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Abstract

In this chapter, the boundary element method (BEM) is introduced for solving prob-
lems of transport phenomena in porous media domains, which is an important topic in 
many engineering and scientific branches as well as in fields of practical interest. The 
main objective of the present work is to find a numerical solution of the governing set 
of equations written for fluid flow in porous media domains, representing conserva-
tion of mass, momentum, and energy. The momentum equation is based on the mac-
roscopic Navier-Stokes equations and is coupled with the energy equation. In order to 
use BEM for the solution of the obtained set, the governing equations are transformed 
by the velocity-vorticity formulation, which separates the computational scheme into 
kinematic and kinetic computational parts. A combination of single- and sub-domain 
BEM is used to solve the obtained set of partial differential equations. Solution to a 
problem of natural convection in porous media saturated with pure fluid and nanofluid, 
respectively, for examples of 2D and 3D geometries, is shown. Results are compared to 
published work in order to estimate the accuracy of developed numerical algorithm. 
Based on the results, the applicability of the BEM for solving wide range of various 
problems is stated.

Keywords: boundary element method, porous media, velocity-vorticity formulation, 
natural convection, nanofluids

1. Introduction

Problems of transport phenomena in porous media have been widely investigated over the 
last few decades, mainly because of several important applications, which could be found 
in industry and environment, e.g., building insulation systems, dispersion of contaminants 
through water saturated soil, protection of groundwater resources, combustion technology. 
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Buoyancy driven flows in porous enclosures have been simulated using different mathemat-
ical models and numerical techniques. Most commonly used mathematical model of gov-
erning momentum equation is the Darcy’s law, which is valid for the laminar flow regime 
(Re < 10), where the velocities are low and the viscous forces are predominant over inertia 
forces [1]. Extensions of the governing momentum equations have been made by analogy 
with the Navier-Stokes equations with addition of Brinkman term in order to consider the 
viscous diffusion and Forchheimer term to study the inertia effects on the free convection [2].

Problems of natural convection in porous media were studied intensively in last few decades, 
mainly for the cases of two-dimensional geometries. Two types of geometries are commonly 
investigated: porous enclosures where temperature gradient is imposed horizontally [3–7] 
or vertically [8–11]. Studies considering three-dimensional geometries are rare and are usu-
ally confined on using a simplified mathematical model, e.g., Darcy model or to conditions 
of heating from below [12–18]. Researches considering three-dimensional cavities with the 
condition of heating from the side were published in [19–21].

Recently, several researchers have been investigated buoyant flow in porous media domains sat-
urated with nanofluids [22–24]. Nanoscale particles are often added to working fluids in order to 
enhance heat transfer or cooling processes. A comprehensive review of the studies considering 
convection heat transfer in porous media saturated with nanofluid was published in [25].

The solutions of the problems of transport phenomena in porous media have been obtained 
using different numerical methods, where the most commonly used methods are the finite 
element method (FEM), the finite difference method (FDM), and the finite volume method 
(FVM). As an alternative to others, in engineering practice widely used methods, the BEM 
was developed mainly because it was very efficient for solving potential problems of fluid 
mechanics (inviscid fluid flow, heat conduction, etc.), where the mathematical transfor-
mation of the governing set of partial differential equation results in boundary integral 
equations only. To rewrite the partial differential equation into an equivalent integral repre-
sentation, the known fundamental solutions of the differential operator [26] and the Green’s 
theorem are used. The discretized system contains only a fully populated system of inte-
grals over boundary elements, which represent the main advantage over the volume-based 
methods.

When dealing with nonhomogenous and nonlinear problems, e.g., diffusion-convection 
problems, the domain integrals occur in the integral representation as well, which demands 
the extension of the classical BEM in order to additionally deal the problem within the 
domain. The main issue in this case is the evaluation of the domain matrices, which are full 
and unsymmetrical and require a lot of storage space. Several techniques have been devel-
oped in order to eliminate the domain integrals or transform them into the boundary inte-
grals. One of the possibilities is the dual reciprocity boundary element method (DRBEM), 
which transforms domain integrals into a finite series of boundary integrals [27–29]. The 
nonhomogenous term is expanded in terms of radial basis functions. Since the discretization 
of the domain is represented only by grid points and the discretization of the geometry and 
fields on the boundary is piecewise polygonal, the DRBEM is still more flexible and efficient 
against other numerical methods, e.g., FDM.
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Another possible extension of BEM is the boundary domain integral method (BDIM), which 
enables solving of strong nonlinear problems, where the domain-based effects are dominant, typi-
cal for the examples of the diffusion-convection problems [30–32]. The numerical algorithm solves 
the velocity-vorticity formulation of the Navier-Stokes equations, which separate the numerical 
scheme into the kinematic and kinetic computational parts. Consequently, the pressure is removed 
from the field functions conservation equations, and the calculation of the boundary pressure val-
ues is eliminated. Further advantage of BDIM is efficient dealing with boundary conditions on the 
solid boundaries in case of solving the vorticity equation. The vorticity is calculated explicitly from 
the kinematic computational part without using any approximate formulae. Using the subdo-
main technique [33], the problem of fully populated system matrices and corresponding memory 
requirements can be importantly reduced. A very stable and accurate numerical description of 
coupled diffusion-convection problems follows the use of Green’s functions of the appropriate 
linear differential operators instead of upwinding schemes of different orders, as this is the case 
in other domain-type numerical techniques, which also eliminate the oscillations in the numerical 
solutions. A wavelet compression method for a single-domain BEM in 2D was introduced in [34].

In this chapter presented numerical algorithm is based on the combination of single- and sub-
domain BEM. The main advantage of the used method is that it enables an accurate prediction 
of the vorticity fields, which are in general defined as a curl of the velocity field. The vorticity is 
generated on the walls of the domain and influences the development of the flow field and fur-
thermore the heat transfer. The single-domain BEM is used to solve the kinematics equation. The 
method is based on the fast multipole algorithm (FMM), which was introduced by Greengard 
and Rokhlin [35] for particle simulations and was later used for a wide variety of problems, e.g., 
for acceleration of the boundary integral Laplace equation by [36] and for coupling with BEM for 
the boundary matrices by [37]. The sub-domain BEM is used to solve the equations of the diffu-
sion-advection type. A mesh of entire domain is made, where the integral equations are written 
for each of the sub-domains separately ([38–41]). Functions are discretized using the continuous 
quadratic boundary elements, whereas flux is discretized using discontinuous linear boundary 
elements, which enable to avoid flux definition problems in corners and edges. An over-deter-
mined system of linear equations is obtained, which is solved by a least squares manner.

A numerical approach based on the BEM has been used to solve a problem of buoyancy 
driven flows in porous media domain, saturated with pure fluid or nanofluid. The mathemat-
ical model is based on the Navier-Stokes equations, which are averaged over the representa-
tive elementary volume and rewritten into the velocity-vorticity formulation. The influence of 
several governing parameters, e.g., Rayleigh number, Darcy number, and volume fraction of 
nanoparticles, on the heat transfer and fluid flow characteristics is analyzed.

2. Mathematical model

2.1. Governing equations

The most general mathematical model for the transport phenomena in porous media is 
based on the volume-averaged Navier-Stokes equations, which are primarily written on the 
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microscopic level for the problems of pure fluid flow. Defining sufficiently large representa-
tive elementary volume (REV), with the restriction that only one part of the volume is avail-
able for the fluid flow, one can write the macroscopic set of governing equations. The REV 
is sufficiently large in case when it contains both, solid and fluid phases, irrespective of its 
position in porous media.

The presented governing equations are written for the case, when porous media are saturated 
with the nanofluid. The formulation enables considering both types of fluid flow by choosing 
correct parameter values. The properties describing nanofluids are density ρnf , dynamic viscos-
ity μnf , heat capacitance (cp)nf , thermal expansion factor βnf , and thermal conduction knf , where 
index nf stands for the nanofluid. Nanofluid properties are given in relation to pure fluid and 
pure solid properties linked with solid volume fraction of nanoparticles ϕ, which is given as:

  φ =   
 V  s   _____  V  s   +  V  f  

    (1)

where Vs is volume of solid particles and Vf the volume of fluid. Relationships between 
nanofluid and pure fluid properties are described with models. A comprehensive review of 
different models can be found in [42]. In this chapter, macroscopic modeling of nanofluids 
is restricted to spherical nanoparticles, and it is suitable for small temperature gradients. 
Density of the nanofluid ρnf is given as:

   ρ  nf   =  (1 − φ)   ρ  f   + φ  ρ  s  ,  (2)

where index f stands for the fluid phase and index s for the solid phase. The effective dynamic 
viscosity μnf can be given with according to [43] as:

   μ  nf   =   
 μ  f   ______   (1 − φ)    2.5   ,  (3)

where the effective viscosity does not depend on the nanoparticle type. The heat capacitance 
of nanofluid can be given as:

    (ρ c  p  )   nf
   =  (1 − φ)    (ρ c  p  )   f   + φ   (ρ c  p  )   s  .  (4)

The nanofluid thermal expansion coefficient can be written in a similar way:

    (𝜌𝛽)   nf   =  (1 − φ)    (𝜌𝛽)   f   + φ   (𝜌𝛽)   s  ,  (5)

taking into account the definition of ρnf, it follows:

   β  nf   =  β  f   
[

  1 _______ 
1 +   

 (1 − φ)   ρ  f   ______ φ ρ  s    
     
 β  s   __  β  f  

   +   1 _______ 
1 +   

φ
 ____ 1 − φ     

 ρ  s   __  ρ  f    
  
]

 .  (6)
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The effective thermal conductivity knf is given with the Wasp model [44], which is valid only 
for the spherical particles, since it does not take into account the shape of the particles:

   k  nf   =  k  f     
 k  s   + 2  k  f   − 2φ ( k  f   −  k  s  ) 

  _____________   k  s   + 2  k  f   + φ ( k  f   −  k  s  )     (7)

Further assumptions for the used model are: the nanoparticles are in thermal equilibrium with 
the base fluid and the nonslip boundary condition is considered. The fluid flow is assumed 
to be laminar, steady, Newtonian, and incompressible. The density depends only on the tem-
perature variations and can be given with the Boussinesq approximation as:

   ρ  nf   =  ρ  0   (1 −  β  nf    (T −  T  0  ) ) ,  (8)

where T is temperature and index 0 refers to a reference state.

The problem of natural convection in saturated porous media can be described with the con-
servation equations for mass, momentum, and energy, written on the macroscopic level. The 
conservation of mass is given with the continuity equation:

   ∇   ⃑   ∙  v   ⃑   = 0  (9)

where   v   ⃑    is volume averaged velocity vector.

The momentum equation is also known as Brinkman-Forchheimer equation and reads as:

    1 __ ϕ     
∂  v   ⃑   ___ ∂ t   +   1 __  ϕ   2    ( v   ⃑   ∙  ∇   ⃑  )   v   ⃑   =   1 ___  ρ  nf      ∇   ⃑   p −  β  nf   (T −  T  0  )   g   ⃑   +   1 __ φ     

 μ  nf   ___  ρ  nf      ∇   2   v   ⃑   −   1 __ K     
 μ  nf   ___  ρ  nf      v   ⃑   −   F  v   ⃑   | v   ⃑  |  _____  K   1/2   ,  (10)

where φ is porosity, t time, p pressure, T temperature,   g   ⃑    gravitational acceleration, K perme-
ability, and F Forchheimer coefficient. There are two viscous and two inertial terms in the 
momentum equation. The third term on the r. h. s. of the equation is the Brinkman viscous 
term, which is analogous to the Laplacian term in the classical Navier-Stokes equations for 
pure fluid flow and expresses the viscous resistance or viscous drag force exerted by the 
solid phase on the flowing fluid at their contact surfaces. With the Brinkman term, the non-
slip boundary condition on a surface which bounds porous media is satisfied [1]. The fourth 
term on the r. h. s. of the momentum equation is the Darcy term, where K is the permeability, 
which in general depends on the geometry of the porous medium and is a second-order ten-
sor. When assuming an isotropic porous media, the permeability is a scalar. The last term 
in the momentum equation is the Forchheimer inertia term, which describes the nonlinear 
influences at higher velocities. The Forchheimer coefficient F is a dimensionless form-drag 
constant and is varying with the nature of porous medium. It can be written according to 
Ergun model as ([1]):

  K =   
 ϕ   3   d  p  2  ______ a   (1 − ϕ)    2   , F =   b ___ 

 √ 
____

 a  ϕ   3   
   , (11)
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where a and b are Ergun’s constants with values a = 150 and b = 1.75, while dp is the average 
particle size of the bed.

Finally, the energy equation can be written as:

  σ   ∂ T ___ ∂ t   +  ( v   ⃑   ∙  ∇   ⃑   ) T =   
 k  e   _____   (ρ  c  p  )   nf

      ∇   2 T,  (12)

where σ is the specific heat ratio, σ = ϕ + (1 − ϕ)(ρcp)p/(ρcp)nf , (ρcp)p and (ρcp)nf are heat capaci-
tances of solid and fluid phase, respectively. Furthermore, ke is the effective conductivity of 
porous medium. It is assumed that the thermal properties of solid matrix and the nanofluid 
are identical [24, 45], resulting in σ = 1 and ke = knf .

Governing equations (9), (10), and (12) can be converted into a nondimensional form by intro-
duction of the following dimensionless variables:

   v   ⃑   →    v   ⃑   __  v  0    ,  r   ⃑   →    r   ⃑   __ L  , t →   
 v  0   t ___ L  ,  g   ⃑   →   

 g   ⃑  
 __  g  0    , p →   

p
 __  p  0    , T →   

 (T −  T  0  )  _____ ∆ T    (13)

The parameters in the above expressions are v0 characteristic velocity given as v0 = kf /(ρcp)f L, 
which is common choice for buoyant flow simulations, kf is the fluid thermal conductivity, (ρcp)f 
is the heat capacity for the fluid phase, and L is the characteristic length. Moreover, T0 is charac-
teristic temperature T0 = (T2 − T1)/2 and ΔT is characteristic temperature difference ΔT = T2 − T1, 
p0 is the characteristic pressure p0 = 1bar, while gravitational acceleration is g0 = 9.81 m/s2.

In addition, the velocity-vorticity formulation of the governing equations is proposed by intro-
duction of the vorticity vector, which is by the definition a curl of the velocity field   ω    ⃑  =  ∇    ⃑   ×  v    ⃑  . The 
governing set of equations in nondimensional velocity-vorticity formulation can now be written 
in terms of kinematics equation, the vorticity transport equation, and the energy equation as:

   ∇   2   v   ⃑   +  ∇   ⃑   ×  ω   ⃑   = 0  (14)

   ( v   ⃑   ∙  ∇   ⃑  )   ω   ⃑   =  ( ω   ⃑   ∙  ∇   ⃑  )   v   ⃑   −  C  A   Pr  Ra  T    ϕ   2   ∇   ⃑   × T  g   ⃑   +  C  B   Pr ϕ  ∇   2   ω   ⃑   −  C  B     Pr ___ Da    ϕ   2   ω   ⃑   −   F ___ Da    ϕ   2  | v   ⃑  |   ω   ⃑  ,  (15)

   ( v   ⃑   ∙  ∇   ⃑  ) T =  C  C    ∇   2 T  (16)

In the above equations, parameters CA, CB, and CC are presenting the nanofluid properties and 
are given with expressions:

   C  A   =   
 μ  nf   ___  μ  f       

 ρ  f   ___  ρ  nf    ,  C  B   =   
 β  nf   ___  β  f  

  ,  C  C   =   
 α  nf   ___  α  f     , (17)

where αnf is thermal diffusivity of nanofluid, αnf = knf /(ρcp)nf and αf thermal diffusivity of pure 
fluid αf = kf /(ρcp)f . The nanofluid properties are obtained using the expressions (2)–(8). For the 
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simulation of the pure fluid flow, the parameters are CA = CB = CC = 1. The time derivatives in 
the vorticity and energy equations  ∂  ω   ⃑   / ∂t , ∂T/∂t are omitted, since only steady flow simulations 
are shown in the present chapter.

The nondimensional parameters appearing in the momentum equation are:

• Fluid Rayleigh number RaT = g βT ΔT L3 ρf (ρcp)f /μf kf ;

• Prandtl number Pr = μf cp/kf ;

• Darcy number Da = K/L2;

The results are presented in terms of the porous Rayleigh number RaP, which links the ther-
mal Rayleigh number and Darcy Number:

• RaP = RaT ∙ Da.

2.2. Boundary element method

The governing set of equations (14) and (15) in (16) is solved using an algorithm based on 
the combination of single-domain and sub-domain BEM, primarily developed for pure fluid 
flow simulations [39, 40] and later adopted for nanofluids [46] and porous media flow simula-
tions [21]. The algorithm solves the velocity-vorticity formulation of Navier-Stokes equations. 
The sub-domain BEM solves the vorticity and energy transport equations. It is based on the 
domain decomposition, which results in sparse matrices and improves the efficiency of the 
solution to become comparable to FVM or FEM [47]. The kinematics equation for the calcula-
tion of the boundary vorticities is solved by a single-domain BEM. This results in full system 
of equations and limits the maximum grid size due to memory constraints. This drawback can 
be mitigated using the fast BEM, where sparse approximation of full matrices is used [37]. The 
main advantage of using the single-domain BEM for the boundary vorticity values is that the 
algorithm conserves mass in complex geometries, which is not the case when using velocity 
derivatives to calculate boundary vorticity values.

The numerical algorithm is devised as follows. At the beginning, the boundary conditions for the 
velocity and temperature are required and have to be given in terms of Dirichlet and Neumann 
type. In addition, the temperature and temperature flux on the solid walls and the no-slip 
boundary conditions are prescribed. The boundary conditions for the vorticity are unknown at 
the beginning and are calculated later as a part of numerical algorithm. The known boundary 
conditions are used to solve the kinematics equation (14) for the domain velocity values and 
energy equation (16) for the domain temperature values. The boundary vorticity values are 
first obtained using the single-domain BEM on the kinematics equation; moreover, the domain 
vorticity values are obtained out of vorticity transport equation (15) using a sub-domain BEM.

The outline of the numerical algorithm is as follows:

Step 1. Fluid/nanofluid and porous media properties are determined.

Step 2. Vorticity values on the boundary are calculated by a fast single-domain 
BEM from the kinematics equation (14).
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Step 3. Velocity values within the domain are calculated by a sub-domain BEM 
from the kinematics equation (14).

Step 4. Temperature values are calculated by a subdomain BEM from the energy 
equation (16).

Step 5. Vorticity values within the domain are calculated by a subdomain BEM 
from the vorticity equation (17).

Step 6. Convergence check; all steps from 2 until 5 are repeated until all flow fields 
achieve the required accuracy.

In order to apply the proposed algorithm, governing equations have to be written in integral 
form. The integral representation is obtained using the Green’s second identity for the unknown 
field function and for the fundamental solution of the Laplace equation as proposed in [48].

2.2.1. Integral representation of the kinematics equation

For the unknown boundary vorticity values, the single-domain BEM is used on the kinematics 
equation (14). The integral representation of the kinematics equation in its tangential form is:

  c ( ξ   ⃑  )   n   ⃑   ( ξ   ⃑  )  ×  v   ⃑   ( ξ   ⃑  )  +  n   ⃑   ( ξ   ⃑  )  ×  ∫  Γ    v   ⃑    ∇   ⃑    u   ∗  ∙  n   ⃑   d𝛤 =  n   ⃑   ( ξ   ⃑  )  ×  ∫  Γ    v   ⃑   ×  ( n   ⃑   ×  ∇   ⃑  )   u   ∗  dΓ +  n   ⃑   ( ξ   ⃑  )  ×  ∫  Ω   ( ω   ⃑   ×  ∇   ⃑    u   ∗ ) dΩ  (18)

where Ω is the computational domain and Γ = ∂Ω is the boundary of the domain,  c ( ξ   ⃑  )   is 
geometric factor defined as  c ( ξ   ⃑  )  = θ / 4π , θ is the inner angle with origin in   ξ   ⃑   . If   ξ   ⃑    lies inside 
the domain, then  c ( ξ   ⃑  )  =1, and if   ξ   ⃑    lies on a smooth boundary, then  c ( ξ   ⃑  )  =1/2. Furthermore,   n   ⃑    is 
a vector normal to the boundary, and u∗ is the fundamental solution of the Laplace equation 
given as:

   u   ∗  =   1 _______ 
4π | ξ   ⃑   −  r   ⃑  | 

    (19)

The discretized system of equations is written for unknown boundary vorticities, while 
domain vorticity and velocity values are taken from the previous nonlinear iteration. The 
source point is set into every boundary node of the whole computational domain, which fol-
lows in full system matrix, where number of rows and columns are equal to number of bound-
ary nodes. The system is solved using a LU decomposition method. The storage requirements 
are reduced with a kernel expansion approximation technique [49].

In addition, the kinematics equation (14) is used again in order to calculate domain velocity 
values with the sub-domain BEM. The following form of the integral equation is used:

  c (ξ)   v   ⃑   (ξ)  +  ∫  Γ    v   ⃑   ( n   ⃑   ∙  ∇   ⃑  )   u   ∗  d𝛤 =  ∫  Γ    v   ⃑   ×  ( n   ⃑   ×  ∇   ⃑  )   u   ∗  d𝛤 +  ∫  Ω   ( ω   ⃑   ×  ∇   ⃑    u   ∗ ) d𝛺.  (20)

The obtained integral kinematics equation is without the derivatives of the velocity or vortic-
ity fields, which enables that the source point is set to function the nodes only. The domain 
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velocity values are calculated based on the known boundary values of the velocity from the 
initial boundary conditions, while the domain and boundary values of the vorticity are known 
from the previous iteration.

2.2.2. Integral representation of the vorticity and energy equations

In order to derive the integral form of the vorticity and energy equations, the same funda-
mental solution of the Laplace equation is used [26]. The final integral form of the vorticity 
transport equation is:

     

c  (    ξ ⇀   )    ω  j    (    ξ ⇀   )    +   ∫  
Γ
  

 
    ω  j    ∇   ⇀    u   *  ⋅   n ⇀   dΓ =   ∫  

Γ
  

 
    u   *   q  j    dΓ

     
                       +   1 __ Pr     

1 ___  C  B       
1 __ φ     ∫  

Γ
  

 
     n ⇀   ⋅   {   u   *   (    v ⇀    ω  j   −   ω ⇀    v  j   )    }    dΓ −   1 __ Pr     

1 ___  C  B       
1 __ φ     ∫  

Ω
  

 
    (    v ⇀    ω  j   −   ω ⇀    v  j   )    ⋅  ∇   ⇀    u   *   dΩ

        
                        − R  a  T     

 C  A  
 ___  C  B      φ   ∫  

Γ
  

 
     (   u   *  T  g ⇀   ×   n ⇀   )    j    dΓ − R  a  T     

 C  A  
 ___  C  B      φ   ∫  

Γ
  

 
     (  T  ∇   ⇀   ×  u   *   g ⇀   )    j    dΩ

       

                        +   1 ___ Da   φ   ∫  
Ω
  

 
    ω  j    u   *  dΩ +   F _____ 

Pr  √ 
___

 Da  
     1 ___  C  B     φ   |    v ⇀   |     ∫  

Ω
  

 
    ω  j    u   *  dΩ ,

    (21)

and finally the integral form of the energy transport equation reads as:

  c ( ξ   ⃑  ) T ( ξ   ⃑  )  +  ∫  Γ   T  ∇   ⃑    u   ∗  ∙  n   ⃑   d𝛤 =  ∫  Γ    u   ∗   q  T   d𝛤 +   1 ___  C  C     [ ∫  Γ    n   ⃑   ∙  { u   ∗  ( v   ⃑   T) }  d𝛤 −  ∫  Ω   ( v   ⃑   T)  ∙  ∇   ⃑    u   ∗  d𝛺]    (22)

In the above equations, qj is a component of vorticity flux, whereas qT is a heat flux. In the sub-
domain BEM method, a mesh of the entire domain Ω is made, each mesh element is named 
a subdomain. All equations are written for each of the subdomains. The filed functions and 
flux across the boundary and within the domain are interpolated using shape functions. The 
hexahedral subdomains with 27 nodes are used, enabling continuous quadratic interpolation 
of field functions. The field functions on each element are interpolated using continuous qua-
dratic interpolation, while fluxes are interpolated using the discontinuous linear interpolation. 
With discontinuous interpolation, the definition problems in corners and edges are avoided.

3. Test cases

The physical models where the above developed numerical scheme was tested are a two-
dimensional rectangular enclosure and a three-dimensional cubical enclosure filled with fully 
saturated porous medium. Porous medium is assumed to be isotropic, homogenous, and 
in thermal equilibrium with the fluid phase. The simulation of fluid flow and heat transfer 
through porous media domain of pure fluid and nanofluid, respectively, is presented. Two 
opposite vertical walls are subjected to a temperature differences, while the rest of the walls is 
adiabatic and impermeable. Geometry with corresponding boundary conditions is shown in 
Figure 1. The boundary conditions for the current problem are:
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 v  x   =  v  y   = 0, ω = 0, T =  T  H   at x = 0,

     
 v  x   =  v  y   = 0, ω = 0, T =  T  C   at x = L,

     
 
 v  x   =  v  y   = 0, ω = 0,   ∂ T ___ ∂ y   = 0 at y = 0 and z = 0,

      
 v  x   =  v  y   = 0, ω = 0,   ∂ T ___ ∂ y   = 0 at y = L and z = L

  
    (23)

Due to applied temperature gradient, density differences are induced, which result in appear-
ance of thermal buoyancy force producing a large vortex in the main part of the cavity.

The overall heat transfer through porous media is expected to depend on several fluid and 
porous media properties, such as porosity, permeability, thermal conductivity, heat capaci-
tance, solid volume fraction of nanoparticles, and types of nanoparticles. In order to compare 
different conditions on the heat transfer characteristics, the wall heat flux is calculated, which 
is expressed in terms of the dimensionless Nusselt number as:

  Nu =   
 k  nf   ___  k  f  

    ∫  Γ    ∇   ⃑   T ∙  n   ⃑   d𝛤,  (24)

where Γ is the surface through which the heat flux is calculated and   n   ⃑    is the unit normal to this 
surface. The definition is valid for nanofluids as well as for pure fluids, since there the ratio of 
thermal conductivities is knf /kf = 1.

In the present study, the Cu nanoparticles are added to the water as a base fluid. The thermo-
physical properties of Cu nanoparticles and water are given in Table 1 [50].

In order to obtain a grid-independent solution, at the beginning, a grid sensitivity analysis 
was performed. Two nonuniform meshes for 2D geometry and four nonuniform meshes for 
3D geometry have been tested. The results are shown for the case, when porous media are 
saturated with pure fluid and parameters RaP = 100, Pr  = 0.71, φ = 0.8, σ = 1 and various values 
of Da. The results are presented in Table 2.

Figure 1. Two-dimensional and three-dimensional enclosures with corresponding boundary conditions.
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When comparing 2D and 3D results, it can be observed that for the case of low values of 
Darcy number, 2D simulation underestimates the heat transfer up to 4.5%. Based on the pre-
sented results, the 20 × 20 mesh for 2D simulations and 20 × 8 × 20 for 3D simulations were 
chosen.

The validation of numerical code has been primarily performed for the pure fluid saturating  
the porous media. The results for 2D geometry, compared to [24, 51], are presented in Table 3.  
Results for 3D geometry are compared to [20] and are presented in Table 4. Furthermore, in 
Table 5, the results for natural convection in 2D enclosure for a nanofluid saturated porous 
media are shown and compared to [24]. According to the comparable study, the Cu nanopar-
ticles were added to the water as a base fluid.

From the comparison, it can be observed that the results agree well with the data from the 
published studies, which confirm accuracy of the obtained numerical algorithm.

The isotherms for Cu-water nanofluid under different values of porous Rayleigh number 
and Darcy number at porosity φ = 0.4 and different values of solid volume fraction are 
shown in Figure 2. Solid lines correspond to ϕ = 0.0, dotted lines to ϕ = 0.025, and dashed 
lines to ϕ = 0.05. Heat transfer in porous medium is mostly affected by a Rayleigh and Darcy 
numbers. At RaP = 10, the heat transfer in horizontal direction is weak, and the main heat 
transfer mechanism in this case is conduction. Increase of RaP results in stronger convective 
motion, which is clearly evident from the temperature field; when RaP = 1000, thin boundary 
layers are created near the hot and cold walls, and the isotherms in the core region become 

cp [J/kg K] ρ [kg/m3] K [W/m K] β [×10−5 K−1] α [×10−7 m2/s]

Water 4179 997.1 0.613 21 1.47

Cu 385 8933 400 1.67 1163

Table 1. Thermophysical properties of water and Cu nanoparticles.

Mesh Number of 
nodes

RaP = 100, Pr = 0.71, φ = 0.8

Da 10−1 10−2 10−3 10−4 10−5

2D 20 × 20 1681 1.0639 1.6329 2.3697 2.8756 3.1656

30 × 30 3721 1.0638 1.6331 2.3680 2.8537 3.1503

3D 12 × 12 × 12 15,625 1.0423 1.5428 2.3432 2.9784 3.3008

20 × 8 × 20 28,577 1.0394 1.5329 2.3313 2.9575 3.2950

22 × 10 × 22 42,525 1.0393 1.5327 2.3307 2.9552 3.2945

30 × 10 × 30 78,141 1.0393 1.5325 2.3303 2.9541 3.2934

Table 2. Variations of Nusselt number with different grid sizes and various Darcy numbers.

Simulation of Natural Convection in Porous Media by Boundary Element Method
http://dx.doi.org/10.5772/intechopen.71230

89



almost horizontal and parallel to adiabatic and impermeable walls. According to the tem-
perature fields, decrease of Da enhances the heat transfer through cavity. The Da number 
influences the magnitude of the Darcy term in the vorticity equation (10). With increase of 

Da RaP [24] Present [24] Present [24] Present

ϕ = 0.05

φ = 0.4 φ = 0.6 φ = 0.9

10−2 1000 3.433 3.400 3.850 3.826 4.162 4.145

10−4 1000 9.117 9.132 9.590 9.743 9.901 10.154

10−6 1000 11.778 12.991 11.899 13.128 11.976 13.195

φ = 0.4

ϕ = 0.0 ϕ = 0.025 ϕ = 0.05

10−2 10 1.007 1.008 1.081 1.083 1.160 1.162

10−2 1000 3.302 3.282 3.370 3.345 3.433 3.400

10−6 1000 11.867 13.238 11.847 13.131 11.778 12.991

Table 5. Nusselt number values for a natural convection in porous media saturated with nanofluid in 2D enclosure for 
various governing parameters (Pr = 6.2).

Da RaP [51] [24] Present

10−2 10 1.015 1.010 1.012

100 1.530 1.533 1.503

1000 3.555 3.602 3.499

10−4 10 1.071 1.065 1.070

100 2.725 2.764 2.777

1000 9.183 9.454 9.174

10−6 10 1.079 1.072 1.093

100 2.997 2.980 3.241

1000 11.790 11.924 12.895

Table 3. Validation of the numerical code by a comparison of average Nu for natural convection in porous media 
saturated with a pure fluid for Pr = 1.0, φ=0.6 and different Da and RaP, for 2D geometry.

RaP = 1000, Pr = 0.71, φ = 0.8

Da 10−2 10−3 10−4 10−5 10−6

[20] 3.99 6.95 10.14 12.78 13.72

Present 3.770 6.922 10.558 13.242 14.568

Table 4. Nusselt number values for the 3D natural convection in a cubic enclosure filled with porous media saturated 
with pure fluid.
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Da, the flow regime is transited into the Darcy flow regime, which can be described by the 
Dracy’s law.

According to the results, the addition of nanoparticles into the water causes the attenuation of 
the convective motion. However, the overall heat transfer is enhanced with increase of solid 
volume fraction of nanoparticles in cases of conduction-dominated regimes (low values of 
Rayleigh numbers RaP < 100 and high values of Darcy numbers Da > 10−4). On the other hand 
in convection dominated regimes (RaP > 100, Da < 10−4), the addition of nanoparticles dimin-
ishes the convection, which results in lower values of Nusselt numbers. Figure 3 shows the 
dependence of Nu on porous Rayleigh number and solid volume fraction of nanoparticles. 
It can be observed that for any values of RaP with increase of ϕ, the heat transfer increases.

When observing the flow structure in 3D enclosure, it is obvious that the flow field is not far 
from being 2D, which is a consequence of the applied temperature difference between the 
opposite walls, which causes large two-dimensional vortex in the y plane. In order to observe 

Figure 2. Temperature fields for different values of RaP for Cu nanofluid and different solid volume fractions for Pr = 6.2, 
Da = 10−6; solid lines are for ϕ = 0.0, dashed lines for ϕ = 0.025 and dotted lines for ϕ = 0.05.

Figure 3. Nusselt number values depending on porous Rayleigh number for Pr = 6.2, Da = 10−6 and different values of 
solid volume fraction of nanoparticles.
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the 3D nature of the phenomena, the iso-surfaces of the absolute value of y velocity component 
are shown in Figure 4. The extent of movement perpendicular to the plane of the main vortex 
is small, but it becomes more apparent in case of higher values of RaP and lower values of Da.

4. Conclusion

The numerical method based on the BEM is presented for solving the coupled set of par-
tial differential equations, which describe the fluid flow and heat transfer in porous medium 
domain. The mathematical model is based on the Navier-Stokes equations, which are aver-
aged over the representative elementary volume. The proposed numerical algorithm solves 
the velocity-vorticity formulation of the governing equations. The numerical scheme is split 
into the single-domain BEM, which solves the kinematic equation for unknown boundary 
vorticity values and sub-domain BEM for domain velocity, vorticity, and temperature values.

The numerical algorithm is tested on an example of natural convection phenomena in porous 
media domain for a 2D as well as 3D geometry. Porous media are fully saturated with pure 
fluid or water-based nanofluid with addition of Cu nanoparticles. Obtained numerical results 
were validated with available benchmark solutions.

The natural convection phenomena strongly depend on the parameters, e.g., Rayleigh num-
ber and Darcy number. Addition of nanoparticles to a base fluid enhances the heat transfer 
through porous media, when conduction is the dominant heat transfer mechanism. On the 
other hand, in convection dominated regime, the addition of nanoparticles reduces the mag-
nitude of convective motion.

The good agreement of the results with the published ones confirms the efficiency of the BEM-
based methods as a powerful alternative to the existing numerical methods.

Figure 4. Iso-surfaces for RaP = 500, Da = 10−3 and absolute value of velocity component |vy| = 3 (left) and RaP = 1000, 
Da = 10−3, |vy| = 7 (right). Contours of temperature are displayed on the iso-surfaces (−0.5 < T < 0.5). In addition, the 
velocity vectors on the plane y = 0.5 are displayed.
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