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a b s t r a c t

In this paper we have developed a hybrid LES/URANS turbulent model for a BEM based turbulent fluid
flow solver. We employed the unified LES/URANS approach, where the interface between the LES and
URANS regions is defined using a physical quantity, which dynamically changes during numerical
simulation. The main characteristic of the unified hybrid model is that only one set of governing
equations is used for fluid flow simulation in both the LES and URANS regions. Regions where turbulent
kinetic energy is calculated by LES and URANS models are determined using a switching criterion. We
used the Reynolds number based on turbulent kinetic energy and the Reynolds number based on total
turbulent kinetic energy to establish the LES/URANS interface switching criterion. Depending on flow
characteristics and with the use of switching criterion, we chose between sub-grid scale viscosity (SGS)
and URANS effective viscosity. The SGS or URANS effective viscosity is used in the transport equation for
turbulent kinetic energy and in governing equations for fluid flow. The developed numerical algorithm
was tested by simulating turbulent natural convection within a square cavity. The hybrid turbulent
model was implemented within a numerical algorithm based on the boundary element method, where
single domain and sub-domain approaches are used. The governing equations are written in velocity–
vorticity formulation. We used the false transient time scheme for the kinematics equation.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Turbulence occurs in fluid flows of high Reynolds numbers. It is
present in the majority of fluid machines and devices, and is
simulated during current engineering practise. Turbulence can be
simulated by directly solving Navier–Stokes equations; this
approach is called Direct Numerical Simulation, DNS. When using
the DNS, we have to simulate flow phenomena that span the
entire energy spectrum. As, at high Reynolds numbers, the
Kolmogorov length scale is very small compared to the character-
istic length scale of the flow, very dense meshes are required and
thus high computational resources are demanded. As the DNS is
very expensive from a computational point of view, it is currently
being used mainly for research and to simulate benchmark cases.
In the case of Large Eddy Simulation – LES – only those large
eddies with the most energy are being simulated, while smaller
eddies that cannot be described by the mesh are being modelled.
Turbulent flow can also be simulated with Reynolds Averaged
Navier Stokes equations using RANS and unsteady RANS (URANS)
models. Despite some disadvantages, URANS models are more

widely used in turbulent fluid flow simulations and have become
state-of-the-art in the CFD and engineering industry. URANS
models demand reasonable computational resources.

URANS is successful when modelling thin, fully turbulent,
locally attached boundary layers. In the near wall regions due to
small turbulent structures LES requires very fine meshes. In the
bulk flow, where the Kolmogorov length scale is larger, fine
meshes are adequate. RANS only provides statistical information
of the flow, therefore its simulation results lack important infor-
mation, e.g. coherent structures and dominant frequencies. LES
directly solves large-scale motions, therefore it also provides
significant amounts of accurate information. RANS requires rea-
sonable computational times, while the computational costs of LES
are too high [7].

As both LES and URANS have certain advantages and disadvan-
tages hybrid models have been introduced which combine these
two models. The basic concept of LES/URANS hybrid turbulent
models is to use LES within the bulk region, where LES provides
better results than URANS, and to use URANS in the near wall
regions, where the mesh is not dense enough to capture the flow
structures required by LES. Although the concept of combining LES
and URANS turbulent models is not new [25], there are also several
open topics, e.g. coupling technique between LES and URANS
regions, which quantity to use for the switching criterion, and
which LES and URANS turbulent model is the more appropriate.
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LES/URANS hybrid turbulent models can be divided into two
approaches when selecting LES and URANS regions, segregated
[16,4,8] and unified [9]. In regard to the segregated LES/URANS
approach, the computational domain is divided before simulation
into LES and URANS regions [28]. Using this approach, LES and
URANS are solved separately.

Unified models are also known as global or universal models. The
main characteristic of unified models is that they use the same set of
governing equations for fluid flow simulation for both LES and
URANS. Unified hybrid models are further divided according to a
switching criterion between LES and URANS regions. This switching
criterion can be defined as a hard interface, where the user defines it
within geometry, or the interface is defined dynamically during the
simulation according to the switching criterion. One of the first steps
when combining LES and URANS turbulent models was turbulent
flow simulation using Detached-Eddy Simulation DES [25]. The idea is
to model the whole boundary layer where the attached eddies occur
with the URANS models, and only separate region where the eddies
are detached, with the LES model. The same concept was also used by
Paik et al. [14]. For the DES model, both researchers used the Spalart–
Almaras one-equation turbulent model for turbulent viscosity. Breuer
et al. [2] used a unified LES/URANS hybrid turbulent model for
simulation of turbulent channel flow and flow over a periodic hill.
Davidson [3] used a partially averaged Navier–Stokes (PANS) model
for a RANS/LES hybrid model. This hybrid model was tested in a
channel flow and in a hump flow using embedded LES. Schmidt and
Breuer [22] used a unified LES-URANS hybrid model utilizing a
switching criterion based on turbulent kinetic energy. Simulation
was performed on the 3-D diffuser flow and flow passed an airfoil.
Hybrid models were also used for heat transfer problems. Kenjereš
and Hanjalič [10] compared LES, T-RANS and the hybrid RANS/LES
turbulent model for simulating thermal convection between two flat
horizontal walls cooled from above and heated from below, and
natural convection within a square cavity.

Our work is based on the use of BEM for fluid flow. Škerget and
Rek [27] used the boundary-domain integral method for numerical
solutions for incompressible fluid flow within a driven cavity. They
used the velocity–vorticity formulations of governing equations
for a simulation and false transient approach for the kinematic
equation. Ravnik et al. [18] used LES for the simulation of natural
convection within a rectangular enclosure. BEM has been used for
the solution of the kinematic equation and is combined with FEM,
which is employed for the kinetics equation. Ramšak and Škerget
[17] studied thermal flow simulation using the multidomain
boundary element method with mixed boundary elements and a
subdomain technique. For turbulent flow simulation they used a
two-equation k–ϵ turbulence model. Lupše et al. [12] studied
turbulent flow using a velocity–vorticity form of governing equa-
tion and BEM. For the turbulent channel flow and backward facing
step they used Spalart–Allmaras, Chien and Abe–Kondoh–Nagano
turbulent models.

We have developed a hybrid LES/URANS turbulent model using
BEM using a combination of single-domain and sub-domain
approaches. We have used the LES/URANS hybrid model for non-
stationary non-isothermal turbulent flow simulation. Using uni-
fied hybrid model, LES and URANS models are unified within
transport equation for turbulent kinetic energy k and are being
solved simultaneously. The LES and URANS regions are not defined
before simulation but are dynamically defined during simulation
itself. Therefore the user also avoids problems of unknown fluid
flows. The numerical algorithm switches to URANS mode within
the near wall region and to the LES mode in the bulk flow. Sub-
grid viscosity is used in LES mode, while in URANS mode, URANS
modelled viscosity is used.

A 2D benchmark simulation of natural convection in square
cavity was used to test our BEM implementation of the hybrid

model. We choose the benchmark simulation of natural convec-
tion in square cavity, because it is geometrically very simple and
the boundary conditions are well defined and at the same time
exhibits fully turbulent flow. Thus, we could focus our attention to
the implementation of the hybrid model, such as determining of
the LES/URANS region and switching criterion. Furthermore, the
closed cavity case makes it easier to implement the hybrid model,
as the model depends on the wall distance, which is well defined
in this case. In the future, we plan to extend this work to other
turbulent flows.

2. Governing equations

2.1. Velocity–vorticity formulation

The governing equations were written in the velocity–vorticity
formulation. The fluid is considered to be incompressible fluid
with constant molecular viscosity νm and constant heat diffusivity
am. We employed the velocity–vorticity numerical scheme with a
false transient time scheme for the kinematic equation.

Governing equations for kinematics and kinetics have to be
filtered for LES simulation and averaged for URANS simulation.
After averaging/filtering governing equations we introduce a
turbulent viscosity. Within the URANS region it is calculated by
the URANS model and in LES by the SGS model. In the unified
hybrid turbulent model we solve only one set of governing
equations. Due to simplicity, we use a further derivation of
equation notation without filtered or averaged signs.

Filtered/time averaged governing equations for fluid flow can
be defined with effective kinematic viscosity νef and effective heat
diffusivity aef. Effective kinematic viscosity is the sum of molecular
and turbulent kinematic viscosity νef ¼ νmþνt , effective heat
diffusivity is the sum of molecular and turbulent heat diffusivity
aef ¼ amþat . The kinematics equation is the curl of the vorticity
vector written as a pseudo-transient problem to allow an under
relaxation approach, while the kinetics equation is the vorticity
equation found by taking the curl of the momentum equation. The
equation for kinematics for incompressible plane flow can be
written in velocity–vorticity formulation as [12]

∂2vi
∂xj∂xj

�1
α
∂vi
∂t

þeijk
∂ωk

xj
¼ 0; ð1Þ

where α is the under-relaxation parameter. The kinetics equation
is written for the transport of vorticity, using the curl of the second
extended form of the momentum conservation equation in primi-
tive variables formulation [29]. It can be written as [21]

Dω
Dt

¼ νef
∂2ω
∂xj∂xj

þeij
∂ðβTgðT�T0ÞÞ

∂xj
�eij

∂f mi
∂xj

; ð2Þ

where T0 is a reference temperature, βT is a thermal volumetric
expansion coefficient, g is a gravity force oriented in opposite y
direction, ω is the z component of the vorticity vector and f mi is a
term defined as

f mi ¼ �eij
∂ðνefωÞ

∂xj
þ2

∂νef
∂xj

∂vi
∂xj

þ2eij
∂νef
∂xj

ω: ð3Þ

Since we simulate an incompressible fluid, therefore the only
force acting on fluid in natural convection flow is buoyancy. The
buoyancy effect is considered in the kinetic equation (2) by using
Boussinesq's approximation. For solving non-isothermal turbulent
flow, we used a linear relationship of turbulent thermal diffusivity
at and turbulent viscosity νt, defined by the turbulent Prandtl
number Prt as at ¼ νt=Prt .
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The filtered/time averaged energy equation for temperature T
can be written as [12]

∂T
∂t

þ∂vjT
∂xj

¼ ∂
∂xj

amþ νt
Prt

� �
∂T
∂xj

� �
; ð4Þ

where Prt is the turbulent Prandtl number.
The transport equation for turbulent kinetic energy k can be

written as [2]

∂k
∂t

þvj
∂k
∂xj

¼ ∂
∂xj

ðνmþνtÞ �
∂k
∂xj

� �
þνt

∂vi
∂xj

þ∂vj
∂xi

� �
∂vi
∂xj|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

P

�D; ð5Þ

where P is the production part, D the dissipation part, and its sum
is the source term I. νm is the molecular viscosity and νt is the
turbulent viscosity.

The used one-equation hybrid turbulent model is based on the
transport equation for turbulent kinetic energy (5). In the URANS
region turbulent viscosity νt and dissipation part D computed with
URANS model νt;URANS and DURANS are used, and in the LES region
turbulent viscosity and the dissipation part are computed with
sub-grid scale model νt;SGS and DSGS respectively.

3. Hybrid LES/URANS turbulent model

3.1. Turbulent model for LES

The LES subgrid scale viscosity is calculated as Pope [15]. Filter
width Δ, dissipation part Dsgs and turbulent viscosity νt;sgs for the
sub-grid model can be written as

νt;sgs ¼ Cμ � k1=2 � Δ; Dsgs ¼ Cd � k3=2=Δ; Δ¼ ðΔx �ΔyÞ1=2: ð6Þ
where Cd ¼ 1:0 and Cμ ¼ 0:05 [23].

3.2. Turbulent model for URANS

3.2.1. Rodi URANS model
We used the model developed by Rodi et al. [19]. This model is

written using the following equations. Reynolds number defined with

turbulent kinetic energy k can be written as Rek ¼ k1=2 � y=ν, where y
is the normal distance from the wall. Turbulent viscosity can be

written as νt;URANS ¼ ðv02 Þ1=2 � lμ;v, characteristic length as lμ;v ¼ Cl;μ � y,
where Cl;μ ¼ 0:33 and the normal velocity fluctuations v02 as

v02 ¼ k � ð4:65 � 10�5Re2kþ4:00 � 10�4RekÞ. Empirical correlations for
the dissipation part, DURANS, which correlates velocity scale, length

scale and time scale, can be written as DURANS ¼ ðv02 Þ1=2 � k=lD;v, and
dissipation length as lD;v ¼ 1:3 � y= ð1þ2:12ν=yðv02 Þ1=2Þ. These equa-
tions are valid up to Rekr60.

3.2.2. High Reynolds number URANS model
Breuer et al. [2] used DNS simulation results fromMoser et al. [13]

for modification of the Rodi one-equation turbulent model presented
in Rodi et al. [19]. It should be noted that this is not a high Reynolds
turbulent model. The modified one-equation turbulent model can be
written using the following equations. Normal wall velocity fluctua-
tion v02 as v02 ¼ k � ð3:55 � 10�5Re2kþ6:50 � 10�4 � RekÞ, where
Cl;μ ¼ 0:4 and dissipation length lD;v as lD;v ¼ 1:5 � y= ð1þ7:65ν
=yðv02 Þ1=2Þ.

3.3. LES/URANS switching criterion

In this section we describe the switching criterion for defining
LES and URANS regions. The definition is based on physical
quantity.

3.3.1. Switching using Reynolds number defined by turbulent kinetic
energy k

In the numerical algorithm we used the Reynolds number, for
the switching criterion defined by the turbulent kinetic energy k,
noted as Rek. Rek can be defined by turbulent kinetic energy k,
viscosity ν, and the normal distance from the wall y as

Rek ¼
k1=2 � y

ν
: ð7Þ

In this way, switching criterion can be written as [2]

RekrCswitch-RANS mode;

Rek4Cswitch-LES mode; ð8Þ

where the value of Cswitch can be used up to 60.

3.3.2. Switching using Reynolds number defined by the total
turbulent kinetic energy ktot

The next switching criterion used in the hybrid model was the
Reynolds number defined as total turbulent kinetic energy, Retot,
which is defined similar to Rek:

Retot ¼ ktot � y
ν

: ð9Þ

where ktot is defined as the sum of the modelled turbulent kinetic
energy, which is being solved in the transport equation (5), and
the resolved turbulent kinetic energy, kres, which is calculated from
the simulated velocity field. The total turbulent kinetic energy ktot
can be written as ktot ¼ kþkres, where kres is defined as
kres ¼ ðv0iv0iÞres=2.

Part v0i in the equation for kres is the difference between the
averaged and current velocities, and can be written as v0i ¼ vi�vi .
vi is the averaged velocity, computed with averaging of resolved
velocity field.

It can be seen from the equations for kres and v0i, that for ðv0iv0iÞ
calculation of the averaged velocity field is required. Therefore
Retot cannot be used as a switching criterion from the beginning of
the simulation. To achieve successful simulation averaging should
be done over time, when flow crosses domain at least once.

Retot as a switching criterion is used in a same way as Rek [2]:

RetotrCswitch-RANS mode;

Retot4Cswitch-LES mode: ð10Þ

where the value of Cswitch can be used up to 60.

3.4. Modification of turbulent viscosity within the URANS region

By using total kinetic energy ktot instead of k in the equations for
LES models 3–6 and in the equations for URANS models written in
Sections 3.2.1 and 3.2.2, we also used total turbulent viscosity νtott;URANS
instead of the primary used modelled turbulent viscosity νt;URANS [2].
Total turbulent viscosity νtott;URANS is the sum of the molecular and
resolved turbulent kinetic energy: νtott;URANS ¼ νt;URANSþνrest;URANS. The
resolved turbulent kinetic energy does not only depend on current
velocity field but also on the difference between the current and
averaged velocity fields. When simulating steady-state flow, the
resolved turbulent viscosity is zero, νrest;URANS ¼ 0. Therefore, when
simulating unsteady flow, the total turbulent viscosity νtott;URANS differs
from the modelled turbulent viscosity νt;URANS within the range of
unsteady character of the flow.

Too high values of νtott;URANS could occur due to unsteady character
of total turbulent kinetic energy ktot, therefore they could be modified.
We modified νt;URANS, because νrest;URANS depends directly on flow.

The turbulent viscosity may be modified using a modification
function f. Breuer et al. [2] defined f from results of DNS turbulent
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channel flow as

f ¼
0:3 � Retot ; 0rRetotr1
0:3; 1oRetotr12
0:3þð1:55 � 10�4ðRetot�12Þ2Þ; 12oRetotr60

8><
>: ð11Þ

Turbulent viscosity νt;URANS can be modified with modification
function f as

νmod
t;URANS ¼ νmod

t;URANS � ð1� f Þ: ð12Þ

The above written modification function can only be used only
for simulation, where Retot is being used as the switching criterion.

3.5. URANS islands in LES region

During turbulent flow simulation using the LES/URANS hybrid
model, URANS islands occur within the LES region. For investigat-
ing whether URANS islands adversely effect simulation, we have
prescribed a condition which partly prevents URANS islands
within the LES region. When the flow is unsteady and the interface
between LES and URANS regions changes dynamically, we have
focused only on one single node. We prescribe the condition, if a
single node were to be in the URANS mode and all other boundary
nodes in the LES mode, that the node also stays in the LES mode. It
was used for both switching criteria, Rek and Retot.

3.6. Summary

In order to simplify the hybrid model's labelling we allocated
numbers to each hybrid model and its configurations, as shown in
Table 1.

The models differ in turbulent model for URANS, turbulent
kinetic energy, switching criterion between LES and URANS
regions and modification function for URANS region. In models
1, 3 and 4 the turbulent model presented by Rodi is used and in
models 2, 5 and 6 the URANS model modified for higher Reynolds
numbers is used. Models 1–2 are using turbulent kinetic energy k
and models 3–6 are using total turbulent kinetic energy ktot. In
models 1–2 the Reynolds number Rek is used for switching
criterion and in models 3–4 the Reynolds number Retot is used.
The modification function is used in models 4 and 6.

4. Numerical method

A numerical algorithm based on subdomain BEM with velo-
city–vorticity formulation of Navier–Stokes equations was used for
fluid flow simulation [27]. We divide the effective viscosity νef in
BEM into the sum of constant and variable parts as

νmþνt ¼ νef ¼ ν0þ ~ν: ð13Þ

We write thermal diffusivity in the same way:

amþat ¼ aef ¼ a0þ ~a: ð14Þ

4.1. Integral formulation of parabolic-diffusive fundamental solution

Kinetics equation (2) can be written as a non-homogeneous
parabolic partial differential equation as

ν0
∂2ω
∂xj∂xj

�∂ω
∂t

� ∂
∂xj

vjωþ ~v
∂ω
∂xj

� �
� 1
ρ0

eij
∂ρgi
∂xj

�eij
∂f mi
∂xj

¼ 0 ð15Þ

where the last three parts represent pseudo-body forces.
Parabolic-diffusion fundamental solution un is defined as

unðξ; s; tF ; tÞ ¼
1

ð4πν0τÞ
e� r2=ν0τ ; ð16Þ

where ðξ; tF Þ is a source point, (s, t) the reference point within a
domain, τ the time step, and r the vector from source point ξ to
reference point s. The approximation on equations (17) implies a
constant representation of the field variable during one time step.
Using parabolic-diffusion fundamental solution un and

Un ¼ ν0
Z tf

tf�1

un dt;
∂Un

∂n
¼ ν0

Z tf

tf�1

∂un

∂n
dt;

∂Un

∂xj
¼ ν0

Z tf

tf�1

∂un

∂xj
dt;

ð17Þ
we can write Eq. (15) in integral form for planar flow

cðξÞωðξ; tF Þþ
Z
Γ
ω
∂Un

∂n
dΓ ¼ 1

ν0

Z
Γ

ðν0þ ~νÞ∂ω
∂n

�ωvn

� �
Un dΓ

þ 1
ν0

Z
Ω

ωvj� ~ν
∂ω
∂xj

� �
∂Un

∂xi
dΩ

þeij
1
ν0

Z
Γ
nigjFU

ndΓ�gjF
∂Un

∂xi
dΩ

� �

�eij
1
ν0

Z
Γ
f mi njU

ndΓ�
Z
Ω
f mi

∂Un

∂xj
dΩ

� �

þ
Z
Ω
ωF�1un

F�1 dΩ: ð18Þ

The same idea as used for the kinetics equation can be used for
the kinematics equation. Kinematics equation (1) can be written in
the same manner as Eq. (15). In regard to further simplification of
the numerical algorithm, we choose the under-relaxation term of
false transient time scheme α to be equal to the viscosity term ν0,
and can write

ν0
∂2vi
∂xj∂xj

�∂vi
∂t

þν0eij
∂ω
∂xj

¼ 0: ð19Þ

By considering (17) and (19), we may write kinematic equation
(1) in integral form as

cðξÞviðξ; tF Þþ
Z
Γ
vi
∂Un

∂n
dΓ

¼
Z
Γ

∂vi
∂n

þν0eijωnj

� �
Un dΓ�

Z
Ω
ν0eijω

∂Un

∂xj
dΩþ

Z
Ω
vF�1un

F�1 dΩ:

ð20Þ
Eq. (20) obtained for unknown domain velocity values can be
written as

cðξÞviðξ; tF Þþ
Z
Γ
vi
∂Un

∂n
dΓ

¼
Z
Γ
ν0eijvj

∂Un

∂t
dΓ�

Z
Ω
ν0eijω

∂Un

∂xj
dΩþ

Z
Ω
vF�1un

F�1 dΩ; ð21Þ

where n stands for unit normal and t for unit tangent.
Kinematics equation (1) is used also to determine boundary

vorticity value, using the approach proposed by [26]. Eq. (20)
rewritten for the solution of unknown boundary vorticity values
can be written in vector form as

cðξÞ n!ðξÞ � v!ðξÞþ n!ðξÞ �
Z
Γ
ð∇!Un � n!Þ v! dΓ

Table 1
LES/URANS hybrid turbulent models used in fluid flow simulations.

URANS model Rodi Higher Re Rodi Rodi Higher Re Higher Re

Turb. kinetic energy k k ktot ktot ktot ktot
Switching crit. Rek Rek Retot Retot Retot Retot
Modification funct. (3.4) No No No Yes No Yes
Hybrid model 1 2 3 4 5 6

P. Kocutar et al. / Engineering Analysis with Boundary Elements 61 (2015) 16–26 19



¼ n!ðξÞ �
Z
Γ
ð∇!Un � n!Þ� v! dΓþ n!ðξÞ �

Z
Ω
ðω!� ∇

!
UnÞ dΩ:

ð22Þ

4.2. Discrete form

The governing equations for fluid flow have to be rewritten in
discrete form. The domain is divided into C internal cells and E
boundary elements: Γ ¼ PE

e ¼ 1 Γe; Ω¼ PC
c ¼ 1Ωc .

In regard to the approximated numerical solutions of field
functions (velocity, vorticity, temperature, turbulent kinetic
energy, etc.), the boundary-domain transport equation has to be
written in discrete form, for the sum of integrals over every
boundary element E and computational cell C. For interpolation
of field function over boundary element and computational cell,
we used interpolation functions: Φ for boundary elements and ϕ
for computational cells. In the presented study we used quadratic
interpolation for function nodes and constant fluxes. In the
discrete equation formulation we used the following integrals:

hpe ¼
Z
Γe

Φp∂Un

∂n
dΓ; gpe ¼

Z
Γe

ΦpUn dΓ; dcj ¼
Z
Ωe

ϕp∂Un

∂xj
dΩ;

dpc ¼
Z
Ωe

ϕpUn dΩ; bpc ¼
Z
Ωe

ϕpun

F1 dΩ: ð23Þ

Index p refers to the number of nodes in each internal cell or
boundary element, and index m labels the degree of time poly-
nomial (ψ). The equation for kinematics (20) can be, by employing
parabolic-diffusion fundamental solution un and time step F,
written for planar flow as

cðξÞviðξÞþ
XE
e ¼ 1

fhgT fvig ¼
XE
e ¼ 1

fggT ν0eijvj
∂Un

∂t

� �p

�ν0eij
XC
c ¼ 1

fdjgT fωgpþβ
XC
c ¼ 1

fbgT fvigpF�1;

ð24Þ
where T stands for the transposition and brackets { } refers to the
vectors of nodal values. Equation for kinetics (18) can be written as

cðξÞωðξÞþ
XE
e ¼ 1

fhgT ωf g ¼ 1
ν0

XE
e ¼ 1

fggT νef
∂ω
∂n

�ωvn

� �p

þ 1
ν0

XC
c ¼ 1

fdigT ωvi� ~ν
∂ω
∂xj

� �p

�eij
1
ν0

XE
e ¼ 1

fggT f mi
	 
þeij

1
ν0

XC
c ¼ 1

fdigT f mi
	 


þeij
1
ν0

XE
e ¼ 1

fggT fnigjFgp�eij
1
ν0

XC
c ¼ 1

fdigT fgjFgp

þβ
XC
c ¼ 1

fbgTωp
F�1: ð25Þ

Transport equation for turbulent kinetic energy k (5) can be
written as

cðξÞuðξ; tF Þþ
XE
e ¼ 1

fhgT fugpF ¼
1
ν0

XE
e ¼ 1

fggT ðν0þ ~νÞ∂u
∂n

� �p

F

� 1
ν0

XE
e ¼ 1

fggT fuvngpFþ
1
ν0

XC
c ¼ 1

fdjgT uvj� ~ν
∂u
∂xj

� �p

F

þ 1
ν0

XC
c ¼ 1

fdgT fIgpFþ
XC
c ¼ 1

fbgT fugpF�1: ð26Þ

and energy equation (4) as

cðξÞTðξ; tF Þþ
XE
e ¼ 1

fhgT fugpF

¼ 1
a0

XE
e ¼ 1

fggT ða0þ ~νÞ∂T
∂n

� �p

F

� 1
a0

XE
e ¼ 1

fggT fTvngpFþ
1
a0

XC
c ¼ 1

fdjgT Tvj� ~ν
∂T
∂xj

� �p

F

þ
XC
c ¼ 1

fbgT fTgpF�1: ð27Þ

According to boundary conditions we have assembled a system
of equations written in matrix notation. We employed the numer-
ical solver [24] for solving the system of equations.

5. Numerical algorithm

The implementation of a hybrid model within a numerical
algorithm is shown step by step below. SGS and URANS turbulent
viscosity, dissipation part and interface (step 6.1) are computed
within the outer-loop for effective viscosity (step 6). Computed
turbulent values ηef and D are further being used in the solver for
turbulent kinetic energy k equation (step 6.4) and in next time-
step (step 1) for governing equations for fluid flow (steps 3–5).

1. Time loop
2. Global iteration loop
3. Kinetics loop

3.1 kinematics, solve boundary vorticity ω
3.2 kinematics, solve internal velocity v

3.3 check convergence ω; v, if error is greater than predefined
convergence criterion ϵm go to (3.1)

4. kinetics, solve energy equation
5. kinetics, internal vorticity ω
6. outer loop for effective viscosity νef

6.1 inner iteration loop for effective viscosity νef
6.2 turbulence model, calculate turbulence viscosity and dis-

sipation part for sub-grid model νsgs;Dsgs, Eqs. (6) and for
URANS model νURANS;DURANS , Sections 3.2.1 and 3.2.2, inter-
face between LES and URANS region, Section 3.3, define D
and ν for further time steps 6.5 and 1.

6.3 inner iteration loop for turbulent kinetic energy k
6.4 kinetics, solve turbulent kinetic energy equation k
6.5 check convergence for k, if error is greater than ϵk go to 6.3
6.6 check convergence for νef, if error is greater than ϵt go to

6.2
6.7 check convergence for νef, if error is greater than ϵt go to 6.1

7. check convergence for ω; T , if error is greater than ϵ go to 2.
8. time loop, if simulation not finished go to 1.
9. end of computation, write results

The convergence criteria used in the numerical algorithm were
ϵk ¼ 10�4, ϵ¼ 5 � 10�6, ϵt ¼ 10�3, and ϵm ¼ 10�4. We used under-
relaxations of all equations using values between 0.1 and 0.3.

6. Simulation of natural convection flow within a square
cavity

We tested our numerical algorithm by simulating an unsteady
turbulent natural convection flow within a square cavity. One of
the first authors who studied such flows was Davies [5]. He
published results regarding the simulation of natural convection
flow within a square cavity up to Rayleigh number Ra¼ 106, and
proposed natural convection flow within the square cavity as a
benchmark case for solving non-isothermal fluid problems.
Further research was done by Lo et al. [11], who used the
velocity–vorticity formulation of Navier–Stokes equations for
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natural convection flow simulation up to Ra¼ 106. Sajjadi et al.
[20] investigated natural convection flow within a square cavity
employing Large Eddy Simulation and the Lattice Boltzmann
method for Rayleigh numbers from Ra¼ 106 to Ra¼ 109. Natural
convection flow within the square cavity is steady up to Rayleigh
number Ra¼ 107. At Ra¼ 108 it becomes unsteady, but not yet
turbulent, the flow is not chaotic. When the flow reaches Rayleigh
number Ra¼ 109, the flow is unsteady, chaotic, and turbulent. The
boundary conditions are defined in Fig. 1 (left): temperature
Th¼0.5 on the uniformly heated left wall, adiabatic boundary
condition q¼0 on the upper and lower walls, temperature
Tc ¼ �0:5 on the uniformly cooled right wall, no slip velocity
v!¼ 0 boundary conditions on all four walls, and gravity g! in the
opposite direction of coordinate y. The problem is defined by the
Rayleigh number. The Rayleigh number and the Prandtl number,
which is Pr¼0.71, can be defined as

Ra¼ g � β �ΔT � L3
ν � α ; Pr¼ ν

α
: ð28Þ

We assumed that the medium in the cavity is air with the following
fluid properties: kinematic viscosity ν¼ 17:6 � 10�6 m2=s, thermal
volumetric expansion coefficients β¼ 1=313:15 K�1 and thermal
conductivity λ¼0.0265W/mK. The height and width of a cavity is
L¼0.5 m. Physical temperature difference between the heated and
cooled walls is ΔT ¼ 111:4 K at Ra¼ 109.

During simulation, we used computational mesh with 80�80
domain elements and 161�161 nodes. The mesh was compressed
in the normal wall direction in both coordinates with the geome-
trical series having the ratio between the longest and shortest
elements R¼10.

The results of simulating natural convection fluid flow are
evaluated using the averaged Nusselt number. The Nusselt number

measures the heat flux through a solid wall and can be defined as

Nu¼ 1
H

Z H

0

∂T
∂x

dy: ð29Þ

7. Results

7.1. Laminar natural convection at Ra¼ 103–108

Before employing the LES/URANS hybrid model and choosing
appropriate computational mesh, we validated our numerical algo-
rithm on laminar simulations of natural convection flow for
Rayleigh numbers from Ra¼ 103 to Ra¼ 108. Simulations up to
Ra¼ 107 were steady and simulation with Ra¼ 108 unsteady. For
numerical algorithm validation we used three different computa-
tional meshes: 40� 40R10, 80� 80R10, and 120� 120R10; which
meant 81�81, 161�161, and 241�241 nodes. Simulation results
for the lower and middle Rayleigh numbers are shown in Table 2,
and are compared with the results from other authors. Simulations
with computational mesh 40� 40R10 up to Ra¼ 108 provided
comparable results as simulations using 80� 80R10 and
120� 120R10. Mesh 40� 40R10 was too coarse for natural con-
vection flow simulation at Ra¼ 109, high temperature gradients
and a thin boundary layer can be seen in further results. It should
been noticed that, for mesh 40� 40R10, the simulations for
Ra¼ 107 and Ra¼ 108 were unsteady, results in brackets ( ) in
Table 2. We concluded from mesh analysis using DNS for low and
middle Rayleigh numbers, that in further simulations mesh 80�
80R10 would be used. It can be seen that the values of the Nusselt
number are within the same range; therefore we concluded that a
numerical algorithm is appropriate for further simulations using
turbulent models.

Fig. 1. Boundary conditions for test case simulation of natural convection flowwithin square cavity (left). Mesh used in simulation with 80�80 computational cells and ratio
between longest and shortest elements R¼10 (right).

Table 2

Nusselt number for natural convection flow simulation using DNS for Rayleigh number from Ra¼ 103 to Ra¼ 108. Values in brackets () display the averaged results for
unsteady laminar simulation and the values in square brackets, the results when using turbulent models.

Ra Barakos et al. [1] Davies [5] Dixit and Babu [6] Lo et al. [11] Sajjadi et al. [20] Present 40�40 Present 80�80 Present 120�120

103 1.114 1.118 1.118 1.1178 1.1173 1.1174
104 2.245 2.243 2.224 2.2438 2.2434 2.2438
105 4.510 4.519 4.521 4.5207 4.5215 4.5217
106 8.806 8.8 8.823 8.7 8.8231 8.8222 8.8200
107 16.79 17.2 (16.518) 16.372 16.503
108 [32.3] (30.1) (30.506) [31.2] (30.119) (30.15) (30.16)
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Fig. 3 (left) shows the temperature profiles for Rayleigh
numbers from Ra¼ 103 to Ra¼ 108 at height y¼ L=2 and length
x¼ L=2. Fig. 2 shows the temperature field for Ra¼ 107 (left) and
Ra¼ 108 (right). It can be seen from Fig. 2 that the temperature
isolines are in the middle of the cavity almost parallel, and
temperature stratification occurs. Natural convection flow up to
Rayleigh number Ra¼ 107 is stationary, but at Ra¼ 108

flow
becomes unsteady, but not yet chaotic and turbulent. We used
DNS for simulations up to Ra¼ 108. The time-step used in the
simulation at Ra¼ 108 was Δt ¼ 10�5.

7.2. Turbulent natural convection at Ra¼ 109

Simulations of turbulent natural convection flow were per-
formed using 6 different hybrid LES/URANS turbulent models.
Time step used in the simulation at Ra¼ 109 was Δt ¼ 5� 10�7.
Time series for calculating the averaged Nusselt number was
approximately 6000 time steps for hybrid models 1 and 2,
approximately 11,000 for hybrid models 3 and 4, and approxi-
mately 8500 for hybrid models 5 and 6.

Fig. 4 shows temperature–vorticity phase portraits for Ra¼ 109

using computational mesh 80� 80R10 and different hybrid models,
1–6. It can be seen that the nature of the flow is turbulent, unsteady,
and chaotic. In natural convection flow, transition to turbulent flow
occurs between Ra¼ 108 and 109. The unsteady and chaotic char-
acteristics of natural convection flow can be seen in Fig. 6, that shows
the temperature and the vorticity field for Ra¼ 109 using hybrid
models 1 and 3. The main force acting on the fluid in the natural
convection flow is buoyancy due to temperature difference and

gravity. As the vertical walls are being heated and cooled, fluid
accelerates when passing by vertical walls. Although the flow is
turbulent near the vertical walls, the majority of eddies are formed in
the corners. In the figures it can also be seen that the boundary layer
near the vertical walls is thin and the temperature gradients are high,
therefore mesh should be compressed towards the walls. Fig. 3 (right)
shows temperature profiles for Rayleigh number Ra¼ 109 at height
y¼ L=2 and length x¼ L=2, using hybrid models from 1 to 6. The
biggest difference between the temperature profiles for Ra¼ 108 and
Ra¼ 109 is in the vertical profile in length x¼ L=2. Although the
profiles for Ra¼ 109 show the same trend, it can be seen that the
profile for hybrid model 1 deviates slightly from those profiles using
other hybrid models. Fig. 5 shows the temperature time series power
spectra at points A (0.05061, 0.05061) and B (0.09857, 0.09857) for
different hybrid models. A power spectrum was calculated using fast
Fourier Transform. Power spectra show the frequencies of eddies
forming oscillations and consequently the presence of eddies of the
different sizes. It can be seen that the widest frequency band occurs
using models 1 and 2; the presence of smaller and larger eddies is
more uniform. We noticed the power decay with the frequency,
which was also noticed by other researchers [15].

When comparing the temperature and vorticity field in Fig. 6 with
the LES/URANS regions in Fig. 8, we can see that URANS was used in
near walls regions where attached eddies occurred and LES was used
where detached eddies occurred. It can be seen from the time trace of
the Nusselt number (Fig. 7) and the averaged Nusselt number values
(Table 3) that the modification function has an effect on the flow. As
turbulent viscosity νt and heat conductivity are in linear connection
with the turbulent Prandtl number Prt, no clear trend could be done,
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Fig. 2. Temperature field of laminar simulation on computational mesh 80� 80R10: results of steady state simulation at Ra¼ 107 (left) and instantaneous results of
unsteady simulation at Ra¼ 108 (right).

Fig. 3. Temperature profiles of natural convection flow simulation on computational mesh 80� 80R10: laminar steady state simulation for Rayleigh numbers from Ra¼ 103

to Ra¼ 107 (left), laminar time averaged simulation for Ra¼ 108 (left) and simulations using hybrid models 1–6 for Rayleigh number Ra¼ 109 (right).
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whether the impact is due to lower turbulent viscosity or lower heat
conductivity within URANS region.

For Ra¼ 109 the value of switching criterion was Cswitch ¼ 30 for
hybrid models 1 and 2, and Cswitch ¼ 60 for hybrid models 3–6.
Fig. 8 shows LES and URANS zones of hybrid model in natural

convection simulation at Ra¼ 109. Graphs in Fig. 9 show a ratio of
the LES region area according to the whole simulation area. It can
be seen from Figs. 8 and 9 that models with switching criterion
Retot 3–6 have more dynamic interfaces than models 1 and 2,
where Rek is used for switching criterion. The difference in
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Fig. 4. Temperature T and vorticity ω in point (0.05061, 0.05061) at Ra¼ 109 using hybrid model: 1 (top left), 2 (top middle), 3 (top left), 4 (bottom left), 5 (bottom middle)
and 6 (bottom right).
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interface dynamics occurs when defining the quantity used for the
switching criterion. Although Rek is a dynamic quantity, it only
depends on the current modelled turbulent kinetic energy k. Retot
depends on the current modelled turbulent kinetic energy k and
on the difference between the averaged and current solved
velocity fields. The graph in Fig. 7 (left) shows the Nusselt number
for Ra¼ 109 for all hybrid models. It can be seen that the smallest
amplitude of the Nusselt number is by using hybrid models 1 and

2, and the biggest using hybrid model 4. The results obtained using
hybrid models 1 and 2 are damper in comparison with the results
obtained using models 3–6.

The averaged Nusselt number results for Ra¼ 109 are summarized
in Table 3 and compared with the results from other researchers.
Barakos et al. [1] used DNS and two-equation URANS model k–ϵ for
natural convection flow simulation, averaged Nusselt numbers for
Ra¼ 109 were 54.4 using DNS and 60.1 using k–ϵ. Dixit and Babu
[6] used the lattice Boltzmann method, averaged Nusselt number for
Ra¼ 109 was 57.35. It can be seen from averaged Nusselt number, that
the results obtained with the LES/URANS hybrid model are within
same range. From graphs with Nusselt number 7 and from the
averaged Nusselt number data (Table 3) it can be seen that different
URANS models, switching criteria and the use of a modification
function do affect the simulation results. URANS islands did not
adversely impact on hybrid models 1 and 2, where the Reynolds
number based on turbulent kinetic energy Rek is used as the switching
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Fig. 6. Temperature (left) and vorticity (right) field at Ra¼ 109 using hybrid model 1 in time step 13843 (top) and hybrid model 3 in time step 29719 (bottom).
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Table 3
Nusselt numbers for natural convection flow simulation using different turbulent
LES/URANS hybrid models.

Hybrid
model

1 2 3 4 5 6 Barakos et al.
[1]

Dixit and Babu
[6]

Ra¼ 109 56.0 56.5 57.7 56.2 52.6 52.9 (54.4) 60.1 57.35
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criteria. On the other hand, URANS islands do have a slight impact on
simulations using hybrid models where the Reynolds number based on
total turbulent kinetic energy Retotwas used, that means hybrid models
3–6. URANS islands do not affect the temperature field directly, but
they do affect the turbulent quantities, turbulent viscosity νt and
turbulent heat conductivity at. Because νt and at are being further
used in turbulent kinetic energy k transport equation computation and
fluid flow computation, it significantly affects convergence.

8. Conclusions

The developed LES/URANS hybrid turbulent model was, in combi-
nationwith BEM based algorithm and velocity–vorticity formulation of
governing equations, successfully used for solving unsteady non-
isothermal turbulent phenomena. The numerical algorithm was tested
using natural convection flow within a square cavity. We used a direct
simulation for Rayleigh numbers up to Ra¼ 108. Fluid flow up to
Ra¼ 107 is steady, at Ra¼ 108 the flow becomes unsteady, but still

periodic and non-chaotic. Transition to turbulent flow occurs between
Ra¼ 108 and 109. It can be seen from the temperature and vorticity
field, and the vorticity–temperature phase diagrams, that flow
becomes unsteady and chaotic. A unified one-equation LES/URANS
hybrid turbulent model, that is based on transport equation for
turbulent kinetic energy k, was used for developed turbulent flow.
The interface between LES and URANS is defined dynamically during
simulation. For switching criterion we employed the Reynolds number
based on turbulent kinetic energy Rek and the Reynolds number based
on total kinetic energy Retot. In further simulations, we used a
modification function for the URANS region. The results obtained with
the LES/URANS hybrid model for Ra¼ 109 are in good agreement with
the results from Barakos et al. [1] and results from Dixit and Babu [6].
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