ 109 one observes that the difference becomes
severe. The non-damped LES predicts lower heat transfer
by half on order of magnitude. At Ra ¼ 109 a comparison
has been made between Piomelli and Van Driest damped
LES. Both datasets were qualitatively equal, Van Driest
simulation giving the average Nusselt number slightly
closer to the benchmark (Table 4).
In the downstream part of the vertical boundary layers

the formation of eddies results in local thickening or
thinning of the thermal boundary layer. Thus the majority
of heat transfer occurs in the upstream parts where the
boundary layers are stable and thin.

5.3. Analysis of transition from oscillatory to chaotic low

turbulent flow regime

In order to quantify the transition from steady fluid flow
at Ra ¼ 106 through the oscillatory phase observed at
Ra ¼ 107 to chaotic flow regime at Ra ¼ 108 we first
plotted the temperature versus time graphs. Fig. 8 shows
the oscillatory nature of temperature versus time at
Ra ¼ 107, while the Ra ¼ 108 and 109 graphs show a more
non-repeating, irregular and chaotic character.
The transition from oscillatory to chaotic fluid motion

can also be observed in temperature–vorticity phase
portraits. The phase portraits were constructed from
temperature versus time and vorticity versus time data
from locations A ¼ ð0:0011; 3:5Þ and B ¼ ð0:0301; 3:5Þ and
are shown in Fig. 9. Plotting both quantities as phase
variables over a significant length of time, after the
transients had decayed away, enables us to examine the
topological structure of the attractor onto which the
trajectory evolves at long-times [32]. The Ra ¼ 107 phase
portrait encompasses a small elliptical area—therefore the
vorticity and temperature in this point are strongly
correlated. The motion of the fluid is oscillatory, chaotic
behaviour is not observed. The Ra ¼ 108 phase portrait
encompasses a distinctly larger T � o area and has no
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regular shape. Although some correlation between tem-
perature and vorticity exists, the motion is becoming
increasingly irregular and chaotic. Looking at the Ra ¼ 109

phase portraits we see that it encompasses an even larger
T � o area. Although location A is very close to the hot
wall with fixed temperature, we can observe considerably
lower temperatures, which account for the increased heat
transfer at this Rayleigh number.
Another proof of the transition from oscillatory to
chaotic motion is provided by means of power spectrum
plots. The power spectrum of the temperature time series at
locations A and B was calculated with the discrete Fourier
transform. The spectra are shown in Fig. 10. We are able to
examine the frequencies of oscillations, and also the
emergence of broad-band noise in the dynamics that
occurs in chaotic flows. The dominant oscillatory
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frequency, with which the eddies are formed at Ra ¼ 107 is
clearly visible. Comparing the Ra ¼ 107 through Ra ¼ 109

spectra one can observe the large increase of high
frequency components with the increasing Rayleigh num-
ber. Besides the large structures the flow at higher Rayleigh
numbers includes also smaller structures, thus the tem-
perature changes occur in a wider frequency band.

5.4. Turbulent statistics

Second order statistics have been computed for the two
highest Rayleigh number datasets. Since our simulations
Fig. 7. Temperature fields (1(0.05)0): left to right: instantaneous DNS

results for Ra ¼ 107 ðt ¼ 0:03Þ, LES with damping results for Ra ¼ 108

ðt ¼ 0:016Þ and Ra ¼ 109 ðt ¼ 0:016Þ.

Table 4

Average Nusselt number Nu and correlation comparison with benchmark DN

Ra Nu

C ¼ 0 LESp LESvd Xin

107 12.27 12.3

3:125� 107 16:91þ 16.62

108 22.5 22.5 22:56

1:56� 108 25:57þ 25.25

109 44.77 43.25 43.67 43:63

For the highest Rayleigh number Piomelli damped ðLESpÞ as well as Van Drie

Xin’s values were predicted using their Nu=Ra1=4 relationship. (+) Using pr

1:56� 108.
are 2D and the flow is not fully turbulent, the results in this
section are presented for qualitative analysis only. Fig. 11
shows Reynolds stresses v0xv0x, v0xv0y, v0yv0y, turbulent kinetic
energy k ¼ 1

2v
0
iv
0
i, turbulent heat fluxes v0xT 0, v0yT and

temperature variance T 0T 0 for Ra ¼ 108 and 109. At Ra ¼

108 the plots show that these turbulent fluctuations
dominate only in the downstream part of the vertical
boundary layer, while the upstream part and a large part of
the core remains laminar. This is consistent with the DNS
results of Xin et al. [9], who considered the same problem.
For the highest Rayleigh number, Ra ¼ 109, the maximum
fluctuations can be found in the vertical boundary layers in
the middle of the enclosure. There, most of the eddies are
formed. They are transported downstream and towards the
centre of the enclosure. With increasing Rayleigh number
value the maxima of turbulent kinetic energy moves
upstream; it is well out of the vertical boundary layers.
S results of Xin et al. [9]

Nu=Ra1=4 Nu=Ra1=3

[9] Present Xin [9] Present Xin [9]

0.2181 0.2185 0.0569 0.0571

0.2227 0.0528
� 0.2256 0.0486

0.2256 0.0469
� 0.2432 0.0433

st damped ðLESvd Þ results are presented. (*) For Nu at Ra ¼ 108 and 109

esent Nu=Ra1=4 relationship Nu was predicted for Ra ¼ 3:125� 107 and
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Fig. 8. Time traces of temperature for Ra ¼ 107 (top), Ra ¼ 108 (middle)

and Ra ¼ 109 (bottom). Temperature at location A ¼ (0.0011, 3.5) and

B ¼ (0.0301, 3.5) is presented.
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On the contrary, the maxima of turbulent heat fluxes and
temperature variance are located in the boundary layers.

6. Conclusions

The velocity-vorticity formulation of LES in combina-
tion with the wavelet transform based BEM presented in
this paper shows good potential for solving turbulent fluid
flow problems with the LES approach. Solution of
boundary vorticity values with wavelet based BEM
provides boundary conditions for the transport equations,
which we are solving by FEM. Using the wavelet transform
with the BEM enabled us to use meshes with �105 nodes.
Higher mesh densities will be possible in the near future, as
well as the extension of the code to 3D, by the use of
domain decomposition and parallel computing.



ARTICLE IN PRESS

Fig. 11. Turbulence statistics for Ra ¼ 108 (top row) and Ra ¼ 109 (bottom row). Left to right: Reynolds stresses v0xv0x, v0xv0y, v0yv0y, turbulent kinetic energy

k ¼ 1
2
v0iv
0
i , turbulent heat fluxes v0xT 0, v0yT and temperature variance T 0T 0.
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Unsteady natural convection in a 1:4 differentially
heated enclosure was investigated using LES for enclosure
width based Rayleigh number between Ra ¼ 107–109. The
flow was oscillatory at Ra ¼ 107, while for higher Rayleigh
number values it became increasingly irregular, non-
repeating and chaotic. The transition to turbulent flow
was investigated by studying time series plots, power
spectra and vorticity–temperature phase diagrams. Turbu-
lence statistics were calculated to confirm that for Ra4108

downstream in the vertical boundary layers the flow is
turbulent, while the flow upstream of vertical boundary
layers remains laminar. Heat transfer was characterized
with the average Nusselt number, its time series and its
relation to the Rayleigh number. The results of damped
LES simulations were found in excellent agreement with
the benchmark DNS results of Xin and Le Quéré [9]. On
the other hand, the LES without damping simulation
underestimated the heat transfer severely. Comparing
Piomelli and Van Driest damped LES we found that both
datasets were qualitatively equal; the Van Driest simulation
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yielding the average Nusselt number slightly closer to the
benchmark.
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[4] Škerget L, Samec N. BEM for the two-dimensional plane compres-

sible fluid dynamics. Eng Anal Bound Elem 2005;29:41–57.

[5] Weisman C, Calsyn L, Dubois C, Quéré PL. Sur la nature de la
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