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ABSTRACT

In the present paper problem of natural convection in a cubic porous cavity is studied numerically,
using an algorithm based on a combination of single domain and subdomain boundary element method
(BEM). The modified Navier-Stokes equations (Brinkman-extended Darcy formulation with inertial
term included) were adopted to model fluid flow in porous media, coupled with the energy equation
using the Boussinesq approximation. The governing equations are transformed by the velocity-
vorticity variables formulation which separates the computation scheme into kinematic and kinetic
parts. The kinematics equation, vorticity transport equation and energy equation are solved by the
subdomain BEM, while the boundary vorticity values, needed as a boundary conditions for the vorticity
transport equation, are calculated by single domain BEM solution of the kinematics equation.
Computations are performed for steady state cases, for a range of Darcy numbers from 10~ to 1071,
and porous Rayleigh numbers ranging from 50 to 1000. The heat flux through the cavity and the flow
fields are analyzed for different cases of governing parameters and compared to the results in some

published studies.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Buoyancy induced flows in saturated porous media have been
the subject of intense research over the last few decades, mainly
because of several important industrial and environmental appli-
cations, e.g. building thermal insulation, geothermal systems,
petroleum reservoirs, etc. Several studies have been published
focusing on the problem of natural convection in porous enclo-
sures, mainly for the cases of two-dimensional geometries where
temperature gradient is imposed either horizontally [1-6] or
vertically [7-10]. Less attention has been dedicated to three-
dimensional configurations, which are rare and primarily
confined to conditions of heating from below and using the Darcy
model. Only few studies can be found considering a 3D enclosure
heated from the side. One of them is a study of Dawood and Burns
[11], where they reported that heat flow under these conditions
depends on a Rayleigh number, geometry and boundary condi-
tions, and that the flow patterns are much more complicated in
three than in two dimensions. Sharma and Sharma [12] investi-
gated the non-Darcy effects of 3D natural convection in a porous
box, focusing on the influence of the Brinkman viscous and
Forchheimer non-linear inertial terms and concluded, these
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effects are significant at high Rayleigh numbers and low values
of Darcy and Forchheimer numbers. Recently, Wang et al. [13]
published a 3D study of natural convection in an inclined porous
enclosure under magnetic field, using the Brinkman-Forchheimer
extended Darcy model. They investigated an influence of an incli-
nation angle, magnetic force and Darcy number. They reported
that heat transfer is enhanced with the increase in the inclination
angle and the Darcy number. The implied magnetic force, which is
acting against the gravitational force has also big influence on the
averaged Nusselt number values. Wang et al. [14] investigated 3D
natural convection in an inclined porous cavity with time oscil-
lating boundary conditions. They found out that in case of
moderate inclined cavity, convective flow inside a cavity is stable,
regular and mainly 2D. In cases of higher inclination angles, flow
patterns become unstable and complicated, 3D multiple roll cells
are established.

There exist several comprehensive studies of a problem of
3D natural convection in porous cavities heated from below. At
the beginning the problem was studied mostly analytically with
the aim to determine critical values of Rayleigh numbers, when the
flow in this configuration becomes unstable (convective). The
studies based on the linear theory or energy method for convective
instability such as reported in paper of Beck [15]. Holst and Aziz
[16] published a numerical study of transient 3D natural convection
in porous media and reported that under certain conditions 3D
motion would result in significantly higher heat transfer rates than
2D motion at the same Rayleigh number. Zebib and Kassoy [17]
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published analytical study, where they obtained critical Rayleigh
numbers for the onset of convection, where large temperature
differences are applied, including the viscosity variation with
temperature. They reported that the critical Rayleigh number is
reduced from the value, which is predicted by constant viscosity
calculations. In the second study [18] they derived expressions for
2D and 3D Nusselt numbers and stated that in case of 2D, heat is
transferred more efficiently than in 3D cases, when the Rayleigh
number is just above the critical value. The same results for Nusselt
numbers at low values of the Rayleigh number were published by
Straus and Schubert [19], where the results are obtained using
a numerical methods. Schubert and Straus [20] investigated multi-
cellular steady and unsteady convection for 2D and 3D cases with
the use of the Galerkin approach. They investigated different
situations where convective flow becomes unsteady and reported
in which case more heat is transferred. Horne [21] published
numerical results that demonstrate that there exists more than
one mode of convection for any particular physical configuration
and Rayleigh number. Kimura et al. [22] investigated time depen-
dent convection using a pseudospectral based numerical scheme.
They obtained the evolution of convective regimes with increasing
Ra from symmetric steady state to oscillatory flow and stated that
the critical Rayleigh number for the onset of oscillation is higher for
3D case and the Nusselt number of 3D flows is generally greater
than that of the 2D flows. Stamps et al. [23] studied natural
convection in a cube of fluid-saturated porous medium heated from
below at insulated vertical sides and the special case where heat is
transferred through the vertical sides. They identified three distinct
flow patterns depending on the rate of heat transfer and the
Rayleigh number. Recently, Neto et al. published studies considering
transient 3D natural convection in cubic porous cavity [24], and
cavities with different aspect ratios [25] using the integral trans-
form method employing the vorticity-vector potential formulation.
Sezai [26] studied flow patterns in a fluid-saturated porous cube
heated from below using a non-Darcy flow model. He reported
about some new flow patterns in addition to the already published
studies.

In this paper a numerical method for the simulation of fluid
flow and heat transfer in porous media for steady flow cases,
based on the boundary element method solution of the Navier-
Stokes equations in velocity-vorticity form is presented. The
proposed algorithm is based on the pure fluid [27] and nanofluid
[28] simulation codes. The algorithm accepts Dirichlet or
Neumann type boundary conditions for velocity and temperature,
while it calculates boundary values of vorticity using single
domain BEM. The vorticity and energy transport equations are
solved using a domain decomposition BEM approach [29].

2. Mathematical formulation
2.1. Governing equations

Transport phenomena in porous media can be described with
macroscopic Navier-Stokes equations, which are obtained by
averaging of the general microscopic equations, written for the
pure fluid flow, over sufficiently large representative elementary
volume (REV). Only one part of the volume, which is expressed
with the porosity ¢, is available for the fluid flow [30]. The REV
has to be determined in a way that, irrespective of its position in
porous media, it always contains both solid and fluid phases. In
the model development following assumptions are adopted: the
fluid flow is steady and laminar, the solid phase is homogeneous,
isotropic and non-deformable, the fluid is incompressible
Newtonian and in thermal equilibrium with the solid phase. The
porosity and permeability of porous medium are constant, while

the density of the fluid depends only on temperature variations
and is described with the Oberbeck Boussinesq approximation as

p = po(1-Pr(T-Ty)). (M

In the above expression p is the density of the fluid, T is the
temperature and f; is the volumetric thermal expansion coeffi-
cient given with f;=—1/p[op/oT]. The subscript O refers to a
reference state.

The macroscopic conservation equations can now be written as:

e Continuity equation
V.v=0. (@)

e Momentum equation

1ov 1 _ = . L 12 1 2. Vo,
$E + F(V -V = —,BT(T—TO)g—p—OVp+ $vV V—RV. 3)
e Energy equation
T =~ e e
05+(V~V)T_§V T. @)

The parameters used above are: V, volume averaged velocity, ¢,
porosity, t, time, p, density, v, kinematic viscosity, p, pressure, g,
gravity vector, K, permeability. In the energy equation ¢ repre-
sents the heat capacity ratio o= (¢cr+(1—¢)cs)/c;, where
¢ =(pcp)y and ¢s = (pcp)s are heat capacities for fluid and solid
phases, respectively. /. is the effective thermal conductivity of the
fluid saturated porous media given as /.= ¢As+(1—¢)4s, where
/s and /s are thermal conductivities for fluid and solid phases,
respectively.

The momentum equation (3) is also known as the Darcy-
Brinkman equation, with two viscous terms, e.g. Brinkman
viscous term (third on the r.h.s.) and Darcy viscous term (fourth
on the r.h.s.).

The Brinkman viscous term is originally given as veffVZV,
where vy is the effective viscosity. Brinkman set v and vy equals
to each other but in general, that is not true [31]. The viscosity
ratio can be introduced as A =v5/v. For an isotropic porous
medium the averaging process leads to the result that 4 =1/¢T*,
where T* is the tortuosity of the medium [32]. Since A depends on
the geometry of the medium, its value is often approximated by
A=1/¢, in cases with a high value of porosity, a reasonable
approximation is to be 4 =1 [32,4]. In the present study, the
viscosity ratio is assumed to be A=1/¢, which results in a
Brinkman term, e.g. 1/¢vV>¥.

The Brinkman viscous term is analogous to the Laplacian term
in the classical Navier-Stokes equations for pure fluid flow. It
expresses the viscous resistance or viscous drag force exerted by
the solid phase on the flowing fluid at their contact surfaces. With
the Brinkam term the non-slip boundary condition on a surface
which bounds porous media is satisfied [31].

2.2. Velocity-vorticity formulation

The velocity-vorticity formulation of above given modified
Navier-Stokes equations is derived by taking the curl of the
mass conservation law (2), and of the Brinkman momentum
equation (3). The vorticity is defined as the curl of the velocity
field &=V x v and is solenoidal by the definition, V - @& = 0.
As a consequence of the transformation, the computational
scheme is partitioned into its kinematic and kinetic parts [33].
The kinematics is given with the elliptic velocity vector equation:

VW4V x @ =0, (5)



1258 J. Kramer et al. / Engineering Analysis with Boundary Elements 35 (2011) 1256-1264

furthermore, the kinetic part is governed by the vorticity trans-
port equation:
0D e, e o . Lovgt
o . & - VW=V x (BT¢Z(T—T0)g)+v¢V2w—%w.
(6)
2.3. Non-dimensional equations

Before all equations will be rewritten in the non-dimensional
form, in the vorticity and energy equations the modified vorticity
and temperature time steps are introduced as t,=t/¢ and
tr=t/o. These are necessary mathematical steps allowing to
use the numerical scheme presented in the following section.
The vorticity and energy equations are now given as

. 2
90 +(V - V)D = (D - V)V_V(ﬁT¢2(T—T0)§)+v¢v2@—ﬂ D,
oty K
(7)
T o o Je
E-O—(\%V)T_gv T. 8)

The non-dimensional form is obtained using following dimen-
sionless variables:

. vV L r L oL Vot
Vol Top 0-S b =
Voltr T-To . &
tr-——, T s - =2, 9
T AT go )

where vg, L and Ty are the characteristic velocity, length and
temperature, respectively. Furthermore, AT is the characteri-
stic temperature difference and gy the gravity acceleration
g0 =9.81 m/s?. Characteristic velocity is given with the expres-
sion vo = /¢/(¢cfL), which is a common choice for buoyant flow
simulations. In addition, the pure fluid Rayleigh (Ray), Prandtl (Pr),
Darcy (Da) and porous Rayleigh (Ra,) numbers are defined as

Raf:g‘)[”;%ﬁ, (10)
Pr:%, 11)
Da= . (12)
Ra, = Rag Da = w, 13)

where o is the thermal diffusivity and is given with o= //c;.
The non-dimensional vorticity and energy equations for the
simulation of fluid flow in porous media can now be written as

9 |G D = (@ - V)V +Pr $VPH—Pr Rapg?VTE— 1 263,
otp Da
(14)
T o decn
oy O VT=3VT (15)

The flow and heat transfer in porous medium are thus defined
by specifying the fluid Rayleigh, Prandtl and Darcy number
values.

3. Numerical method
3.1. Integral form of governing equations

Considering a domain @ with a boundary I', a fundamental
solution of the Laplace equation and the Gauss and Greens

theorems are used to write the integral kinematics equation
without derivatives of the velocity or vorticity fields [34]:

CEVE) + /F V(i - Vyur dIh = /F ¥ x (i x Vyur dI"
+/(J> x Vur) dQ. (16)
Q

Here & is the source or collocation point, 7i is a vector normal to
the boundary, pointing out of the domain and u* is the funda-
mental solution: u* = 1/4n|g—?|. In order to have a non-singular
system of equations for solving for boundary values of vorticity,
a tangential form of Eq. (16) is used. It is obtained by a cross
product with a unit normal, yielding

c(@y(E) x V(@) +A(E) x /F §Vur i dr
— i@ x /\7 w (it x Vyur dl+7i(E) x /@ « VurydQ. (17)
JI JQ

The same fundamental solution and a standard BEM derivation
[35] are used to write the integral forms of the vorticity transport
equation (14) and of the energy equation (15):

c(f)wj(f)+/wj§u*-ﬁ dr
r
= '/ru*qj dr+ ﬁa (/Fﬁ . {u*(Va)jfc?)vj)} dar
_ / Fo—-dvy) - Vu* dQ)
Q
—Ra;¢ / (U*Tg x 1i); d[—Ra;¢ / (TV x u*g); dQ
r Q
] *
+D—a¢/9a)ju dQ, (18)

C(E)T(ZH/T%*.MF:/IJ*QT ar+
r r Je

x </rn A{u*(VT)} dF—/Q(vT) -Vu dQ).
(19)

Here wj; is a vorticity component, g; is a component of vorticity
flux and qr is the heat flux. In the present study, only steady flow
fields will be considered, thus the time derivative terms ow/dt,,
and oT /oty are omitted.

A combination of subdomain BEM and single domain BEM for
the solution of the governing equations will be applied. The
Dirichlet and/or Neumann boundary conditions for velocity and
temperature are given. They are used to obtain solutions of the
kinematics equation (16) for domain velocity values and energy
equation (19) for domain temperature values. The boundary
conditions for vorticity, which are needed to solve the vorticity
transport equation (18), are unknown. The single domain BEM of
the tangential form of the integral kinematics equation (17) will
be used to obtain the unknown boundary vorticity values. The
outline of the algorithm is as follows:

o Initialization, calculate integrals, set up parameters.
e Begin non-linear loop:

O Calculate boundary vorticity values by solving the tangential
form of the kinematics equation (17) by single domain BEM.

o Calculate domain velocity values by solving the kinematics
equation (16) by subdomain BEM.

o Solve the energy equation (19) using the new velocity field
for domain temperature values by subdomain BEM.

O Solve vorticity transport equation (18) by subdomain BEM
for domain vorticity values using the boundary values from
the solution of the kinematics equation and new velocity
and temperature fields.
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o Check convergence — repeat steps in the non-linear loop
until convergence of all field functions is achieved.
e End non-linear loop.
e Output results.

In the subdomain BEM method, which is used to solve Egs. (16),
(18) and (19) a mesh of the entire domain 2 is made, each mesh
element is named as a subdomain. Equations are written for all
source points on each of the subdomains. In order to obtain a
discrete version of integral equations we use shape functions to
interpolate field functions and flux across the boundary and
inside the subdomain. In this work hexahedral subdomains with
27 nodes are used, which enable continuous quadratic interpola-
tion of field functions. The boundary of each hexahedron consists
of six boundary elements. On each boundary element the flux
is interpolated using discontinuous linear interpolation scheme
with four nodes. By using discontinuous interpolation, flux defini-
tion problems in corners and edges could be avoided. Between
subdomains, the functions and their fluxes are assumed to be
continuous. The resulting linear systems of equations are over-
determined and sparse. They are solved in a least-squares
manner. Discretization procedure for the single domain BEM,
which is used to solve Eq. (17), is analogous, with a distinction
that source points are set into all nodes on the boundary of the
entire domain. The resulting linear system of equations is full. It is
solved by the LU decomposition method. This algorithm has been
proposed for 3D fluid flow and heat transfer by Ravnik et al. [27].
In the present work, the algorithm for simulations in porous
media was expanded. The kinematics equation requires no
changes, while porous parameters had to be introduced in
vorticity transport and energy equations. The Darcy term in the
vorticity transport equation, which is not present in the pure fluid
case, is linearly proportional to the unknown vorticity, thus it was
included into the system matrix.

4. Test cases

The physical model, where the above presented numerical
scheme was tested, is a 3D cube enclosure filled with fluid
saturated porous medium. One vertical wall is isothermally
heated, the opposite isothermally cooled, all other walls are
adiabatic and impermeable as shown in Fig. 1. The boundary
conditions for the test example can be written as:

Vx=Vy=V,=0forx=y=z=0and x=y=z=1;
T=0.5 for x=0;

T =-0.5 for x=L;

0T /oy =0 for y=0 and y=L;

0T /6z=0 for z=0 and z=L.

adiabatic walls

hot wall cold wall

Fig. 1. Geometry of the problem.

Natural convection phenomena in fluid saturated porous medium
are expected to depend on a number of parameters, such as
porosity, thermal conductivity and heat capacity of fluid and
solid phases, viscosity of the fluid phase, etc. The wall heat flux is
calculated for different values of porous Rayleigh number
(Rap=50, 100, 200, 500 and 1000) and Darcy numbers
(10°® < Da < 107"), which can be expressed in terms of average
Nusselt number given as

Nu= / VT i dr, (20)
r

where I is the surface through which the heat flux is calculated
and i is a unit normal to this surface.

The calculations were performed on a non-uniform mesh with
20 x 8 x 20 subdomains and 28 577 nodes. Subdomains are con-
centrated towards the hot and a cold walls. The convergence
criteria for all field functions were 10~>, under-relaxation of
vorticity and temperature values ranging from 0.1 to 0.01 were
used.

In order to validate the numerical scheme for the 3D formula-
tion, first a 2D simulation of flow of air (Pr=0.71) in a differen-
tially heated porous cavity was done. To perform a 2D simulation
using a 3D code, a thin layer domain was created (x=z=L, y=L/10)
and symmetry boundary conditions were applied on the y=0 and
y=L/10 walls. The used mesh had 20 x 1 x 20 subdomains and in
total 5043 nodes. The subdomains were concentrated towards the
hot and cold walls. The results were compared to two published
2D studies of Jecl et al. [36] and Lauriat and Prasad [3], where the
case of natural convection in a rectangular porous cavity is
considered. In both studies the Brinkman-extended Darcy model
with inertial term included is used. The comparison is shown in
Table 1 and it can be observed that there is a good agreement
between the results of the present study for the case of thin
porous layer and published 2D studies.

Table 2 presents Nusselt number values for the cubic enclosure
for Pr=0.71, ¢ =0.8, Rap=1000 and different values of Da. The
results are compared to the study of authors Sharma and Sharma
[12], where the 3D natural convection in a porous box is
considered, and the fluid flow is modeled with the use of the
Darcy-Brinkman-Forchheimer model. Very good agreement
between the results can be observed for the case of high Darcy
number values (Da = 10~*—1072). Slight differences occur in case
of very low Darcy numbers (Da=10"> and 10~°). In this case the
effect of the Forchheimer term, which is not included in the
model of the present study, becomes significant and influences
the overall heat transfer resulting in lower values of Nusselt
numbers [12].

In addition, Nusselt number values for natural convection for
Pr=0.71, ¢ = 0.8, Rap=>50, 100, 200 and 500 and 10~ < Da < 107!
are presented in Table 3. The comparison of Nusselt number

Table 1

Nusselt number values for the 2D natural convection in a thin layer (x=z=L, y=L/10)
heated from the side for Rap=100 and 500, ¢ = 0.8 and different values of Darcy
number. The results are compared to the studies of Jecl et al. [36] and Lauriat and
Prasad [3].

Rap/Da 10! 102 103 10—* 10-° 106
100

Present 1.063 1.632 2.369 2.875 3.165 3.256

[36] 1.088 1.695 2414 2.847 2.995 -

[3] - 1.70 241 2.84 3.02 3.09
500

Present 1.593 3.058 5.160 7.259 8.699 9.122

[36] 1.681 3.145 5235 7.185 8.428 -

[3] - 3.30 542 7.35 8.41 8.84
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values for different parameters is presented graphically in Fig. 2.
From the graph it can be observed that the Nusselt number is
increasing with the decrease in Da and increase in Rap. The
influence of the Darcy number is more pronounced at higher

Table 2

Nusselt number values for the 3D natural convection in a cube for Rap=1000,
¢ =0.8 and different values of Darcy number. The results are compared to the
study of Sharma and Sharma [12].

Rap/Da 10! 10-2 103 10~4 10-° 10-6
1000
Present 1.855 3.770 6.922 10.558 13.242 14.568
[12] - 3.99 6.95 10.14 12.78 13.72
Table 3

Nusselt number values for the 3D natural convection in a cube for Rap=>50, 100,
200 and 500, ¢ = 0.8 and different values of Darcy number.

Rap/Da 107! 102 1073 1074 1075 106
50 1.010 1.216 1.635 1.949 2.113 2175
100 1.039 1.533 2.331 2.957 3.295 3.431
200 1.132 2.029 3.341 4.496 5.168 5.456
500 1.453 2.920 5.148 7.462 9.015 9.728

16
14
12 1
10
Z 8
6 4
4 4
2 4
1,E-06 1,E-05 1,E-04  1,E-03 1,E-02  1,E-01
Da

Fig. 2. Dependence of the Nusselt number on the Darcy number for different
values of porous Rayleigh numbers.

values of porous Rayleigh number. At low values of Rap the
Nusselt number values are near to 1, the dominant heat transfer
mechanism in this case is conduction. This changes with increas-
ing the Rap and decreasing of Da, when convection becomes
dominant while conduction is negligible. When values of Da are
high, the Brinkman viscous term in the momentum equation
plays a significant role and reduces the overall heat transfer,
which results in smaller values of Nu. With the decrease in Daq, the
influence of Brinkman viscous term becomes almost negligible
(Da < 1074). In that case viscous effects become smaller and the
inertial effect becomes significant due to high fluid velocity. For
low values of the Darcy number the model gives similar results as
the classical Darcy model [4].

In Fig. 3 the temperature profiles for Ra,=100, 500 and 1000
and different values of Da are presented. The temperature
gradients increase with the decrease in Da. The highest tempera-
ture gradients can be observed close to the hot and cold walls in
case of Rap=1000. When Rap=100 all profiles are close to the
linear profile. In that case the Nusselt number is close to unity,
and the heat is transferred mainly by conduction. Temperature
contours on the plane y=0.5 for different values of Rap and Da are
displayed in Fig. 4. The temperature field is observed to be
stratified in all cases (layers of fluid with equal temperature are
perpendicular to the direction of gravity), especially in the central
part of the cube.

In the chosen geometry, the onset of natural convection
induces the main vortex in the x-z plane, so the y=0.5 plane is
chosen to study the velocity profiles. Vertical velocity profiles
v,(x,0.5,0.5) and horizontal velocity profiles v,(0.5,0.5,z) across
the center of the cube are shown in Fig. 5. Furthermore, the
streamlines for different values of Rap and Da in the plane y=0.5
are shown in Fig. 6. The symmetry of the flow field in the plane
y=0.5 can be observed, which indicates 2D flow behavior in that
plane, where v,=0. It can be clearly seen that the fluid is moving
faster along the hot and cold walls, where streamlines are closely
spaced. Higher values of velocity are also observed at the top and
bottom walls. In the limit case, when Da—0 (Darcy law), the
maximum velocity is on the boundaries. In that case the viscous
effect described with the Brinkman term becomes almost negli-
gible and the boundary effects are insignificant. With the increase
in Da number the viscous effect becomes more important and
slows down the fluid motion. The streamlines are observed to be
more sparsely spaced near the solid boundaries and the region,
where the flow has a maximum velocity is moved away from the
solid walls towards the core region.

From the flow structure in the enclosure it can be examined
that the flow field is not far from being 2D. This is due to the fact

0.4 |- Da=10" |- A T | F
Da-10?

Fig. 3. Temperature profiles for Rap=100 (left), Rap=500 (middle) and 1000 (right) at y=0.5 and z=0.5.
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el

Fig. 4. Temperature contour plots on the y=0.5 plane for Rap=100 (above), 500 (middle) and 1000 (bottom) and the Darcy number Da=10"2 (left), 10~ (middle) and

106 (right).

200 -400 200 0 200

1

400

0.8 0.8

}
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0.6

N

=200
0.2

5 A I
' ' T N
» |
0.4 x;; i 0.4
F i

o2

=200 -100
a0 200 |-t
20 || —w— pa-10" . Da=10"
—— Da10” i Da=10"
——e— Da=10" —e— Da10?
2% 0 e, [UR S
: o ?
-20 J
-40 -200 f
0 0 0.2

0.8 1 0 0.2 0.4 0.6 0.8 1
x

Fig. 5. Velocity profiles v,(0.5,0.5,z) and v,(x,0.5,0.5) for Rap=100 (left), 500 (middle) and 1000 (right) at y=0.5 and z=0.5.

that the flow field is driven by a temperature difference between
two opposite walls, which causes large 2D vortex in the y plane.
The 3D nature of the phenomena can be observed in the corners
of the domain, which can be clearly seen from the iso-surfaces of
absolute value of y velocity component plotted in Fig. 7. The
extent of movement perpendicular to the plane of the main
vortex is small, but it becomes more apparent in case of higher
Ra, and lower values of Da.

In Fig. 8 temperature profiles along the y axis are shown for
different locations in the cube. It can be observed that in the
center of the cube temperature is constant and it does not change

in the y direction. From the profiles in the corners of the cube
some fluctuations of the temperature in the y direction can be
observed, which is a result of 3D motion.

Finally in Fig. 9 the y vorticity component contours along the
walls of the enclosure are shown. The vorticity values grow
rapidly, especially with the decrease in Da as well as with the
increase in Rap. This is again due to the influence of viscous term,
which is negligible in case of small values of Da, so higher velocity
gradients are produced along the solid walls. The highest values
are found at the bottom of the hot and at the top of the cold wall,
where also the highest velocity gradients occur.
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Fig. 6. Streamlines on the y=0.5 plane for Rap=100 (above), 500 (middle) and 1000 (bottom) and the Darcy number Da=10"2 (left), 10~ (middle) and 10~ (right).

Fig. 7. Iso-surfaces for Rap=>500, Da=10"> and absolute value of velocity component [vy| =3 (left) and Rap=1000, Da= 1073, |vy| =7 (right). Contours of temperature are
displayed on the iso-surfaces (—0.5 < T < —0.5). In addition, the velocity vectors on the plane y=0.5 are displayed.

5. Summary

3D natural convection in a cube enclosure filled with porous
media was investigated numerically using the boundary element
method. The Brinkman extended Darcy formulation with inertial
term included was used to model fluid flow in porous media.
The velocity-vorticity formulation of governing equations was
obtained. A single domain BEM solution of the kinematics
equation was used to obtain the boundary vorticity values. The
vorticity equation for the domain vorticity values, energy equa-
tion for the domain temperature values and kinematics equation
for the domain velocity values were solved by the use of
subdomain BEM.

The results of overall heat transfer through the enclosure are
given in terms of Nusselt number values and compared to some
published studies. It may be observed that the effect of Brinkman
viscous term becomes significant when Da >10"* and is more
pronounced at higher values of porous Rayleigh number. The
results show that the Darcy number values strongly affect both
heat transfer rate as well as the flow regime. With the decrease in
the Da the temperature gradients near the solid boundaries
increase, the same can be observed for the velocity gradients.
The heat transfer through enclosure is enhanced with the
decrease in Da and increase of Rap. The temperature field in the
enclosure shows typical stratified structure where the layers of
constant temperature are perpendicular to the gravity direction.
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Fig. 8. Temperature profiles along y axis for Rap=100 (left), 500 (middle) and 1000 (right), Da=10"" at different locations in the cube.

-10
-15
=20

160
140
120
100
80
60
40
20

-20
-40
-60

350
300
250
200
150
100
50

-50

-100
-150
-200

wy
1200 wy
1000 16000
800 14000
700 13000
600 12000
500 10000
400 8000
300 6000
200 4000
100 2000
0 1000
-100 0
2000
o wy
6000 90000
5000 20000
4000 70000
3500 £0000
3000 50000
2000 40000
1500 30000
1000 20000
500 10000
0 0
-500 -10000
-1000 20000
. wy
;ggg" 180000
160000
8000 140000
7000 120000
5000 100000
5000 80000
4000 60000
3000 40000
2000 20000
1000 0
0 -20000
-1000 -40000

Fig. 9. Contours of the y component of vorticity, w,, for Rap=100 (above), 500 (middle) and 1000 (bottom) and Da=10" 1 (left), 10~3 (middle) and 10~ (right). In addition

the velocity vectors are illustrated on the plane y=0.5.
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Thee-dimensional nature of the flow field was observed in the
corners of the enclosure, although the fluid is moving predomi-
nantly in a single 2D vortex. 3D motion is more evident at higher
porous Rayleigh numbers and lower Darcy numbers.
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