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A B S T R A C T

The paper presents numerical results for three-dimensional double-diffusive natural convection in a cubic
enclosure fully filled with fluid saturated porous media. Two opposite vertical walls of the enclosure are
subjected to different values of temperature and concentration, which causes buoyant and diffusive flow in the
porous media domain. Mathematical model is based on the Brinkman-extended Darcy formulation as a
governing momentum equation, which is coupled with the energy and species equations. The three-dimensional
boundary element method based solver was used to solve the obtained set of partial differential equations. The
existing numerical algorithm primarily derived for the pure fluid flow simulations was adopted to simulate
transport phenomena in porous media. It is based on the combination of single and subdomain boundary
element method, which solves the velocity-vorticity formulation of the governing equations. In the paper the
influence of some governing parameters, specially the Rayleigh number, Darcy number and buoyancy coefficient
are investigated in order to analyze the heat and mass transfer through porous enclosure. The numerical code is
verified by comparison of the results with available previous numerical data found in the literature.

1. Introduction

Problems of double-diffusive natural convection in porous media
occur in many natural and engineering applications and have been
recently intensively investigated. Enhanced attention has been dedi-
cated to several environmental problems, e.g. transport of contaminant
through water saturated soil in field of protection of groundwater
resources and nuclear waste disposals. In such problems complex flow
patterns are a result of combined actions of temperature and concen-
tration gradients and the presence of porous media. There are many
published analytical, numerical as well as experimental studies con-
sidering simultaneous heat and solute transfer in several different
configurations of porous media domains. First, most commonly studied
situation is the horizontal porous layer subjected to vertical tempera-
ture and concentration gradients. The critical conditions for the onset
of convective motion were usually obtained on the basis of linear
stability analysis. Murray and Chen [1] published a study where
double-diffusive natural convection in horizontal porous layer is
investigated experimentally. They reported about dramatic behavior
of flow patterns in case when performing the double-diffusive experi-
ments, with occurrence of three-dimensional cells. Trevisan and Bejan
[2] studied the critical conditions for the onset of convective motion in

an infinite horizontal porous layer. Rosenberg and Spera [3] published
a study with numerical results of convection in porous medium heated
from below with two opposing sources of buoyancy. They studied in
detail the effect of Rayleigh number, Lewis number and buoyancy
coefficient on the overall heat and mass transfer. Amahmid et al. [4]
studied double-diffusive parallel flow analytically and numerically,
where the analytical solution is based on the parallel flow approxima-
tion. The critical Rayleigh number for the onset of parallel flow is
determined analytically as a function of Lewis number, buoyancy
coefficient and Darcy number. Mahidjiba et al. [5] published numerical
study of double-diffusive natural convection in a horizontal porous
cavity using the linear stability analysis.

The second common configuration is the vertical cavity fully filled
with saturated porous media where the vertical walls are maintained at
horizontal temperature and concentration gradients. Two different
types of phenomena which were studied can be found, namely the
resulting thermal and solutal buoyancy forces can have aiding or
opposing influence on each other. Trevisan and Bejan [6,7,2] published
comprehensive analytical and numerical studies considering double-
diffusive natural convection in a porous enclosure where the vertical
walls are maintained at different temperature and concentration values
or uniform heat and mass fluxes. The developed analytical solutions are
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validated with several numerical simulations for various governing
parameters. Alavyoon [8] published a study where the unsteady and
steady convection in a vertical enclosure with applied constant fluxes of
heat and mass on the vertical walls is considered. Several comparisons
between the fully numerical and analytical solutions for different range
of governing parameters are reported. Similar study, where the results
of steady state calculations in porous media subjected to uniform fluxes
of heat and mass, was published by Mamou et al. [9]. Authors
investigated the influence of Rayleigh number, Lewis number and
buoyancy coefficient on overall heat and mass transfer in porous
enclosure. A comprehensive numerical study was published by
Goyeau et al. [10] focusing on the situations with cooperating thermal
and solutal buoyancy forces. Nithiarasu et al. [11] studied double-
diffusive natural convective flow within a rectangular enclosure with
prescribed values of temperature and concentration on the vertical
walls, using the generalized porous medium approach. Karimi-Fard
et al. [12] investigated the influence of different flow models for porous
media on an example of double-diffusive natural convection in a square
porous cavity. Bennacer et al. [13] studied the same configuration filled
with anisotropic porous media. Recently, Kramer et al. [14] published a
numerical study with several results of double-diffusive convective flow
in porous cavity obtained with the boundary element method.
However, the boundary element method has already been used for
the simulations of steady state natural convection problem in porous
media, with dual reciprocity transformation of the domain integrals,
namely for the Darcy model in Šarler et al. [15] and furthermore, for
the Darcy-Brinkman model in Šarler et al. [16].

All of the above mentioned studies are confined on the examples of
two-dimensional problems. The studies considering three-dimensional
analysis of convective flow due to combined action of thermal and
solutal buoyancy forces in different porous media configurations are
limited. Sezai and Mohamad [17] published a study, where a three-
dimensional geometry of porous media domain is considered, focusing
on the case with the opposing effects of buoyancy forces. The results
show three-dimensional behavior of the flow for certain parameter
ranges with secondary flow formations which can not be captured with
two-dimensional models. Similar study presenting some results of the
opposed action of thermal and solutal buoyancy forces was published

recently by Kramer et al. [18]. Furthermore, the effects of lateral aspect
ratio on three-dimensional geometries were studied by Mohamad et al.
[19].

The present paper considers a problem of double-diffusive natural
convection in a three-dimensional porous media domain using the
boundary element method solver. The mathematical model is given at
the beginning which is based on the Navier-Stokes equations suitable
modified for the simulations of porous media flow, where the
Brinkman-extended Darcy formulation is used as a momentum equa-
tion. In addition, the boundary element method is briefly outlined.
Since all of the above mentioned existing studies are limited in a
manner that they are presenting the results of the classical Darcy model
and are focused on the effects of opposing gradients of temperature and
concentration, in this paper the numerical results of three-dimensional
model, revealing the influence of different values of Darcy number and
buoyancy coefficient (for the cases of opposing as well as cooperating
temperature and concentration gradients) at fixed values of thermal
Rayleigh number and Lewis number on the convective motion regime,
are studied. The influence of the parameters on the occurrence of three-
dimensional flow patterns is investigated.

2. Mathematical model

The problem under consideration is double-diffusive natural con-
vection in a three-dimensional cavity, filled with porous medium which
is fully saturated with binary fluid (e.g. aqueous solutions). Two
opposite vertical walls are maintained at different temperatures (T1

and T2) and concentrations (C1 and C2), while the rest of the walls are
adiabatic and impermeable.

The mathematical description of the problem is based on the
conservation laws for mass, momentum, energy and species concen-
tration, primarily written at the microscopic level, describing the pure
fluid flow. In general, that kind of model is not appropriate to describe
the fluid flow within the porous media domain, since the geometry is
irregular and complex. With an averaging procedure over the repre-
sentative elementary volume (REV) all flow quantities can be written as
volume-averaged values, which enables amenable theoretical treat-
ment. Every macroscopic variable is defined as an appropriate mean

Nomenclature

α effective thermal diffusivity of porous medium, α λ c= /e e f

βC volumetric expansion coefficient due to chemical species
βT volumetric thermal expansion coefficient
Γ boundary of the computational domain
Λ viscosity ratio, Λ μ μ= /eff
λe effective thermal conductivity of fluid saturated porous

medium, λ ϕλ ϕ λ= + (1 − )e f s

λf thermal conductivity of fluid
λs thermal conductivity of solid phase
μ fluid dynamic viscosity
μeff effective viscosity
ν kinematic viscosity of the fluid
Ω computational domain
ϕ porosity
ρ density
σ heat capacity ratio
Θ inner angle
u⋆ fundamental solution of the Laplace equation
ω→ vorticity vector

ξ
→

source or collocation point
g→ acceleration due to gravity
n→ unit normal vector
r→ position vector

v→ velocity vector
C concentration

c ξ(
→

) geometric coefficient
cf heat capacity for fluid phase, c ρc= ( )f p f

cp specific heat at constant pressure
cs heat capacity for solid phase, c ρc= ( )s p s

D mass diffusivity
Da Darcy number
Eu Euler number
K permeability
L characteristic length
Le Lewis number
N buoyancy coefficient
Nu Nusselt number
p pressure
Pr Prandtl number
Rap porous thermal Rayleigh number, Ra Ra Da= ·p T
RaS solutal Rayleigh number
RaT thermal Rayleigh number
Rep pore Reynolds number
Sh Sherwood number
T temperature
t time
v0 characteristic velocity
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over the REV, which in general, has to be much larger than the pore
scale and considerably smaller than the length scale of the macroscopic
flow domain. All details about the averaging procedure are given in
[20] and are omitted in this paper.

To simplify the mathematical description, following assumptions
are adopted: the flow is laminar and steady, the binary fluid is
Newtonian and incompressible, where the fluid density depends only
on the temperature and concentration variations which can be de-
scribed with the Oberbeck Boussinesq approximation as:

ρ ρ β T T β C C= (1 − ( − ) − ( − )),T C0 0 0 (1)

where subcscript 0 refers to a reference state.
Volumetric thermal expansion coefficient, βT and volumetric ex-

pansion coefficient due to chemical species, βC are given with expres-
sions:

β
ρ

ρ
T

β
ρ

ρ
C

= − 1 ∂
∂

, = − 1 ∂
∂

.T
C

C
T

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ (2)

The solid phase of the porous media domain is assumed to be isotropic,
homogeneous and in thermodynamic equilibrium with the fluid phase.
Furthermore, the Soret and Dufour effects are assumed to be negligible.

The macroscopic conservation equations describing transport phe-
nomena in porous media domain are given in non-dimensional form
using following dimensionless variables for velocity v→, position vector
r→, time t, gravitational acceleration g→, pressure p, temperature T, and
concentration C:

v v
v

r r
L

t v t
L

g g
g

p p
p

T T T
T

C C C
C

→ →
→

, → →
→

, → , → →
→

, → ,

→ ( − )
Δ

, → ( − )
Δ

.

0

0

0 0

0 0
(3)

The term v0 is characteristic velocity given with an expression common
for buoyant flow simulations as v λ ρc L= /( )f p f0 , where λf is fluid
thermal conductivity, ρc( )p f is heat capacity for fluid phase and L is
characteristic length (e.g. length of one side of cubic cavity).
Furthermore, T0 and C0 are characteristic temperature and concentra-
tion (T T T= ( − )/20 2 1 , C C C= ( − )/20 2 1 ), TΔ and CΔ are characteristic
temperature and concentration differences ( T T TΔ = −2 1,

C C CΔ = −2 1), p0 is characteristic pressure p bar= 10 , while gravita-
tional acceleration is g m s= 9.81 /0

2.
According to the above dimensionless parameters, the macroscopic

governing conservation equations for mass, momentum, energy and
species, can be written as:

v∇
→

·→ = 0, (4)

ϕ
v
t ϕ

v v Ra Pr T N C g
Eu

p
ϕ

Pr v

Pr
Da

v

1 ∂→

∂
+ 1 (→·∇

→
)→ = − ( + )→ − 1 ∇
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+ 1 ∇ →

− →,
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v T λ
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∂
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f

2

(6)

ϕ C
t

v C
Le

C∂
∂

+ (→·∇
→

) = 1 ∇ ,2
(7)

where:

• RaT is thermal fluid Rayleigh number, Ra gβ ΔTL να= /T T
3 ,

• Pr is Prandtl number, Pr ν α= / ,

• N is buoyancy coefficient, N Ra Ra= /S T , where Ra gβ ΔCL να= /S C
3 is

solutal Rayleigh number,

• Eu is Euler number, Eu ρv p= /2 ,

• Da is Darcy number, Da K L= / 2,

• Le is Lewis number, Le α D= / .

Additionally the porous Rayleigh number (Rap) is defined, which links
the thermal Rayleigh and Darcy numbers:

• Ra Ra Da= ·p T .

The parameter α in the above expressions represents the effective
thermal diffusivity of porous medium α λ c= /e f , while D is the mass
diffusivity.

The momentum Eq. (5) represents the Brinkman-extended Darcy
model where the Forchheimer inertia term has been neglected. This
model is valid only for the case of low velocity, where the inertial effects
are negligible. In that case the pore Reynolds number is given as
Re ρvK μ=p

0.5 (where the characteristic length is represented as the
square root of the permeability) and its value is less than unity [21].

The Brinkman viscous term (third on the r.h.s. of Eq. (5)) is
analogous to the Laplacian term in the classical Navier-Stokes equa-
tions for the case of pure fluid flow and is originally given with the
coefficient Λ μ μ= /eff , which represents the ratio of the effective
viscosity to fluid viscosity. In this study the viscosity ratio is adopted
to be Λ ϕ= 1/ as suggested in [22].

In the energy Eq. (6), σ is specific heat ratio, defined as
σ ϕc ϕ c c= ( + (1 − ) )/f s f , where c ρc= ( )f p f and c ρc= ( )s p s are heat capa-
cities for fluid and solid phase respectively.

2.1. Velocity-vorticity formulation

The governing set of equations is transformed by introduction of
the velocity-vorticity formulation which separates the computational
scheme into the kinematic and kinetic computational parts. The

vorticity vector is introduced as the curl of the velocity, ω v→ = ∇
→

× →,
where both, velocity and vorticity fields are solenoidal by the definition,

v∇
→

·→ = 0, ω∇
→

·→ = 0. The kinematics equation is a vector elliptic partial
differential equation of Poisson type and is obtained from the mass
conservation law (4) as:

v ω∇ → + ∇
→

× → = 0,2 (8)

By applying the curl operator to the momentum Eq. (5), the vorticity
transport equation can be derived:

ϕ ω
t

v ω ω v PrRa ϕ T N C g Prϕ ω

Pr
Da

ϕ ω

∂→

∂
+ (→·∇

→
)→ = (→·∇

→
)→ − ∇

→
× ( + )→ + ∇ →

− →,

T
2 2

2
(9)

which is representing the kinetic computational part together with the
energy and species transport equations.

The pressure appears in the general momentum Eq. (5) in the
gradient form and as such it can cause numerical instabilities. In the
velocity-vorticity formulation the pressure term is eliminated from the
momentum equation as a primary variable, as a consequence of
applying the curl operator.

Fig. 1. Geometry of the problem.
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The obtained set of partial differential Eqs. (8), (9), (6) and (7)
forms a nonlinear system of equations for the unknown velocity,
vorticity, temperature and concentration fields. The problem of heat

Table 1
Variations of Nusselt number with different grid sizes and various Darcy number values.

Mesh Number
of nodes

RaP=100, Le=0, N=0

Da 10−1 10−2 10−3 10−4 10−5

D2 20 ×20 1681 1.0639 1.6329 2.3697 2.8756 3.1656
30×30 3721 1.0638 1.6331 2.3680 2.8537 3.1503

D3 12 × 12 × 12 15625 1.0423 1.5428 2.3432 2.9784 3.3008
20 × 8 × 20 28577 1.0394 1.5329 2.3313 2.9575 3.2950
22 × 10 × 22 42525 1.0393 1.5327 2.3307 2.9552 3.2945
30 × 10 × 30 78141 1.0393 1.5325 2.3303 2.9541 3.2934

Table 2
Nusselt number values for the D3 natural convection in a cubic enclosure for RaP=1000,
ϕ = 0.8 and different values of Darcy number. The results are compared to study [31].

RaP=1000; Le=0; N=0

Da 10−2 10−3 10−4 10−5 10−6

Present 3.770 6.922 10.558 13.242 14.568
Sharma and Sharma[31] 3.99 6.95 10.14 12.78 13.72

Table 3
Nusselt and Sherwood number values for 3D natural convection in a cubic enclosure for
RaP=10, Da = 10−6, N = −0.5 and different values of Lewis number. The reference
results are from the study [19].

RaP=10; Da = 10−5; N = −0.5

Le=1 Le=10 Le=100

Nu Present 1.019 1.039 1.048
[19] 1.0198 1.0404 1.0424

Sh Present 1.019 2.450 4.743
[19] 1.0198 2.4467 4.7511

Table 4
Nusselt and Sherwood number values for 3D natural convection in a cubic enclosure for
Rap=1, Da = 10−6, Le=50 and different values of buoyancy coefficient. The reference
results are from the study of Mohamad et al. [19].

RaP=1; Da = 10−6; Le=50

N = −0.2 N = −0.5

Nu Present 1.0005 1.0002
[19] 1.0006 1.0003

Sh Present 1.9627 1.5524
[19] 1.9517 1.5495

Table 5
Nusselt and Sherwood number values for 3D natural convection in a cubic enclosure for Da = 10−6, Le=10, N = −0.5 and different values of Rap. The reference results are from the study
of Sezai and Mohamad [17].

Da = 10−6; Le=10; N = −0.5

Rap 1 5 10 50 100 200 500 1000

Nu Present 1.000 1.021 1.039 1.566 2.391 3.568 6.397 10.984
[17] 1.0 1.0 1.0 1.6 2.4 3.4 6.4 –

Sh Present 1.019 1.392 2.450 4.873 6.473 8.157 12.105 25.550
[17] 1.0 1.5 2.4 4.9 6.2 8.2 11.9 –

Table 6
Nusselt and Sherwood number values for 3D natural convection in a cubic enclosure for
Le=10 and N=1 and different values of Da, Rap and RaT.

Le=10, N=1

RaT Rap Da Nu Sh

105 10 10−4 1.025 2.937
100 10−3 2.755 9.744

1000 10−2 3.226 18.696

106 10 10−5 1.051 3.103

100 10−4 3.563 13.527

1000 10−3 6.148 25.557

107 10 10−6 1.082 3.852

100 10−5 4.101 16.897

1000 10−4 10.447 30.186

Fig. 2. Nusselt number values depending on buoyancy coefficient for Ra = 100p , Le = 10
and various Da.

Fig. 3. Sherwood number values depending on buoyancy coefficient for Ra = 100p ,

Le = 10 and various Da.
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and mass transfer in porous media domain is uniquely defined by
specifying the buoyancy coefficient, fluid Rayleigh, Prandtl, Lewis and
Darcy numbers together with the appropriate initial and boundary
conditions.

3. Numerical method

The numerical method used to perform simulations in this paper is
based on the solution of velocity-vorticity formulation of Navier-Stokes
equations, using a combination of a single domain BEM and sub-
domain BEM. Sub-domain BEM is used to solve the vorticity, energy
and species transport equations. Because it is based on domain
decomposition, the matrices arising in discretization are sparse and
the efficiency of the solution is comparable to FVM or FEM [23]. The
kinematics equation, which is used to determine the vorticity boundary

conditions, is due to the restrictions of the Biot-Savart law, solved by
single domain BEM, which results in a full system of equations. This
limits the maximum grid size due to memory constraints. This draw-
back can be mitigated by the use of fast BEM, where sparse approx-
imation of full matrices are used [24]. The main advantage of using
single domain BEM to obtain boundary vorticity values is that the
algorithm conserves mass in complex geometries, which is not the case
when using velocity derivatives to calculate boundary vorticity values.

The numerical algorithm is devised as follows. The boundary
conditions of Dirichlet or/and Neumann type for velocity, temperature
and concentration are known at the beginning and are used to solve the
kinematics Eq. (8) for domain velocity values, energy Eq. (6) for
domain temperature values and species Eq. (7) for domain concentra-
tion values. The boundary conditions for vorticity values are unknown
at the beginning and are calculated as a part of the algorithm by single

Fig. 4. Temperature profiles at y = 0.5 and z = 0.5; (a) Ra = 10T 6 , Da = 10−4, Le = 10 and various N ; (b) Ra = 10T 6 , N = 0 , Le = 10 and various Da.

Fig. 5. Concentration profiles at y = 0.5 and z = 0.5; (a) Ra = 10T 6 , Da = 10−4 , Le = 10 and various N ; (b)Ra = 10T 6 , N = 0 , Le = 10 and various Da.
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domain BEM out of the kinematics Eq. (8) [25]. The outline of the
numerical algorithm is as follows:

1. Fluid and porous media properties are determined.
2. Vorticity values on the boundary are calculated by single domain

BEM from the kinematics Eq. (8).
3. Velocity values within the domain are calculated by subdomain BEM

from the kinematics Eq. (8).
4. Temperature values within the domain are calculated by subdomain

BEM from the energy Eq. (6).
5. Concentration values within the domain are calculated by subdo-

main BEM from the concentration Eq. (7).
6. Vorticity values within the domain are calculated by subdomain

BEM from the vorticity Eq. (9).
7. Check convergence. All steps from 2. until 6. are repeated until all

flow fields achieve the required accuracy.

3.1. Integral form of governing equations

To solve the governing set of equations by BEM based algorithm the
integral form of Eqs. (8), (9), (6) and (7) has to be obtained.
Considering a domain Ω with a boundary Γ, the integral form of
governing equations can be derived by using the Green's second
identity for the unknown field function and for fundamental solution

u⋆ of the Laplace equation: u π ξ r= 1/4 |
→

− →|⋆ , where ξ
→

is source or
collocation point on the boundary Γ and r→ a position vector in the
domain Ω.

Fig. 6. Velocity profiles v x L L( , 0.5 , 0.5 )z ; (a) Ra = 10T 6 , Da = 10−4 , Le = 10 and various N ; (b) for Ra = 10T 6 , N = 0 , Le = 10 and various Da.

Fig. 7. Velocity profiles v L L z(0.5 , 0.5 , )x ; (a) Ra = 10T 6 , Da = 10−4 , Le = 10 and various N ; (b) Ra = 10T 6 , N = 0 , Le = 10 and various Da.
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3.2. Integral representation of kinematics

The single domain BEM is first used to solve the kinematics Eq. (8)
for the unknown boundary vorticity values. The integral form of the
kinematics equation in tangential form is:

∫
∫ ∫

c ξ n ξ v ξ n ξ v u n dΓ

n ξ v n u dΓ n ξ ω u dΩ

(
→

)→(
→

) × →(
→

) + →(
→

) × →∇
→

·→

= →(
→

) × → × (→ × ∇
→

) + →(
→

) × (→ × ∇
→

) ,

Γ

Γ Ω

⋆

⋆ ⋆

(10)

where c ξ(
→

) is geometric factor defined as c ξ Θ π(
→

) = /4 , where Θ is the

inner angle with origin in ξ
→
. Furthermore, n→ is a vector normal to the

boundary, pointing out of the domain. After discretization the system
matrix is formed in such way, that boundary values of vorticity are
unknown, while domain vorticity and velocity values are taken from
previous nonlinear iteration. The system is solved using a LU decom-
position method. This approach has been proposed and used by
Škerget [26–28].

To obtain the domain velocity values, the subdomain BEM has been
used to solve the kinematics Eq. (8). The rewritten integral form is used
as:

∫ ∫
∫

c ξ v ξ v n u dΓ v n u dΓ

ω u dΩ

(
→

)→(
→

) + →(→·∇
→

) = → × (→ × ∇
→

)

+ (→ × ∇
→

) ,

Γ Γ

Ω

⋆ ⋆

⋆
(11)

where the boundary values of velocity are known boundary conditions

while the domain and boundary values of vorticity are known from the
previous iteration.

3.3. Integral representation of kinetics

The same fundamental solution of the Laplace equation and a
standard BEM derivation as in [29] are used to derive integral forms of
the vorticity transport Eq. (9), energy transport Eq. (6) and species
transport Eq. (7). In this work a natural convection phenomena is
simulated for the cases of steady flow field, thus the time derivative
terms in all equations ω t∂→/∂ , T t∂ /∂ and C t∂ /∂ are omitted. The final
form of vorticity, energy and species transport equations are:

∫ ∫
∫

∫
∫
∫

∫

c ξ ω ξ ω u n dΓ u q dΓ

Pr ϕ
n u v ω ω v dΓ

Pr ϕ
v ω ω v u dΩ

Ra ϕ u T N C g n dΓ

Ra ϕ T N C u g dΩ

ϕ
Da

ω u dΩ

(
→

) (
→

) + ∇
→

·→ =

+ 1 1 →·{ (→ − → )}

− 1 1 (→ − → )·∇
→

− ( ( + )→ × →)

− (( + ) ∇
→

× →)

+ ,

j
Γ

j
Γ

j

Γ
j j

Ω
j j

T
Γ

j

T
Ω

j

Ω
j

⋆ ⋆

⋆

⋆

⋆

⋆

⋆
(12)

Fig. 8. Streamlines, temperature and concentration contour plots on the y L= 0.5 plane for Ra = 10T 3 , Da = 10−1 , Le = 10 and different values of N .

J.K. Stajnko et al. Engineering Analysis with Boundary Elements 76 (2017) 69–79

75



∫ ∫

∫

∫

c ξ T ξ T u n dΓ u q dΓ

λ
λ

n u v T dΓ

v T u dΩ

(
→

) (
→

) + ∇
→

·→ =

+ →·{ (→ )}

− (→ )·∇
→

,

Γ Γ
T

f

e Γ

Ω

⋆ ⋆

⋆

⋆

⎛
⎝⎜

⎞
⎠⎟ (13)

∫ ∫

∫

∫

c ξ C ξ C u n dΓ u q dΓ

Le
n u v C dΓ

v C u dΩ

(
→

) (
→

) + ∇
→

·→ =

+ 1 →·{ (→ )}

− (→ )·∇
→

.

Γ Γ
C

Γ
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In above equations, ωj is a vorticity component, qj is a component of
vorticity flux, qT and qC are the heat and species fluxes, respectively.

In the subdomain BEM method a mesh of the entire domain Ω has
to be made, where each mesh element is named a subdomain. All
equations are written for each of the subdomains. The field functions
and flux across the boundary and within the domain are interpolated
using shape functions. In this work a hexahedral mesh elements with a
standard shape functions for a 27 node Lagrangian domain are used.
The field functions on each element are interpolated using continuous
quadratic interpolation, while the fluxes are interpolated using the
discontinuous linear interpolation.

The presented algorithm has been proposed for the case of 3D fluid
flow by Ravnik et. al [25,27] and later adopted for the simulation of 3D
nanofluid flow [28] and 3D porous media flow [30]. In the present

work the algorithm is expanded for the case of double-diffusive natural
convection with additional species equation, furthermore, porous
media parameters were introduced in all equations.

4. Test case

The numerical simulations of double-diffusive natural convection
were performed on the example of cubic cavity, filled with fluid
saturated porous media and subjected to a temperature and concen-
tration differences on two opposite vertical walls, while the rest of the
walls were adiabatic and impermeable. The geometry with boundary
conditions are shown in Fig. 1. Due to applied temperature and
concentration gradients, density differences are induced which results
in appearance of thermal and solutal buoyancy forces. The flow regime
in the cavity is strongly dependant on the interaction between the
thermal and solutal buoyancy forces, which can be either cooperating
or opposing.

The heat and mass transfer through porous media is expected to
depend on several fluid and porous media properties, such as porosity,
permeability, thermal conductivity, species diffusivity, heat and solute
capacitance, etc. In order to compare different conditions on overall
heat and mass transfer through porous media domain, wall heat flux
and wall species flux are calculated, which are expressed in terms of
dimensionless Nusselt and Sherwood numbers as:

∫ ∫Nu T n dΓ Sh C n dΓ= ∇
→

·→ , = ∇
→

·→ ,
Γ Γ (15)

where Γ is the surface through which the heat flux and species flux are

Fig. 9. Streamlines, temperature and concentration contour plots on the y L= 0.5 plane for Ra = 10T 5 , Da = 10−3 , Le = 10 and different values of N .
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calculated and n→ is an unit normal to this surface.

5. Results

The obtained numerical algorithm has been used to investigate the
three-dimensional flow structures and overall heat and mass transfer
for different values of governing parameters: thermal Rayleigh number
RaT, porous Rayleigh number Rap, Lewis number Le, Darcy number
Da, buoyancy coefficient N, Prandtl number Pr, porosity ϕ and heat
capacity ratio σ.

Firstly, the results for different grid sizes ( D2 and D3 ) for an
example when Rap=100, Le=0, N=0, Pr=0.71, ϕ = 0.8, σ = 1 and
various Da are shown in Table 1. Two nonuniform meshes for D2 case
and four nonuniform meshes for D3 case have been tested. When
comparing D2 and D3 results it can be seen, that for the case of low
values of Darcy number D2 simulations underestimate the heat transfer
up to 4.5%. The effect of three-dimensionality in dependence on
different parameters is discussed below. However, the D3 results
reveal, that the mesh 20 × 8 × 20 with 28577 nodes provides accep-
table accuracy and was chosen for the further computations.

The validation of numerical code has been primarily performed for
purely thermal natural convection in porous cubic enclosure and
compared to reference solutions available in the literature. In
Table 2, the Nusselt number values for the case of 3D enclosure for
RaP=1000, Pr=0.71, ϕ = 0.8, σ = 1 and various Da are compared to
solutions obtained by Sharma and Sharma [31]. The present results
agree well with the data from the available literature, all Nusselt
number values at different Darcy numbers are within 6% of the results

in the reference study. The difference can be explained by the fact that
in the study by Sharma and Sharma [31] the Darcy-Brinkman-
Forchheimer model was used, where additional Forchheimer term
includes inertial effects which occur at higher velocities. An inertial
resistance term was not considered in the present study which results
in higher values of Nu number when the values of Da number are low.

Furthermore, Tables 3–5 present the comparison results for the
case of double-diffusive natural convection, where the buoyancy
coefficient has negative values, N < 0, which means the thermal and
solutal buoyancy forces are opposing each other. The results for
different values of Rap, Da and Le are given, while the porous media
properties are ϕ = 1 and σ = 1, and Prandtl number is Pr=10. The
agreement with reference solutions from [19] and [17] for all different
governing parameters is very good.

The results of average Nusselt and Sherwood numbers at fix values
of porosity, ϕ = 1, heat capacity ratio σ = 1, Prandtl number Pr=10,
thermal Rayleigh numbers Ra = 10T

5, Ra = 10T
6 and Ra = 10T

7 at Lewis
number Le=10, buoyancy coefficient N=1 and various Da are presented
in Table 6. Values of Nu and Sh depend on the RaT, which directly
influences the scale of the buoyancy term in Eq. (5) and Da, which
influences the Darcy term in Eq. (5).

Further results are presented in Figs. 2 and 3, where the depen-
dence of Nu and Sh on N is shown for fix values of Ra Ra Da= · = 100p T ,
Le=10, various Da and N. Due to the boundary conditions considered
in the present study, where the left-hand side vertical wall is main-
tained at higher temperature and concentration values as the right-
hand side vertical wall, the resulting flow direction induced by thermal
buoyancy forces is clockwise, while the direction of the solutal buoy-

Fig. 10. Streamlines, temperature and concentration contour plots on the y L= 0.5 plane for Ra = 10T 7 , Da = 10−5, Le = 10 and different values of N .
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ancy forces depends on the sign of the buoyancy coefficient. When N=0,
the only acting buoyancy forces are the thermal forces, the induced
convection mechanism causes higher heat and mass transfer. With any
increase of N in positive direction, the magnitude of convective motion
becomes higher, which results in increased values of Nu and Sh
numbers, at any value of RaT and Da. In case when N < 0, the
direction of solutal buoyancy is opposing the thermal buoyancy, which
at some critical point results in suppression of the convective motion.
At N = −1, Nu and Sh values are lower than at any other value of N,
which can be observed at any Da and RaT. At this point the thermal
and solutal buoyancy effects neglect each other, which results in lower
values of Nu and Sh. With further decrease of buoyancy coefficient,

N−0.5 > > − 2, the solutal buoyancy force becomes significant over
the thermal one, which again increases the overall heat and mass
transfer and results in higher values of Nu and Sh.

Under chosen geometry and boundary conditions, the buoyancy
forces in the cavity induce the main vortex in the x z− plane, so the
plane y L= 0.5 is chosen to study temperature, concentration and
velocity profiles. Figs. 4 and 5 show the temperature and concentration
profiles at y L= 0.5 and z L= 0.5 for Ra = 10T

6, Le=10, depending on
Da and N. As expected, the highest temperature and concentration
gradients can be observed near to the hot and the cold walls. Fig. 4 (a)
and 5 (a) show that the temperature and concentration profiles at

N = −1.5 and N = −2 are almost linear, which indicates that the main
heat and solute transfer mechanism in this case is conduction. In Fig. 4
(b) and 5 (b) can be observed that at higher values of Da (Da = 10−3) at
fix RaT the temperature and concentration gradients are higher as in
case of lower value of Da. In addition, vertical velocity profiles
v x L L( , 0.5 , 0.5 )z and horizontal velocity profiles across the center of
the cube are shown in Figs. 6 and 7. It is obvious that the fluid is
moving faster along the vertical walls with applied values of tempera-
ture and concentration, where the velocity gradient is higher. The
maximum values of the vertical velocity are closer to the wall in cases of
high values of N (Fig. Fig. 6 (a)) and Da (Fig. Fig. 6 (b)), where the
nonslip boundary condition prescribed on the vertical wall is almost
violated.

Figs. 8, 9 and 10 show the streamlines, temperature fields and
concentration fields for different values of N at Le=10 and Ra = 10T

3,
Da = 10−1 (Fig. Fig. 8), Ra = 10T

5, Da = 10−3 (Fig. Fig. 9) and
Ra = 10T

7, Da = 10−5 (Fig. Fig. 10). In case of low values od RaT and
Da, the buoyancy forces are very weak; the isotherms are almost
parallel to the vertical walls which indicates the dominating heat
transfer mechanism is conduction. The convection becomes stronger
with increasing the RaT and decreasing the Da (Figs. 9 and 10). In
cases when N < 0, the change of direction of convective motion due to
opposite acting of buoyancy forces can be observed in all fields. The

Fig. 11. Isosurfaces of v v| | = 0.1y max for Ra = 10T 3 and Da = 10−1 (upper row), Ra = 10T 5 and Da = 10−3 (middle row), Ra = 10T 7 and Da = 10−5 (bottom row), Le = 10 and different

values of N with displayed contours of temperature ( T−0.5 ≤ ≤ 0.5).
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streamlines are closely spaces near the hot and cold walls, where the
fluid is moving faster and the velocity gradient is higher. Larger
absolute values of buoyancy ratio result in stronger convective motion
which enhances heat and mass transfer in the cavity, in general.

In Fig. 11, the three dimensional structure of the flow field is shown
for, Le=10 and different values of RaT, Da and N, where the iso-
surfaces for absolute value of y velocity component are plotted. The
value of v| |y is set to be 10% of the maximal fluid velocity for each case
respectively, v v| | = 0.1y max. The y component of velocity is perpendicular
to the plane of the main motion and is 0 in case when considering only
D2 example. In general, the value of vy is small in comparison to
velocities in x and z directions, special at low Da values. In that case the
3D nature of the phenomena can be observed in the corners of the
cubic cavity. Due to the fact that the flow field is driven by a large
temperature and concentration difference between two opposite walls,
which causes the main 2D vortex in the y plane, the flow structure in
the enclosure remains mainly two-dimensional. However, with in-
crease of Darcy number, the movement perpendicular to the plane of
the main vortex becomes more apparent at any value of N.

6. Conclusions

In the present work a three-dimensional double-diffusive natural
convection in porous enclosure is investigated numerically, using the
algorithm which is based on the boundary element method. The
mathematical model is based on the classical Navier-Stokes equations
adopted for the porous media flow where the Brinkman-extended
Darcy momentum equation is coupled with the energy and species
equations. In order to use the boundary element method algorithm, the
velocity-vorticity formulation of the governing equations was obtained,
which separates the numerical scheme into the kinematic and kinetic
computational parts. The boundary vorticity values were obtained from
the single domain BEM solution of the kinematics equation, while the
domain vorticity, temperature and concentration values, as well as
domain velocity values were obtained by using the subdomain BEM.

The numerical code is validated by comparison of the results with
some previously published numerical data available in the literature for
different values of governing parameters. Further study is focused on
the influence of a limited number of dimensionless parameters, namely
the Rayleigh number, Darcy number and buoyancy coefficient. The
results state specific behavior of double-diffusive flow in porous media;
the heat and mass transfer strongly depend on Rayleigh Darcy
numbers. Moreover, the increase of the absolute value of buoyancy
coefficient enhances the overall heat and mass transfer, in general. In
the range of the negative values of buoyancy coefficient, the thermal
and solutal buoyancy effects start to oppose each other, which causes
that the flow starts to flow in reversal direction. Three-dimensional
nature of the flow relative on the velocity maximum can be observed at
all different parameters and becomes more apparent at higher values of
Darcy numbers.
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