
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

Velocity–vorticity RANS turbulence modeling by boundary
element method

Janez Lupše, Leopold Škerget, Jure Ravnik n

Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia

a r t i c l e i n f o

Article history:
Received 23 October 2012
Accepted 1 November 2013
Available online 21 November 2013

Keywords:
Boundary element method
Velocity–vorticity
Turbulence model
RANS

a b s t r a c t

Turbulent flow over various geometries is studied numerically. Incompressible set of Navier–Stokes
equations is considered and solved by boundary domain integral method (BDIM). Governing equations
are written in velocity–vorticity form. Turbulence models used are based on eddy-viscosity hypothesis.
Integral form of equations, discretization and the solution algorithm are presented. The algorithm is
tested with two separate test cases. The first is the turbulent channel flow for two different Reynolds
numbers: Reτ ¼ 180 and Reτ ¼ 395. Results show very good agreement with corresponding DNS data. The
second test case is the flow over backward facing step for Reynolds number Reh ¼ 5000, which shows
good agreement with literature data on mean reattachment length.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Ever since the early 70s of the last century, boundary element
method (BEM) has been seen as a very successful method for
discretization of governing equations for numerous problems. Its
advantage is the use of Green's functions as weighting functions,
which allows the method to capture some or all of the physics of
the governing phenomena. If the physics of the problem is
properly captured by the fundamental solution, then only the
boundary of the domain needs to be discretized and thus dis-
cretization of the interior of the problem domain is avoided.
Although great success was achieved with boundary elements in
many areas, discretization of Navier–Stokes equations by BEM is
more challenging since they are of strongly nonlinear parabolic
convective–diffusive type. Fundamental solutions which would
solve those types of equations are not known, thus we are limited
to the usage of fundamental solutions describing only the linear
part of problem's physics. The advantage of discretization of only
boundary is thus lost. This and the complexity of the method lead
to neglection of BEM usage for fluid flow problems. Even though
discretization of whole solution domain is needed, the existence of
Green's functions that can capture dominant physics in fluid flow
makes usage of BEM appealing for this kind of problems.

Many authors developed different approaches in order to cope
with domain discretization. Among others, DR(dual reciprocity)-
BEM was developed by Wrobel et al. [1] for transient heat
conduction. It was later expanded to nonlinear diffusion problems

by Wrobel and Brebbia [2] and convection–diffusion problems by
Wrobel and DeFigueiredo [3]. Furthermore, the so-called GEM
(Green element method) was developed by Taigbenu [4] which
involves cell integration. Popov and Power [5] described the
MD-DRM (multi-domain dual reciprocity method) for solving
domain dominant problems, which was then applied to Navier–
Stokes system [6] and solved quite successfully thermal convection
problems as seen in Florez et al. [7].

In the 80s of the previous century BEM was successfully applied
to velocity–vorticity form of Navier–Stokes equations by Škerget
and Alujeviè [8]. Since then, the method was applied to a wide
range of fluid flow problems. The method shows great promise in
solving laminar isothermal and non-isothermal [9,10] flows. How-
ever, while vorticity transport equation is rather simple for
two-dimensional flows with constant material properties, its
complexity (and nonlinearity) increases greatly when used in
three-dimensional flows or when derived from Reynolds averaged
(RANS) equations. Thus, solutions for turbulent flows with RANS
equations proved to be much more difficult than solving vorticity
transport equation in its original form. Recently, a few other
attempts were made to solve turbulent fluid flow with boundary
element method. An attempt made by Ramšak and Škerget [11]
used stream function-vorticity equation which solved turbulent
flows in two-dimensions quite successfully, but was hindered
by problems of extrapolating this approach in three-dimensions.
Furthermore, a few attempts were made by different combi-
nations of other discretization methods with BEM, such as Ravnik
et al. [12].

In this paper we present application of BEM-based algorithm to
turbulent fluid flows described by Reynolds averaged vorticity
transport equation. Solution of kinematics equation, which provides
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values of vorticity on the domain boundary, is solved by standard
single domain BEM. All other transport equations are then solved by
subdomain BEM as described in Ramšak and Škerget [13]. Although
the algorithm is written for planar flows, the advantage of the
velocity–vorticity formulation over the stream-function-vorticity
formulation is the fact that the governing equations can be extended
into three dimensions. Turbulence models based on eddy-viscosity
hypothesis are considered. Also, a variety of fundamental solutions is
used in order to reflect governing physics as close to reality as
possible. Two different cases of turbulent flows are considered in
order to test the implementation of developed algorithm. Steady
flow in a channel is the first test case presented, followed by flow
over a backward facing step.

2. Governing equations

2.1. Primitive variables formulation

The governing equations for incompressible viscous flow are
the Navier–Stokes equations. Written for primitive variables in
Reynolds averaged form, they are composed of continuity and
momentum equations, if we disregard non-isothermal flows. These
are:

∂Ui

∂xi
¼ 0; ð1Þ

ρ
∂Ui

∂t
þρUj

∂Ui

∂xj
¼ � ∂P

∂xi
þ ∂
∂xj

η0
∂Ui

∂xj
�ρuiuj

� �
þρgi; ð2Þ

where Ui represents i-th component of averaged velocity vector, P
the averaged pressure field, η0 the dynamic viscosity, ρ the mass
density and gi the i-th component of the gravity acceleration
vector. ui represents fluctuating part of velocity.

Since in these equations additional unknowns are present in
the form of Reynolds stresses ðuiuj Þ, some kind of closure model
needs to be included. Employing an eddy-viscosity model, Rey-
nolds stress tensor can be modeled via Boussinesq hypothesis
(written for incompressible flow):

uiuj ¼ �νt
∂Ui

∂xj
þ∂Uj

∂xi

� �
: ð3Þ

ν t represents turbulent viscosity which is calculated using a
turbulence model.

2.2. Velocity–vorticity formulation

In order to derive the RANS form of the vorticity trans-
port equation (see Škerget and Ravnik [10]), Eq. (2) should be
rewritten as

∂Ui

∂t
þUj

∂Ui

∂xj
¼ �eijk

∂νeffωk

∂xj
þ2eijk

∂νeff
∂xj

ωkþ2
∂νeff
∂xj

∂Ui

∂xj
� ∂P
∂xi

þ ρ
ρ0

gi; ð4Þ

where ωk represents k-th component of averaged vorticity field
and νeff total or effective kinematic viscosity, composed of mole-
cular and additional modeled kinematic viscosity ðνeff ¼ ν0þνtÞ.
Boussinesq approximation of density was used in buoyancy term
while for other terms constant density (ρ0) is used.

By applying curl differential operator to Eq. (4) the averaged
form of vorticity equation is then obtained. For two-dimensional
form of averaged flows averaged vorticity transport equation can
then be written as

∂ω
∂t

þUj
∂ω
∂xj

¼ ν0
∂2ω
∂xj∂xj

� 1
ρ0

eij
∂ρgi
∂xj

� 1
ρ0

eij
∂f mi
∂xj

; ð5Þ

where fmi is

f mi ¼ �eij
∂νtω
∂xj

þ2eij
∂νt
∂xj

ωþ2
∂νt
∂xj

∂Ui

∂xj
ð6Þ

and is treated as a nonlinear source term.
Since boundary conditions for vorticity are a priory unknown,

an additional equation is needed. It can be derived with help of
vorticity definition and continuity equation [9]. The derived equa-
tion is of simple elliptic type and represents kinematic constraints
between vorticity and velocity fields:

∂2Ui

∂xj∂xj
þeij

∂ω
∂xk

¼ 0: ð7Þ

As mentioned before, RANS equations need to be closed by a
turbulence model. The goal is to reproduce additional turbulent
viscosity (νt) in such a way to recover flow field as close to reality
as possible. For this purpose we have used 1-equation Spalart–
Allmaras [14] turbulence model and some variations of 2-equation
k–ε type models, namely Chien [15] turbulence model and Abe–
Kondoh–Nagano [16] turbulence model. A generic transport equa-
tion for these types of models can be written as

∂ϕ
∂t

þUj
∂ϕ
∂xj

¼ ∂
∂xj

νeff
∂ϕ
∂xj

� �
þP�D; ð8Þ

where ϕ is transport variable which represents turbulent kinetic
energy (k), its dissipation (ε) or modified turbulent viscosity ð ~νÞ,
depending on the model and equation used. In Eq. (8) P and D
stand for production and destruction terms and are defined in
Table 1. Again, νeff stands for total or effective kinematic viscosity.

Destruction terms in turbulence models usually include higher
order dependence of transported variable in a given equation
which is why linearization of those terms is advisable for stabili-
zation of solution of Eq. (8). This can be done by splitting quadratic
dependence of term to

D¼ Arg � ðϕ2Þ ) Arg � ðϕðitÞÞðϕðit�1ÞÞ; ð9Þ
where Arg represents the argument of destruction term, depen-
dent on the model used, and index ðitÞ represents current and
ðit�1Þ previous iteration value.

3. Integral equations

Since BEM is an integral method, governing equations need to
be recast in an integral form prior to discretization. The basis of
BEM can be found in Wrobel and Aliabadi [17] for example while
integral equations and their derivation for flow kinematics and
vorticity kinetics can be found in Škerget and Ravnik [10]. Let us
denote problem domain by Ω and its boundary by Γ. The basic

Table 1
Turbulence models used. SA stands for the Spalart–Allmaras, CH for the Chiens and
ABE for the Abe–Kondoh–Nagano turbulence models.

Model ϕ Wall b.c. P D

SA [14] ~ν ð ~νÞw ¼ 0 P ¼ cb1½1� f t2� ~S ~ν
þ1
s
cb2

∂ ~ν
∂xj

� �2 D¼ cw1f w�cb1
κ2

h i ~ν

dn

� �2

CH [15] k ðkÞw ¼ 0
Pk ¼ νt

∂Ui

∂xj
þ∂Uj

∂xi

� �
∂Ui

∂xi
Dk ¼ 2ν

k

d2n
þε

CH [15] ε ðεÞw ¼ 0 Pε ¼ cε1f 1Pk
ε

k Dε ¼ cε2f 2
ε2

k
ABE [16] k ðkÞw ¼ 0

Pk ¼ νt
∂Ui

∂xj
þ∂Uj

∂xi

� �
∂Ui

∂xi
Dk ¼ ε

ABE [16] ε ðεÞw ¼ ν0
∂2k
∂d2n

Pε ¼ cε1Pk
ε

k Dε ¼ cε2f ε
ε2

k
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form of kinematics equation (7) can now be written in an integral
form for solution domain as

cðξÞUiðξÞþ
Z
Γ
Ui
∂un

∂n
dΓ�

Z
Γ

∂Ui

∂n
un dΓ

¼ eij

Z
Γ
ωnjun dΓ�eij

Z
Ω
ω
∂un

∂xj
dΩ; ð10Þ

where un represents the Laplace fundamental solution:

un ¼ 1
2π

ln
1
r

ð11Þ

and r represents the distance between source and reference point.
Another equation derived from Eq. (7) is needed in order to

obtain the equation for unknown boundary vorticity values (see
Škerget and Ravnik [10]):

cðξÞUiðξÞþ
Z
Γ
Ui
∂un

∂n
dΓ ¼ eij

Z
Γ
Uj
∂un

∂t
dΓ�eij

Z
Ω
ω
∂un

∂xj
dΩ; ð12Þ

where n represents unit normal and t unit tangent.
Integral form of the vorticity transport equation (5) is

Z
Ω

∂ω
∂t

un dΩþ
Z
Γ
ωUjnju

n dΓ�
Z
Ω
ωUj

∂un

∂xj
dΩ

¼ ν0 �cðξÞωðξÞ�
Z
Γ
ω
∂un

∂n
dΓþ

Z
Γ

∂ω
∂n

un dΓ
� �

�eij
1
ρ0

Z
Γ
ρginju

n dΓþ
Z
Ω
ρgi

∂un

∂xj

� �

�eij

Z
Γ
f mi njun dΓþ

Z
Ω
f mi

∂un

∂xj
dΩ

� �
: ð13Þ

The vorticity convection term was transformed by the Gauss
theorem while the diffusion mechanism is described by the Green
function used.

In order to derive an integral equation for Eq. (8) effective visco-
sity needs to be split to constant and variable parts ðνeff ¼ ν0þνtÞ
and the equation multiplied by Green function as a weighting
function:

ν0
∂2ϕ
∂xj∂xj

un ¼Dϕ
Dt

un� ∂
∂xj

νt
∂ϕ
∂xj

� �
un�ðP�DÞun: ð14Þ

With the use of Laplace fundamental solution (11) the following
boundary-domain integral statement can be derived:

ν0 cðξÞϕðξÞþ
Z
Γ
ϕ
∂un

∂n
dΓ�

Z
Γ

∂ϕ
∂n

un dΓ
� �

¼ �
Z
Ω

Dϕ
Dt

un dΩþ
Z
Ω

∂
∂xj

νt
∂ϕ
∂xj

� �
un dΩþ

Z
Ω
ðP�DÞun dΩ: ð15Þ

Since nonlinear diffusion term on the right-hand side of Eq. (15)
includes higher order derivatives of variable in question, it should
be written differently. One possibility to reduce the order of the
function derivative is to write
Z
Ω

∂
∂xj

νt
∂ϕ
∂xj

� �
un dΩ¼

Z
Ω

∂
∂xj

νt
∂ϕ
∂xj

un

� �
dΩ�

Z
Ω
νt
∂ϕ
∂xj

∂un

∂xj
dΩ: ð16Þ

First term on the right-hand side is now transformed with help of
Gauss's theorem toZ
Ω

∂
∂x

νt
∂ϕ
∂xj

un

� �
dΩ¼

Z
Γ
νtnj

∂ϕ
∂xj

un dΓ: ð17Þ

Similarly, the derivative from the convective part is removed. First
let us write an expanded form of the convective term:Z
Ω

Dϕ
Dt

un dΩ¼
Z
Ω

∂ϕ
∂t

un dΩþ
Z
Ω
Uj
∂ϕ
∂xj

un dΩ: ð18Þ

For the use with Laplace fundamental solution, Eq. (18) can be
recast asZ
Ω

Dϕ
Dt

un dΩ¼
Z
Ω

∂ϕ
∂t

un dΩþ
Z
Γ
Ujϕnjun dΓ�

Z
Ω
Ujϕ

∂un

∂xj
dΩ: ð19Þ

For elliptic fundamental solutions the local time derivative also
needs to be considered. Finite difference approximation on time
axis is applied. In first two time steps, the non-symmetric first
order two-time level Euler implicit scheme is used, see Eq. (20a).
In all the subsequent time steps, the second order asymmetric
differences scheme is used, as can be seen in Eq. (20b):Z
Ω

∂ϕ
∂t

un dΩ�
Z
Ω

ϕF�ϕF�1

Δt
un dΩ; ð20aÞ

Z
Ω

∂ϕ
∂t

un dΩ�
Z
Ω

3ϕF�4ϕF�1þϕF�2

2Δt
un dΩ: ð20bÞ

Δt represents time step and indices F, F�1 and F�2 represent
current, previous and pre-previous time step values. In subsequent
equations index F denoting current time step is omitted. Also
constants α, β, γ with values α¼ 1=Δt, β¼ �1=Δt and γ¼0 are
used for non-symmetric first order two-time level Euler implicit
scheme and α¼ 3=ð2ΔtÞ, β¼ �2=ðΔtÞ and γ ¼ 1=ð2ΔtÞ are used
for second order asymmetric differences scheme. The final form of
integral representation of Eq. (8) with the use of Laplace funda-
mental solution is then

cðξÞϕðξ; tF Þþ
Z
Γ
ϕ
∂un

∂n
dΓ�

Z
Γ

∂ϕ
∂n

un dΓ

¼ � 1
ν0

Z
Ω
αϕþβϕF�1þγϕF�2

� �
un dΩ

� 1
ν0

Z
Γ
Ujϕnjun dΓ�

Z
Ω
Ujϕ

∂un

∂xj
dΩ

� �

þ 1
ν0

Z
Γ
νtnj

∂ϕ
∂xj

un dΓ�
Z
Ω
νt
∂ϕ
∂xj

∂un

∂xj
dΩ

� �

þ 1
ν0

Z
Ω
ðP�DÞun dΩ: ð21Þ

Eq. (8) is of convective–diffusive type, thus linear convection–
diffusion fundamental solution can also be used instead of Laplace
fundamental solution. In order to apply this type of fundamental
solution velocity field needs to be split into homogeneous and
variable parts ðUj ¼ uj þu′

jÞ. Homogeneous part of convection can
then be included into fundamental solution itself as Qn ¼ ∂un=

∂nþðujnj=ν0Þun. This gives us the following equation:

cðξÞϕðξ; tF Þþ
Z
Γ
ϕQn dΓ�

Z
Γ

∂ϕ
∂n

un dΓ

¼ � 1
ν0

Z
Ω
βϕF�1þγϕF�2

� �
un dΩ

� 1
ν0

Z
Γ
ðUj�uj Þϕnjun dΓ�

Z
Ω
ðUj�uj Þϕ

∂un

∂xj
dΩ

� �

þ 1
ν0

Z
Γ
νtnj

∂ϕ
∂xj

un dΓ�
Z
Ω
νt
∂ϕ
∂xj

∂un

∂xj
dΩ

� �

þ 1
ν0

Z
Ω
ðP�DÞun dΩ; ð22Þ

where un is now convection–diffusion fundamental solution:

un ¼ 1
2πν0

K0ðμrÞeuj rj=2ν0 ; μ2 ¼ uj

2ν0

� �2

þ α
2ν0

; ð23Þ

where K0 is a modified Bessel function of the second kind of
order 0.

Finally, it is also possible to use parabolic diffusion fundamental
solution instead of Laplace for time dependent problems. In
that case, finite difference approximation of local time deriva-
tive is not needed and additional term for initial conditions

J. Lupše et al. / Engineering Analysis with Boundary Elements 39 (2014) 44–5246
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ðð1=ν0Þ
R
ΩϕF�1u

n

F�1 dΩÞ is present on the right-hand side of the
equation (see Škerget and Samec [18] for derivation of vorticity
transport equation with parabolic diffusion fundamental solution).

4. Discrete form

For calculation of boundary vorticity values by Eq. (12) the
single domain BEM is used. For all other equations the subdomain
method is preferred, since both memory and CPU time savings can
be substantial with it. Domain and boundary integrals obtained
from Eq. (21) or (22) are then approximated as Γ �∑E

e ¼ 1Γe and
Ω�∑C

c ¼ 1Ωc . Over each subdomain and corresponding boundary
elements, function and normal derivative values need to be
interpolated. In our case quadratic ðϕ� fΦgT ½ϕ�nÞ and biquadratic
ðϕ� fψ gT ½ϕ�nÞ interpolation was used for boundary and domain
function values while constant interpolation ðϕ� fχgT ½ϕ�nÞ was
used for normal derivatives. This gives us a nine-node Lagrangian
cell as shape of each subdomain. Using described approximations
we can write the following discretized equation for Eq. (21):

1
ν0

∑
C

c ¼ 1
fbgT fαϕþβϕF�1þγϕF�2gn

þ 1
ν0

∑
E

e ¼ 1
fajgT fUjϕgn�

1
ν0

∑
C

c ¼ 1
fdjgT fUjϕgn

¼ � cðξÞϕðξ; tF Þþ ∑
E

e ¼ 1
fhgT fϕgn� ∑

E

e ¼ 1
fggT ∂ϕ

∂n

� 	n� �

þ 1
ν0

∑
E

e ¼ 1
fajgT νt

∂ϕ
∂xj

� 	n

� 1
ν0

∑
C

c ¼ 1
fdjgT νt

∂ϕ
∂xj

� 	n

þ 1
ν0

∑
C

c ¼ 1
fbgT fðP�DÞgn; ð24Þ

where we have denoted integrals of interpolation functions and
the fundamental solution by

hne ¼
Z
Γe

Φn∂un

∂n
dΓ; gne ¼

Z
Γe

χnun dΓ;

ane;j ¼
Z
Γe

Φnnjun dΓ; dnc;j ¼
Z
Ωc

ψn∂un

∂xj
dΩ;

bc ¼
Z
Ωc

ψnun dΩ: ð25Þ

Similar procedures are carried out for derivation of discrete equa-
tions for use with convection–diffusion or parabolic diffusion
fundamental solutions.

5. Numerical algorithm

Since boundary conditions for vorticity transport equation are a
priori unknown, velocity boundary conditions need to be supplied.
For the calculation of boundary vorticity values, standard single
domain BEM is used. Because of the solenoidality and compat-
ibility constraints of the kinematics equation fully populated
system matrix is needed. For a square discretized by n�n
subdomains, we need approximately 4n � n2 elements in the
kinematics matrices. Thus, the memory requirements are quite
high and are quickly increasing with mesh density. In order to
reduce memory requirements, wavelet compression, as described
by Ravnik et al. [19], can be used. Nevertheless this is still a
memory bottleneck for the developed algorithm. All other parts of
the numerical algorithm are discretized by subdomain BEM [13]
governed by sparse rectangular non-symmetric system matrix
which is then solved by LSQR type solver with diagonal precondi-
tioning. These matrices scale with pn2, thus with increasing
mesh density their memory consumption becomes negligible in
comparison with memory consumption of kinematics matrices.

We can estimate then that memory consumption of the algorithm
scales with n3. The LSQR solver CPU requirements are comparable
with other solvers that use diagonal preconditioning. Other types
of preconditioning such as ILU for example usually further reduce
number of iterations needed and CPU time but are unfortunately
not applicable to the solver we use.

It has to be also noted that even though convection–diffusion
fundamental solution is used, it does not match solution of Laplace
equation for planar problems at its limit of Re-0. Consequentially
the developed algorithm uses Laplace fundamental solution for
stationary or its parabolic counterpart for non-stationary flows,

when local Peclet number ðPeL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ucell

2nCellArea
q

=ν0Þ in the subdo-
main falls below some user defined threshold value (T). ucell is
obtained by averaging values of each velocity component at cell
corners.

Detailed algorithm is presented below:

� Calculation of integrals with Laplace fundamental solution
kernel

� Begin time step
○ Choose local time derivative approximation
○ Start of global nonlinear loop

– KINEMATICS: Calculate boundary vorticity values by
solving kinematics equation (12) by single domain BEM

– KINEMATICS: Calculate domain velocity values by solving
kinematics equation (10) by subdomain BEM

– Partitioning of velocity and viscosity fields over each
subdomain in order to calculate integrals of convection–
diffusion fundamental solution if needed

– Vorticity KINETICS: Calculate domain vorticity values by
solving vorticity transport equation (13) by subdomain
BEM

– Turbulence KINETICS: Calculation of turbulence models
transport variables by solving equation(s) (21) if PeLoT
or (22) if PeLZT by subdomain BEM and derivation of
turbulence viscosity

– Check convergence of nonlinear loop
○ End global nonlinear loop

� End time step and write results if needed

In the described algorithm, calculation of convection–diffusion
fundamental solution integrals is made dependent on change
of both velocity and viscosity fields by user defined value. Also,
while testing the algorithm, it was established that those integrals
need not to be calculated in every iteration of nonlinear loop.
When calculating turbulence models, usually some kind of
limiting procedure is advised, as described in Kuzmin et al. [20],
Durbin [21].

6. Test cases

To validate the developed numerical algorithm, two two-
dimensional test cases for turbulent flows were considered. The
first test case was fully developed turbulent channel flow, and the
second was turbulent flow over backward facing step. Results were
then validated using available data. For all test cases threshold
value for switching fundamental solutions was set to T¼2.

6.1. Fully developed channel flow

At first, the developed algorithm was tested on a simple test
case of two-dimensional turbulent channel flow. Three different
turbulence models were used (see Table 1). Obtained results
(in Figures denoted by BEM) were validated using available DNS

J. Lupše et al. / Engineering Analysis with Boundary Elements 39 (2014) 44–52 47
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data from Kim et al. [22] for lower turbulent Reynolds number
Reτ ¼ 180 and Mansour et al. [23], Moser et al. [24] for Reτ ¼ 395.
Two numerical meshes with different number of subdomains
(cells) and slightly different geometry were used. Coarse mesh,
shown in Fig. 1, was composed of 40�40 subdomains. It was
mildly stretched in spanwise direction with 4:1 ratio of widest to
narrowest subdomain. The domain had the geometrical form of
unit square with edge length of 1H. For a finer mesh a rectangular
domain with 127�70 subdomains was used. In order to make
sure that no influence of inlet boundary conditions to outlet was
present, the domain was elongated in streamwise direction for a
total length of 2H. When taking this into consideration, the finer
mesh had about 1.5 times more subdomains in streamwise
direction and a little less than 2 times more subdomains in span-
wise direction than a coarse mesh. The finer mesh also had a bit
larger stretch ratio in spanwise direction of 6:1.

At both solid walls of the channel, no-slip boundary condition
was prescribed as shown in Fig. 1, thus both velocity components
were set to 0 and turbulence variable values were prescribed
according to turbulence model specifications. At outlet boundary
condition, zero normal derivative for all variables was prescribed,
while function values were prescribed at the inlet section. When
convergence criterion for vorticity field was achieved, periodic
boundary conditions were applied on both ends of a channel for all
variables.

6.1.1. Reτ ¼ 180
For initial and inlet values of lower Reynolds number test case,

previous results of laminar simulations were used. Since laminar
solutions were obtained without using turbulence model, constant
values were prescribed for turbulence variables at inlet section
and inside solution domain. Simulations were then run for about
60 channel lengths until the velocity profile remained nearly
constant. For both meshes results for velocity profiles written in
wall coordinates ðUþ

x ¼ Ux=UτÞ are presented in Fig. 2 and the
normalized turbulence kinetic energy profiles ðkþ ¼ k=U2

τ Þ are
presented in Fig. 3, where Uτ is the friction velocity. An additional
comparison with Rahman and Siikonen [25] for turbulence kinetic
energy is presented for Chien's [15] model. Since Spalart–Allmaras
turbulence model [14] features only one transport equation for
modified turbulence viscosity, no comparison could be made
for turbulence kinetic energy. In all cases, good agreement with
compared DNS data was obtained for velocity field even on coarse
mesh. Use of a finer mesh yielded only a slight improvement in

results. The peak of turbulence kinetic energy was a bit under-
predicted as expected (see Bredberg [26] or Rahman and Siikonen
[27]). Comparison with FEM implementation of Chien's model by
Rahman and Siikonen [25] shows practically identical results for
the turbulence kinetic energy profile.

6.1.2. Reτ ¼ 395
At the higher Reynolds number, results from Reτ ¼ 180 were used

as inlet and initial values for simulations. Results are presented in
Figs. 4 and 5. On the coarse mesh we could not obtain converged
results of Abe–Kondoh–Nagano model; results for the coarse mesh
are therefore omitted. Again, results agree quite well with DNS data
used for both meshes.

6.2. Flow over backward-facing step at Reh ¼ 5000

For our second test case flow over backward-facing step was
chosen. Even though the geometry of this test case is fairly simple,
calculation of the flow is quite a challenge for both numerics and
turbulence models, since it features flow separation at fixed point,
curved free shear layer and its bifurcation at reattachment point.
Behind the step primary and secondary recirculation regions are
formed. So-called flapping motions of primary recirculation region

Fig. 1. Coarse mesh and boundary conditions for channel flow. Note that each
subdomain includes nine mesh nodes.

Fig. 2. Comparison of normalized velocity profiles of fully developed turbulent
channel flow for BEM implementation of Chien, Spalart–Allmaras and Abe–
Kondoh–Nagano turbulence models with DNS results [22]: Reτ¼180. (a) Coarse
mesh and (b) Fine mesh.
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at low frequencies and roll-up and pairing of vortical structures at
higher frequencies were observed by many authors experimen-
tally [28–30] and numerically [31,32].

Geometry from Hanjalić and Jakirlić [33] was used for our test
(Fig. 6) with top boundary condition as solid wall instead of
symmetry. Calculation was performed on a mesh with 23 985
subdomains and 96 689 nodes. As characteristic dimensions step
height (h) and velocity average at the inlet were chosen and used
for the definition of Reynolds number (Reh).

Three meshes of different density were used for the calculation
of the flow with Chiens model. The coarsest mesh was composed
of 16.8k subdomains (67.8k mesh nodes), mesh of middle density
of 24.0k subdomains (96.7k mesh nodes) and the finest mesh was
composed of 30.4k subdomains (122.4k mesh nodes). As can be
seen in Fig. 7, the results on all meshes are similar, thus in further
calculations the middle density mesh was used. Used mesh had,
similar to Hanjalić and Jakirlić [33] and Ramšak and Škerget [11],
first point upstream of step was at yþ � 5:6 while at the outlet this
value was at yþ � 4:5. Because of yþ dependence on friction
velocity its values are even lower in recirculation regions.

For inlet boundary condition, results from previous channel
flow simulations were used. Since transient simulations were
performed in order to find converged steady state results
after long time, convective boundary condition, as described by

Orlanski [34], was used. On top and bottomwalls no-slip boundary
conditions were used.

It has to be noted that in literature two ways of calculation of
expansion ratio are present. First uses full inlet channel height for
its calculation as for example in Driver and Seegmiller [35], and
other uses half of inlet channel height [33]. According to the first
approach expansion ratio based on full inlet channel height for our
geometry was ER¼1.2, and calculated by the second approach it
was ER¼1.33.

Calculations were performed with Spalart–Allmaras and Chiens
turbulence models. All simulations were started as stationary at
Reynolds number 1000. Results were then used for initial condi-
tions of simulation at intermediate Reh ¼ 2000. Non-dimensional
time step Δt ¼ 0:1 was chosen, normalized by t ¼ h=U , since
steady flow simulation had trouble converging. Finally, simula-
tions at Reh ¼ 5000, using results from Reh ¼ 2000 as initial values,
were performed (Figs. 8 and 9).

It has been noted in Hanjalić and Jakirlić [33] that Durst and
Schmidt [38] observed a monotonic increase in recirculation
length by different authors, dependent on expansion ratio:
Xr � 5 for expansion ratio of 1.1 to Xr � 8:35 for expansion ratio
of 2. Also a steep increase in recirculation length was noticed by
same authors from transient Reh ¼ 4500 to fully turbulent
Reh � 100 000 Reynolds numbers. Based on these observations
the expected recirculation length in our case should be around
x/h¼6.

Fig. 3. Comparison of normalized turbulent kinetic energy profiles of fully devel-
oped turbulent channel flow for BEM implementation of Chien, Spalart–Allmaras
and Abe–Kondoh–Nagano turbulence models with DNS results [22] and finite
element implementation of Chiens model by Rahman and Siikonen [25]: Reτ¼180.
(a) Coarse mesh and (b) Fine mesh.

Fig. 4. Normalized velocity profiles section of fully developed turbulent channel flow
for BEM implementation of Chien, Spalart–Allmaras and Abe–Kondoh–Nagano turbu-
lence models with DNS results [23,24]: Reτ¼395. (a) Coarse mesh and (b) Fine mesh.
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It can be seen in Table 2 that primary and secondary recircula-
tion length are comparable with results obtained by Ramšak and
Škerget [11]. Primary recirculation length for both models falls
well within the limits mentioned above.

Although unsteady simulations were performed, it was observed
that after initial transient motion, simulations with both models
come to an almost stationary result with only a slight periodic
movement of primary recirculation region and a corresponding
reattachment point. The conclusion is similar as by Fadai-Ghotbi
et al. [31,32] that k–ε type models seem to be inappropriate for
capturing unsteady effect on this type of flow. Also it is mentioned by
Fadai-Ghotbi et al. [32] that unsteadiness could be attributed to
numerical errors at corner of the step exciting natural mode of the
shear layer.

Velocity profiles and friction coefficient at the bottom of the
step are readily available from the experiment of Jović and Driver
[36]. Albeit the experiment was performed at a different expan-
sion ratio as our test case, Spazzini et al. [30] points out that a
direct comparison should be possible by normalization of stream-
wise coordinate by the obtained primary reattachment position.
Results for the friction coefficient are presented in Fig. 10. It can be
seen that compared to the experiment, minimum values of friction
coefficient are moved a bit upstream for both models used.
Spalart–Allmaras model predicted minimum of friction coefficient
quite well while non-physical local peak appeared right down-
stream of step wall. On the contrary, Chien's model performed

Fig. 5. Normalized turbulent kinetic energy profiles section of fully developed
turbulent channel flow for BEM implementation of Chien, Spalart–Allmaras and
Abe–Kondoh–Nagano turbulence models with DNS results [23,24]: Reτ¼395. (a)
Coarse mesh and (b) Fine mesh.

Fig. 6. Numerical mesh and boundary conditions used for calculation of backward-
facing step flow. Note that each subdomain in the top figure includes nine
mesh nodes. (a) Numerical mesh and (b) Boundary conditions.

Fig. 7. Comparison of velocity profiles at x=h¼ 6 for different meshes: (a) stream-
wise velocity component and (b) spanwise velocity component, normalized by
centerline velocity at inlet.
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better at the step wall, but predicted considerably lower global
minimum of friction coefficient.

Lastly, we compare velocity profiles with the experiment
performed by Jović and Driver [36] and direct numerical simula-
tion of Le et al. [37]. Since expansion ratios (experiment, DNS and
our test case) are quite high, similar profiles of velocity near the

wall and larger discrepancies away from it were expected. Thus all
velocity profiles were normalized with centerline velocity at inlet.
Fig. 11a shows a comparison of streamwise velocity profiles and
Fig. 11b spanwise velocity profiles at coordinate x/h¼6. Good
agreement was obtained for streamwise velocity component,
while spanwise velocity profiles show similar discrepancies as
can be seen in Hanjalić and Jakirlić [33] and DNS by Le et al. [37] in
comparison with the experiment of Jović and Driver [36]. One has
to note that albeit the relative error seems to be large, the absolute
scale of the spanwise velocity profiles is about 20 times smaller
than the scale of the streamwise velocity.

7. Conclusion

A boundary element based algorithm has been developed in
order to solve turbulent flow using velocity–vorticity form of
Navier–Stokes equations and low-Re turbulence models. The
advantage of formulation used over the stream-function-vorticity
formulation is the fact that the governing equations can be
extended into three dimensions. Two different test cases were
considered for testing purposes. Turbulent channel flow was
calculated with three different turbulence models. Its results show
good agreement with available DNS data of Kim et al. [22],
Mansour et al. [23] and Moser et al. [24] even on the coarse mesh.
Additional comparison was made with FEM implementation of
Chien's model made by Rahman and Siikonen [25], which shows
excellent agreement with their results. Computations with two
different turbulence models were made for backward facing step
flow. For improving convergence behavior unsteady simulations
were used, but leading to an almost steady result. Reattachment
lengths and behavior of friction coefficient were comparable with

Fig. 8. Streamwise velocity contours and streamlines for backward-facing step flow
at Reh ¼ 5000 for (a) Spalart–Allmaras and (b) Chien's models.

Fig. 9. Effective viscosity contours backward-facing step flow at Reh ¼ 5000 for (a)
Spalart–Allmaras and (b) Chien's models.

Table 2
Comparison of mean reattachment lengths for backstep flow.

Study Expansion ratio Primary Xr1 Secondary Xr2

Chien Ramšak [11] 1.33 5.81 1.19
FLB Ramšak [11] 1.33 4.52 0.30
exp Jović [36] 1.2 6.10 /
RSM Hanjalić [33] 1.2 6.38 1.55
DNS Le [37] 1.2 6.28 1.76
Spazzini [30] 1.31 5.39 1.8
BEM Chien Present 1.33 5.94 1.16
BEM SA Present 1.33 6.17 0.97

Fig. 10. Comparison of calculated skin friction coefficient for Spalart–Allmaras and
Chien turbulence model with the experiment performed by Jović and Driver [36].
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those available in literature. Overall, good agreement with avail-
able data was obtained for all test cases even on coarse meshes.

References

[1] Wrobel L, Brebbia C, Nardini D. The dual reciprocity boundary element formu-
lation for transient heat conduction. In: Proceedings of the sixth international
conference on finite elements in water resources, Lisbon, Portugal. 1986.
p. 801–81.

[2] Wrobel L, Brebbia C. The dual reciprocity boundary element formulation for
nonlinear diffusion problems. Comput Methods Appl Mech Eng 1987;65(2):
147–64.

[3] Wrobel L, DeFigueiredo D. A dual reciprocity boundary element formulation
for convection–diffusion problems with variable velocity fields. Eng Anal
Bound Elem 1991;8(6):312–9.

[4] Taigbenu A. The Green element method. Int J Numer Methods Eng 1995;38(13):
2241–63.

[5] Popov V, Power H. The DRM-MD integral equation method: an efficient
approach for the numerical solution of domain dominant problems. Int J
Numer Methods Eng 1999;44(3):327–53.

[6] Florez W, Power H, Chejne F. Multi-domain dual reciprocity BEM approach
for the Navier–Stokes system of equations. Commun Numer Methods Eng
2000;16(10):671–81 dRBEM for NSand subdomains.

[7] Florez W, Power H, Chejne F. Numerical solution of thermal convection
problems using the multidomain boundary element method. Numer Methods
Partial Differential Equations 2002;18(4):469–89.

[8] Škerget P, Alujevič A. The solution of the Navier–Stokes equations in terms of
vorticity–velocity variables by the boundary element method. Ges angew
Math Mech Jahrestagung Goettingen West Germany Z Flugwissenschaften
1985;65:245.

[9] Škerget L, Hriberšek M, Žunič Z. Natural convection flows in complex cavities
by BEM. Int J Numer Methods Heat Fluid Flow 2003;13(6):720–35.

[10] Škerget L, Ravnik J. BEM simulation of compressible fluid flow in an enclosure
induced by thermoacoustic waves. Eng Anal Bound Elem 2009;33(4):561–71.

[11] Ramšak M, Škerget L. A multidomain boundary element method for two
equation turbulence models. Eng Anal Bound Elem 2005;29(12):1086–103.

[12] Ravnik J, Škerget L, Hriberšek M. 2D velocity vorticity based LES for the
solution of natural convection in a differentially heated enclosure by wavelet
transform based BEM and FEM. Eng Anal Bound Elem 2006;30:671–86.

[13] Ramšak M, Škerget L. A subdomain boundary element method for high-
Reynolds laminar flow using stream function-vorticity formulation. Int J
Numer Methods Fluids 2004;46(8):815–47.

[14] Spalart P, Allmaras S. A one-equation turbulence model for aerodynamic
flows. La recherche aérospatiale 1994;1(1):5–21.

[15] Chien K. Predictions of channel and boundary-layer flows with a low-Reynolds-
number turbulence model. Am Inst Aeronautics Astronautics 1982;20:33–8.

[16] Abe K, Kondoh T, Nagano Y. A new turbulence model for predicting fluid flow
and heat transfer in separating and reattaching flows—I. Flow field calcula-
tions. Int J Heat Mass Transfer 1994;37(1):139–51.

[17] Wrobel L, Aliabadi M. The boundary element methodapplications in thermo-
fluids and acoustics. Wiley; 2002.

[18] Škerget L, Samec N. BEM for the two-dimensional plane compressible fluid
dynamics. Eng Anal Bound Elem 2005;29(1):41–57.

[19] Ravnik J, Škerget L, Hriberšek M. The wavelet transform for BEM computa-
tional fluid dynamics. Eng Anal Bound Elem 2004;28(11):1303–14.

[20] Kuzmin D, Mierka O, Turek S. On the implementation of the κ–ɛ turbulence
model in incompressible flow solvers based on a finite element discretisation.
Int J Comput Sci Math 2007;1(2):193–206.

[21] Durbin P. On the k-3 stagnation point anomaly. Int J Heat Fluid Flow 1996;17
(1):89–90.

[22] Kim J, Moin P, Moser R. Turbulence statistics in fully developed channel flow
at low Reynolds number. J Fluid Mech 1987;177(1):133–66.

[23] Mansour N, Kim J, Moin P. Reynolds-stress and dissipation-rate budgets in a
turbulent channel flow. J Fluid Mech 1988;194(1):15–44.

[24] Moser R, Kim J, Mansour N. Direct numerical simulation of turbulent channel
flow up to Reτ ¼ 590. Phys Fluids 1999;11:943.

[25] Rahman M, Siikonen T. Improved low-Reynolds-number k-epsilon-tilde
model. AIAA J 2000;38(7):1298–300.

[26] Bredberg J. On two equation eddy-viscosity models. Chalmers University,
Göteborg, Internal Report 2001;vol. 1 (8).

[27] Rahman M, Siikonen T. Near-wall turbulence modelling with enhanced
dissipation. Int J Numer Methods Fluids 2003;42(9):979–97.

[28] Kiya M, Sasaki K. Structure of a turbulent separation bubble. J Fluid Mech
1983;137:83–113.

[29] Driver D, Seegmiller H, Marvin J. Time-dependent behavior of a reattaching
shear layer. Am Inst Aeronaut Astronaut 1987;25:914–9.

[30] Spazzini P, Iuso G, Onorato M, Zurlo N, Di Cicca G. Unsteady behavior of back-
facing step flow. Exp Fluids 2001;30(5):551–61.

[31] Fadai-Ghotbi A, Manceau R, Borée J. Revisiting URANS computations of the
backward-facing step flow using second moment closures. influence of the
numerics. Flow Turbulence Combust 2008;81(3):395–414.

[32] Fadai-Ghotbi A, Manceau R, Borée J. Revisiting URANS computations of the
flow behind a backward-facing step using second moment closures. Comput
Fluid Dyn 2009;2006:505–10.

[33] Hanjalić K, Jakirlić S. Contribution towards the second-moment closure
modelling of separating turbulent flows. Comput Fluids 1998;27(2):137–56.

[34] Orlanski I. A simple boundary condition for unbounded hyperbolic flows.
J Comput Phys 1976;21(3):251–69.

[35] Driver D, Seegmiller H. Features of a reattaching turbulent shear layer in
divergent channel flow. Am Inst Aeronautics Astronautics 1985;23(2):163–71.

[36] Jović S, Driver D. Backward-facing step measurements at low Reynolds number,
Reh ¼ 5000. NASA technical memorandum, vol. 108807; 1994. p. 1–24.

[37] Le H, Moin P, Kim J. Direct numerical simulation of turbulent flow over a
backward-facing step. J Fluid Mech 1997;330(1):349–74.

[38] Durst F, Schmitt F. Experimental studies of high Reynolds number backward-
facing step flow. In: 5th symposium on turbulent shear flows, vol. 1. 1985. p. 5.

Fig. 11. Velocity profiles at x/h¼6 for: (a) streamwise velocity component and (b)
spanwise velocity component, normalized by centerline velocity at inlet. Compared
with the experiment of Jović and Driver [36] and DNS by Le et al. [37]. (a) Ux profiles
for x/h¼6 and (b) Uy profiles for x/h¼6

J. Lupše et al. / Engineering Analysis with Boundary Elements 39 (2014) 44–5252


