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Natural convection in a differentially heated square cavity filled with nanofluid-saturated porous media is analyzed
numerically using the boundary element method (BEM). The mathematical model for fluid flow through porous media
is based on the Darcy—Brinkman—Forchheimer formulation; moreover, a single-phase nanofluid model was used. The
coupled set of partial differential equations is solved with the numerical algorithm, which is based on the combination of
single and subdomain BEM and solves the velocity—vorticity formulation of the governing equations. The simulations
for different nanofluid suspensions of Cu, Al,03, and TiO» solid nanoparticles in water as a base fluid saturating
porous media were performed. The effects of solid volume fraction of nanoparticles, porosity of porous media, and
various thermophysical parameters on heat transfer and fluid flow regime were investigated. The developed numerical
algorithm has been validated by a comparison to available published numerical results. The addition of nanoparticles
into a base fluid in saturated porous media seems to enhance the heat transfer in case of a conduction flow regime,
where higher values of Nusselt numbers are observed with an increase of solid volume fraction of nanoparticles. On the
other hand, the addition of nanoparticles into a base fluid diminishes the convection in porous media in case of a Darcy
flow regime, which results in lower values of the Nusselt number.

KEY WORDS: nanofluids, porous media, boundary element method, natural convection, velocity—
vorticity formulation, Darcy—Brinkman—Forchheimer formulation

1. INTRODUCTION

The use of nano-scale particles in the base fluid, also called nanofluids, is an innovative technique generally used
to enhance heat transfer or cooling processes and was first introduced by Choi and Eastman (1995). Several exper-
imental and theoretical investigations have been performed recently to analyze the effect of improved heat transfer
characteristics in different configurations and applications. A comprehensive review of available studies considering
convective heat transfer enhancement with nanofluids for the examples of forced convection was published by Kakag
and Pramuanjaroenkij (2009). In addition, a review of experimental and theoretical studies on natural convective heat
transfer of nanofluids for different types of enclosures was published by Haddad et al. (2012). However, the role of
added nanoparticles into a base fluid in natural convection heat transfer applications is still controversial, since there
seem to be some discrepancies between the numerical and experimental results as reported in Abu-Nada et al. (2010)
and Prabhat et al. (2012).
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NOMENCLATURE

a Ergun’s constant = 150 v velocity vector
b Ergun’s constant = 1.75
¢(£) geometric coefficient Greek Symbols
cp specific heat at constant pressure o thermal diffusivity
d,  average particle size of the bed f  thermal expansion coefficient
Da Darcy number r boundary of the computational domain
F Forchheimer coefficient C inner angle
q acceleration due to gravity ®  boundary shape function
k thermal conductivity 9 boundary shape function for flux
K permeability of porous medium ©  domain shape function
L characteristic length £  source or collocation point
il unit normal vector ¢ solid volume fraction of nanoparticles
Nu Nusselt number p density
P pressure w  dynamic viscosity
q vorticity flux ¢  porosity
qr temperature flux o  specific heat ratio
7 position vector @  vorticity vector
Pr Prandtl number
Ra, porous thermal Rayleigh number; Subscripts

Ra, = Ray- Da 0 reference (average value)
Rar fluid Rayleigh number c cold wall
t time f fluid phase
T temperature h hot wall
u* fundamental solution of the Laplace nf nanofluid

equation P solid phase of porous medium
V volume s solid phase of nanofluid

The phenomena of natural convection in fluid saturated porous media domains was investigated extensively in
recent decades, mainly because it occurs in several engineering applications, such as building insulation systems,
transport processes in geothermal reservoirs, pollutant transport in underground, and combustion technology, just to
name a few. There exist many comprehensive studies considering the convective flow in porous media domains that
may be found in books by Pop and Ingham (2001), Vafai (2005), and Nield and Bejan (2013). However, convective
heat transfer of nanofluids in porous media domains is still not well investigated. A review of published articles on
convection heat transfer in porous media with nanofluid was summarized by Mahdi et al. (2015).

The mathematical description of convective heat transfer with nanofluids can generally be based on a single-
phase or a two-phase approach. Since the nanofluids are a two-phase mixture in general, a two-phase model seems to
be more appropriate to describe the transport processes. The model predicts the interaction between the fluid and solid
particles that occurs due to gravity, friction between the fluid and solid particles, Brownian forces, Brownian diffusion,
sedimentation, and dispersion. There are several published articles where the behavior of nanofluids is described by a
mixture theory. The most popular model for convective transport in nanofluids was proposed by Buongiorno (2006),
where the nanofluid is assumed to be a two-component mixture; moreover, chemical reactions, external forces, viscous
dissipation, and radiative heat transfer are neglected, while nanoparticles and base fluid are assumed to be locally in
thermal equilibrium. The model predicts the Brownian motion and thermophoresis. The model was recently used for a
study of nanofluid-saturated porous media by Kuznetsov and Nield (2011) and was later extended for a problem of the
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bioconvection in Kuznetsov (2012a,b). The simulation of natural convection in a square cavity filled with nanofluid
was published by Celli (2013) and for the enclosures filled with nanofluid saturated porous media by Sheremet and
Pop (2014) and Grosan et al. (2015). Moreover, the model was used for a simulation of steady double-diffusive mixed
convection boundary layer flow past a vertical flat plate embedded in a nanofluid-saturated porous medium by Yasin
et al. (2016).

On the other hand, the single-phase approach presumes that both the fluid phase and the particles are in thermal
equilibrium and have the same local velocities. This is possible due to very small particle<size4@ nm) and
usually low concentrations of nanoparticles (2.5%-5%), which is already enough to considerably improve the heat
transfer rate of the fluids. These assumptions enable the solid—liquid mixture to be considered as a conventional single-
phase fluid, where its properties, for example, density, specific heat, thermal conductivity, and viscosity, are modified
according to the applied nanoparticles. A single-phase nanofluid mathematical model was proposed by Tiwari and
Das (2007) and was recently used for porous media applications by Sheikhzadeh and Nazari (2013), Mittal et al.
(2013), Mansour et al. (2013), Bourantas et al. (2014), Sheremet et al. (2015), Ghalambaz et al. (2015), Nguyen et al.
(2015), and Saleh and Hashim (2015).

In the present study, the natural convection in a two-dimensional porous cavity saturated with nanofluid and dif-
ferentially heated is analyzed to determine the influence of different types of added nanoparticles and concentrations
on the heat transfer. The single-phase nanofluid mathematical model was used as proposed in Tiwari and Das (2007)
and Nguyen et al. (2015) with the Darcy—Brinkman—Forchheimer momentum equation for the porous media flow. A
novel numerical approach based on the BEM has been used to solve the governing set of partial differential equations.
Therefore the velocity—vorticity formulation of the governing equations has been employed, as proposed in Ravnik
et al. (2010). The unknown field functions are solved using the combination of single-domain and subdomain BEM.
The boundary vorticity values are obtained from the kinematics equation by a singe-domairéRElrge(t and Jecl,

2003), while the domain vorticity, velocity, and temperature values are solved by a subdomain BESakRaral.,
2005). The influence of nanoparticles and porous matrix on the heat transfer and fluid flow characteristics is analyzed.

2. PROBLEM FORMULATION

The problem under consideration is a two-dimensional square cavity which is considered to be filled with a porous
medium and fully saturated with nanofluid, shown in Fig. 1, wheandy are Cartesian coordinates ahds the

length and height of the cavity. Horizontal walls are considered to be adiab@ti®f; = 0), whereT is temperature,

while vertical walls are differentially heated with constant temperatilijesn the hot wall and’. on the cold wall.

Owing to the temperature difference between the vertical walls, the density of the fluid changes, resulting in buoyancy
forces, which induce convective motion. The fluid rises along the hot wall and begins to transport heat toward the cold
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FIG. 1: Computational domain with boundary conditions
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wall. The heat flux depends on the type of the fluid, the type and amount of added nanoparticles, and permeability of
porous media.

The porous medium is assumed to be isotropic, homogenous, and in thermal equilibrium with the fluid phase,
which is a suspension of water and nanoparticles. Three different types of solid spherical nanoparticles were con-
sidered, namely, the Cu, /D3, and TiGQ. The thermophysical properties of nanofluid are given with demsijty
dynamic viscosity,, ¢, heat capacitancg:, ), s, thermal expansion coefficieft, s, and thermal conductivity,, s,
where indexn f stands for the nanofluid. All nanofluid properties are given with relationships to pure fluid and pure
solid properties, linked with solid volume fraction of nanopartigfegiven as:

Vs
whereV; is volume of solid particles anily is volume of fluid. The expressions for thermophysical properties of

nanofluid are reviewed in Haddad et al. (2012) and are listed below, where thefisti@xds for the fluid phase and
s for the solid phase:

Effective Density of Nanofluig,, :

1)

©

Png = (1= @)py + @ps )
Effective Dynamic Viscosity, s, Brinkman Model (Brinkman, 1952):
o Hr
nl = 1= )25 3)
Heat Capacitance:, ), :
(Pep)nr = (1= @)(pcp)  + @(pcp)s (4)
Thermal Expansion Coefficieft,
(PB)ng = (1= @)(PB)s + ©(pB)s (5)

Effective Thermal Conductivity,, s, Wasp Model (Wasp, 1977):

ks + 2ks — 29(ky — ks)
ks + Zk'f + (P(k‘f — ks)

The thermophysical properties of base fluid and, in this study, used nanoparticles are given in Table 1.

It is further assumed that the nanoparticles are in thermal equilibrium with the base fluid and the nonslip boun-
dary condition is considered. The fluid flow is assumed to be laminar, steady, Newtonian, and incompressible, where
the density depends only on the temperature variations, which can be taken into account with the Boussinesq approx-
imation as:

kny = ky (6)

Pnf = Po(l— Bns(T — To)) 7)
where index 0 refers to a reference state.

TABLE 1: Thermophysical properties of water and Cu,
Al,O3, and TiG solid nanoparticles (adapted from Oztop
and Abu-Nada, 2008)

Water Cu Al,O3 TiO,

¢y [I/kgK] 4179 385 795  686.2
o [kg/m?] 997.1 8933 3970 4250
ke [W/mK] 0.613 400 40  8.9538

B[x105K-Y] 21 167 085 09
o[x 107 m¥s] 1.47 1163 131.7 307
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2.1 Mathematical Model

The mathematical model for heat transfer of nanofluids in porous media is based on the conservation equations for
mass, momentum, and energy, which are obtained from the Navier—Stokes equations, generally written at the micro-
scopic level for pure fluid flow. Since the geometry of porous media is irregular and complex in general, microscopic
description is not appropriate for a fluid flow model. Consequently, all equations are averaged over the representative
elementary volume (REV), where only one part of the computational domain is available for the fluid flow. All details
about the averaging procedure are given in Bear (1972) and are omitted in this article.

The general set of governing equations describing nanofluid flow in porous media can thus be written at the
macroscopic level as follows:

e Continuity Equation:
V-7=0 (8)

¢ Momentum Equation:

100 1, = 1 o o lunpeon 1y, FU|Y
—— 4+ (V- =——Vp—Pns(T - T —— - —=—7- 9
o ot + d)z(v V) panP By 0)g + d)pnfv ] Kpnfv 12 9
e Energy Equation:
oT - kenf <o
o—+ (v- V)T = ——V*T 10
or YT o) (0

The parameters in the preceding equationg/ar@ume averaged velocity vectap, porosity,t time, p fluid pressure,

T temperaturey gravitational acceleratiorf{ permeability, and?” Forchheimer coefficient. In the energy equation,
o is specific heat ratio = ¢ + (1 — &)(pcp)p/(Pcp)ns, Where(pe,), and(pcy), s are heat capacitances of solid
and fluid phase, respectively; moreovier, s is the effective conductivity of the nanofluid-saturated porous medium
as given in Sheremet et al. (2015):

_ B _ B 20k (ky — ks)

wherek, is the effective thermal conductivity of the clear fluid-saturated porous mekiumdk + (1 — )k, ky
is thermal conductivity of the clear fluid, arkg is thermal conductivity of (nano) particles.

In this study, the thermal properties of the solid matrix and the nanofluid are considered to be identical, resulting
in o = 1(Nguyen etal., 2015). Furthermore, the effective conductivity of the nanofluid saturated porous mggdium
is assumed to be equal to the thermal conductivity of the nandflyicaccording to the assumptions in Bourantas
etal. (2014).

The momentum Eq. (9), also known as the Brinkman—Forchheimer equation, consists of two viscous and two
inertia terms. The last three terms on the r.h.s. of the equation represent the Brinkman viscous term, the Darcy term,
and the Forchhemer inertia term, which describe nonlinear influences at higher velocities. The Forchheimer coefficient
or dimensionless form-drag constant varies with the nature of the porous medium and can be written according to the
Ergun model as proposed in Nield and Bejan (2013):

32 b
K e F e (12)

whereq andb are Ergun’s constants with values 150 ancb = 1.75 (Ergun, 1952) and, is the average particle size
of the bed. The following dimensionless variables are employed to convert Egs. (8), (9), and (10) into nondimensional

form: o7
7 vot g —
v — —, F—>E, R §—>£, p—>£, T%M

, 13
Vo L 9o Do AT (13)
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whereuy is characteristic velocity given with an expressign= ks /(pc,)sL, ks is pure fluid thermal conductiv-

ity, (pcp)y is heat capacity for the pure fluid phase, ands characteristic length (e.g., length of one side of the

square cavity). Moreovely is characteristic temperatufg = (7> — T1)/2, whereAT is characteristic temperature

differenceAT = T, — Ty, po is characteristic pressupg = 1 bar, and gravitational acceleratioryis= 9.81 m/$.
Furthermore, the velocity—vorticity formulation is proposed by defining the vorticity vector as a curl of the

velocity field® = V x #. The governing set of equations is thus transformed into the following form:

V%54V x @ =0 (14)
B e Brfa e Hnf Pf o2~ Proolny pp o F 5
7-V)® = (& - V)T — PrRa¢p? 2LV x TG+ Pro—L 2L v2@ — —¢p? 2L o — ——¢?[d|@ (15

(7 V)T = %‘VZT (16)

whereo, s is thermal diffusivity of nanofluidx,,; = &, r/(pc,)ny andocy is thermal diffusivity of pure fluidx; =

k¢ /(pcp) . Since, in this study, only steady flow fields are considered, the time derivatives in the vorticity and energy
equationsPa /dt, 9T /0t, are omitted. The governing nondimensional parameters for the present problem are as
follows:

e Fluid Rayleigh number Ra= gBrATL3p;(pc,) r/1rkys
e Darcy number Da 3¢/ L?
e Porous Rayleigh number R& Rar- Da

o Prandtl number Pr g ¢, /k;

Darcy number Da % /L?

Porosity¢d

The boundary conditions for the current two-dimensional problem are

Vp=v,=0, w=0, T=1T, at =0, 0<y<1
Uy =v,=0, w=0, T=T7, at =L, 0<y<1

or
v, =v, =0, w=0, ny:O at y=0, 0<z<1 17)
or
Ve =0y =0, w=0, 83/:0 at y=L, 0<zx<1

The wall heat flux is calculated to determine the overall heat transfer of nanofluids through porous media, which is
expressed with the average Nusselt number and can be written for the case of nanofluids as

Nu= "8 [ 7. fidr (18)
]‘ff r

wherel is the surface through which the heat flux is calculated7argda unit normal to this surface.

3. NUMERICAL METHOD

The governing set of Egs. (14), (15), and (16) is solved using an algorithm based on the BEM which solves the
velocity—vorticity formulation of Navier—Stokes equations by a combination of single and subdomain BEM and was
first developed for pure fluid flow simulations by Ravnik et al. (2008, 2009). Furthermore, the solver has been adapted
for porous media flow simulations by Kramer et al. (2011, 2013) and upgraded by inclusion of nanofluid properties
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for simulation of flow and heat transfer of nanofluids (Ravnik et al., 2010). For purposes of this study, additional
parameters describing nanofluid properties together with porous media flow characteristics have been included in the
solver to simulate flow and heat transfer of nanofluid saturated porous media.

The algorithm requires known boundary conditions for velocity and temperature either of Dirichlet or Neumann
type, given with expressions (17). On all solid walls, the no-slip boundary conditions are prescribed in addition to
temperature or temperature flux. The boundary conditions for the vorticity are unknown at the beginning and are
calculated as a part of the numerical algorithm. This is not entirely true, since a problem with non-slip velocity
boundary conditions on all walls is considered, consequently, the vortiaity=sO.

In the first step, a single-domain BEM is used on the kinematics equation (14) to calculate the boundary vorticity
values. The kinematic equation (14) is used again to calculate the domain velocity values by a subdomain BEM. The
domain temperature values are calculated out of Eq. (16) using a subdomain BEM, and finally, the domain vorticity
values are obtained out of vorticity transport equation (15) using the subdomain BEM. At the end of each iteration,
the convergence criterion is checked, which is calculated as the RMS difference between the field functions of current
and previous iterations. The iteration is stopped when the RMS difference for all field functions is lessthafo10
achieve convergence, underrelaxation of vorticity and temperature values ranging from 0.1 to 0.01 is used.

All governing equations are written in the integral form, which is done using Green’s second identity for the
unknown field function and known fundamental solutigh of the diffusion operatory* = 1/4x|E — 7|, where
£ is a source or collocation point on the bound&nand+ is an integration point in the domai. The integral
representation of the kinematic equation in its tangential form as proposed in Ravnik et al. (20@inénelt al.

(2007) is given with

c(BVA(E) x F(E) + 7i(E) x /

T

7 Vu* - iddl = ii(E) x /

7 x (7 x V)u*dl + i(E) x /(J) x Vu*)dQ  (19)
T

Q

wherec() is the geometric coefficient given a&) = (/4 and( is the inner angle with origin i&. The boundary
vorticity values are calculated from the tangential form of the kinematics equation.

3.1 Subdomain BEM Solution of the Vorticity and Energy Transport Equations

The domain vorticity and temperature values are calculated out of Egs. (15) and (16) by a subdomain BEM, where
the boundary vorticity values obtained by the single domain BEM are used as Dirichlet boundary conditions in the
vorticity equation, while the temperature boundary conditions of Dirichlet or Neumann type are prescribed by the
user. The boundary-domain integral forms of the vorticity and energy transport equations are

-

o . 11 n - .= -
c(&)w;(&) + / w;Vu* - nidl = / u*g;dl’ + == Bf Pus [/ i - {u* (Tw; — dv;)}dl’
r r r

Cbprunf Pr
—/(awj —(rwj)ﬁu*dﬂ} —<1>Ra@ﬁM [/ (u*T§G x it);dT (20)
Q Bs Hny Py r
= - 1 - F 1 uy pog -
+ [ (TV x u* dﬂ] —&—d)—/ OudQ+ p—xs — —— —|U wu*ds,
/Q( 2 Da Jq vDaPri, pf| | Q

c(E)T(E) + / TVu*itdl = / un*dr+k—f(pc”)"f [ / it(u*oT)dl — /
r r kng (pcp)s LJp Q
whereg; is thejth component of vorticity flux andy is the temperature flux.

To write a discrete form of the preceding equations, the dofais divided into mesh elements that is, sub-
domains. In this work, hexahedral mesh elements are used. The field functions as well as the products of velocity
and vorticity field and velocity and temperature field are interpolated within each subdomain using standard shape
functions for a 27-node Lagrangian domain element. Within each hexahedron, a quadratic interpolation of function
is employedw; = ¥27,0,w! andT = X27,0,T". On each face of the hexahedron, continuous quadratic inter-
polations for functiongv; = ?_,6,w’ andT = X?_,0,7" are used, wherev’ andT" are function values in

(ﬁT)ﬁu*dQ} (21)

Volume 20, Issue 10, 2017



928 Kramer Stajnko, Ravnik, & Jecl

each function node. Flux over the boundary element is interpolated using discontinuous linear interpolation with four
nodes ag; = X{_,9;¢} andgy = £} 947

3.2 Subdomain BEM Solution of the Velocity Equation

The domain velocity values are obtained out of the velocity equation (14) by subdomain BEM using the following
integral expression:

c(E)3(E) + /

7 x (it x Vu*)dl + / (@ x Vu*)dQ. (22)
T

Q

#(7 - Vu*)dl = /

r
The boundary conditions of Dirichlet type are prescribed on the boundary of the domain, and finally, for each of the
subdomains, a discrete system of linear equations is written.

4. VALIDATION TESTS

To obtain a grid-independent solution, at the beginning, a grid sensitivity analysis was performed. Four different
nonuniform grids of 21x 21, 41x 41, 61x 61, and 81x 81 were tested for Cu-water nanofluid at,Ral1000, Pr =

6.2, Da=1072,10% and 10, ¢ = 0.4, andp = 0.05. The results of average Nusselt number are shown in Table 2.
On the basis of the grid independence test, the nonuniform grid 41 has been used for the following analysis.

The validation of the present numerical code was carried out for the natural convection benchmark problem in a
porous cavity saturated by a pure fluid with differentially heated sidewalls. The results for Pr = 1.0 and several differ-
ent governing parameters (R#a, ¢) were compared to studies of Nithiarasu et al. (1997), and Nguyen et al. (2015)
and, furthermore, for the case of small Darcy number (Da =5),0with Lauriat and Prasad (1989). Comparison of
Nusselt number values is presented in Table 3. First, the overall heat transfer was obtained from a Brinkman model
[without the last term in Eq. (9)]. Moreover, the Forchheimer term was added into the momentum equation for the
sake of comparison with the reference studies. A good agreement between the present and published results can be
observed. However, the Nu number values obtained by the Brinkman model are slightly higher in comparison to those
obtained by the Forchheimer model, where the inertial effects are additionally taken into account and which obviously
reduce the heat transfer rate, as also reported in Lauriat and Prasad (1989). The influence of inertia effects seem to
be predominant in the case of high,Reumbers and low Da, where higher deviation between the results obtained by
different models can be observed. A slight discrepancy between the reference results can be observed at small values
of Da. However, when comparing the results with the study of Lauriat and Prasad (1989), where, among others, the
Forchheimer extension is used, the Nusselt number values in this range of Da seem to be in better agreement.

Furthermore, the proposed numerical code was validated with the results for the case of a porous cavity fully
saturated with nanofluid, published by Nguyen et al. (2015), where the Cu nanoparticles were added to the water as
a base fluid. The comparison of average Nu is presented in Table 4 for Pr = 6.2, different solid volume fractions of
nanoparticles¢ = 0.0, 0.025, 0.05), and other governing parameters,(Ra, ¢). Present results are obtained with
the Forchheimer model. It can be observed that the results agree well with the data from the published study.

TABLE 2: Nusselt number values for different grid

sizes
Da
Nonuniform Grid 102 10* 10°
21x 21 3.416 9.076 13.185
41 x 41 3.400 9.132 12.991
61 x 61 3.401 9.132 12.992
81 x 81 3.400 9.131 12.991
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TABLE 3: Validation of the numerical code by a comparison of average Nu for natural convection
in porous media saturated with a pure fluid (Pr = 1.0) for different governing parameters, with
Nithiarasu et al. (1997), Nguyen et al. (2015), and Lauriat and Prasad (1989)

$=04
Da Ra, Nithiarasu etal. Nguyenetal. Lauriatand Prasad Present
(1997) (2015) (1989) Bm Fm
102 10 1.010 1.005 — 1.007 1.008
100 1.408 1.404 — 1407 1.371
1000 2.983 3.159 — 3.072  3.049
104 10 1.067 1.062 — 1.067 1.067
100 2.550 2.702 — 2.750 2.671
1000 7.810 8.903 — 9.079  8.377
10 10 1.079 1.072 1.07 1.092 1.092
100 2.970 2.975 3.07 3.244  3.224
1000 11.460 11.892 12.80 13.414 12.519
$=0.6
102 10 1.015 1.010 — 1.012 1.012
100 1.530 1.533 — 1536 1.503
1000 3.555 3.602 — 3.559  3.499
104 10 1.071 1.065 — 1.070 1.070
100 2.725 2.764 — 2.827 2777
1000 9.183 9.454 — 9.741 9.174
106 10 1.079 1.072 — 1.093 1.093
100 2.997 2.980 — 3.252 3.241
1000 11.790 11.924 — 13.490 12.895
$ =09
102 10 1.020 1.015 — 1.017 1.017
100 1.640 1.667 — 1671 1.643
1000 3.910 4.075 — 4.046  3.980
104 10 1.070 1.066 — 1.073 1.073
100 2.740 2.817 — 2.897 2.867
1000 9.200 9.947 — 10.349 9.917
10°¢ 10 1.080 1.072 1.07 1.093 1.093
100 3.000 2.986 3.09 3.258 3.252
1000 12.010 12.069 13.29 13.536 13.164

Note: Bm are results obtained by a Brinkman model and Fm results obtained by a Forchheimer model.

5. RESULTS

Figure 2 shows isotherms for Cu-water nanofluid under different values of the porous Rayleigh number and Darcy
number at porosityp = 0.4 and different values of solid volume fraction. Solid lines correspong +00.0, dotted

lines to = 0.025, and dashed lines = 0.05. Heat transfer in a porous medium is mostly affected by Rayleigh

and Darcy numbers. At Re= 10, the heat transfer in the horizontal direction is weak, and the main heat transfer
mechanism in this case is conduction. An increase of feaults in stronger convective motion, which is clearly
evident from the temperature field; whenRa1000, thin boundary layers are created near the hot and cold walls,

and the isotherms in the core region become almost horizontal and parallel to adiabatic and impermeable walls.
According to the temperature fields, a decrease of Da enhances the heat transfer through the cavity. The Da number
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TABLE 4: Validation of the numerical code by a comparison of average Nu for natural convection in porous media

saturated with a nanofluid (Pr = 6.2) for different governing parameters with Nguyen et al. (2015)

@ =0.05
$=04 $=0.6 $=09
Da Rg | Nguyen etal. (2015) PresentNguyen et al. (2015) PresentNguyen et al. (2015) Present
1072 1000 3.433 3.400 3.850 3.826 4.162 4.145
10-4 1000 9.117 9.132 9.590 9.743 9.901 10.154
10-¢ 1000 11.778 12.991 11.899 13.128 11.976 13.195
$=04
©=0.0 @ =0.025 @ =0.05
1072 10 1.007 1.008 1.081 1.083 1.160 1.162
10-2 1000 3.302 3.282 3.370 3.345 3.433 3.400
10-¢ 1000 11.867 13.238 11.847 13.131 11.778 12.991

influences the magnitude of the Darcy term in Eqg. (15). When Da is increasing, the flow regime, is transited into the
Darcy flow regime and the model is near to Darcy’s law.

However, the addition of the nanopatrticles into the base fluid results in an attenuation of the convective motion
inside the porous cavity but the overall heat transfer remains the same, since the main convective cell with upward
flows along the hot wall and downward flows along the cold wall is conserved.

From the results in Table 5, it is evident that overall heat transfer is enhanced with an increase of solid volume
fraction of nanoparticles in case of the conduction-dominated regime (at low values, @n@eDa = 1072). The
highest values of Nu can be observed in case of added Cu nanoparticles. In the case of a convection-dominated
regime (Rg > 100 and Da< 10~%), the addition of nanoparticles diminishes the convection, which results in lower
values of Nu. The same behavior can be observed for all different types of hanoparticles.

Further computations have been carried out for several values of governing parameters: solid volume fraction
of nanoparticles ¢ = 0.0, 0.025, and 0.05), the porosity of the porous medigm=(0.4, 0.6, and 0.8), porous
Rayleigh number (Ra= 10, 100, and 1000), and Darcy number (Da =%a10-). The water as a base fluid where
Pr = 6.2, with addition of different types of nanoparticles, namely, CyOAl and TiGQ, was considered in the
study. To ensure the nanofluid mixture is homogenous, the solid volume fraction is considered up to 5%, since a
higher concentration may cause sedimentation or absorption of particles on the solid surfaces of the porous matrix,
as reported in Muthtamilselvan et al. (2010).

Figure 3 presents streamlines for Cu-water nanofluid under different values of the porous Rayleigh number and
Darcy number at porosity = 0.4 and solid volume fractiop = 0.05. The flow field consists of a single circulation
flow in the clockwise direction for all different values of Rand Da as a result of the applied horizontal temperature
difference. With an increase of Rand a decrease of Da, the circulation becomes extended along the horizontal axis;
furthermore, the boundary layers become more significant.

Figure 4 shows the dependance of solid volume fraction on the average heat transfer for Cu-water nanofluid and
various porous Rayleigh and Darcy numbers. In the case when conduction is is dominant heat transfer mechanism,
Da = 1072 [Fig. 4(a)], the heat transfer enhancement due to an increase of solid volume fraction is more evident.
The addition of nanoparticles in the base fluid enhances the thermal conductivity, which consequently results in
higher values of the Nusselt number. Moreover, the average Nu increases with an incregsé\iffRadecrease of
Darcy number, Da< 10~* [Figs. 4(b) and 4(c)], when convection becomes the dominant heat transfer mechanism,
it appears that average Nusselt number decreases with the solid volume fracTibe addition of nanoparticles in
general suppresses the convection, so at this stage, further enhancement of the heat transfer rate is limited. At fixed
Ra, = 1000 [Fig. 4(d)], it is obvious that an increase of the solid volume fraction leads to a higher average Nu when
Da = 1072; however, at low values of Da, average Nu decreases alonggwith
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FIG. 2: Temperature contour plots fdr = 0.4, Rg = 10 (upper row), Ra= 100 (middle row), Ra = 1000 (bottom row), and
various Da; solid lineg = 0.0, dotted linegp = 0.025, dashed linep = 0.05

The influence of different type of nanoparticles on average Nu at fixgd=R#00 and various Da is shown in
Fig. 5. In the case of the conduction-dominant regime, Da =*1Big. 5(a)], it is obvious that the heat transfer is
enhanced due to all different types of added nanoparticles. Most efficient seem to be the Cu nanoparticles, since the
heat transfer rate in that case is the highest. When Da%,1Be addition of Cu nanoparticles still results in higher

values of average Nu, while the addition of,® and TiQ, suppresses the convection, resulting in lower values of
Nu. At low values of Da [Fig. 5(c)], the addition of all different kinds of nanoparticles results in lower values of

average Nu.
Figure 6 presents the effect of porosibyand solid volume fractiomp on the average Nusselt number for Cu-
water nanofluid at Ra= 1000 and various Darcy numbers. In general, the heat transfer is enhanced with an increase
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TABLE 5: Nusselt number values fas = 0.4 and various
Ra,, Da, ¢ and different types of nanofluids

Nu
Da Rap () Cu Al 203 TiO 2

0.0 1.008 1.008 1.008
102 10 0.025 1.083 1.081 1.069 {
0.05 1.162 1.155 1.133

0.0 1.067 1.067 1.067
104 10 0.025 1.131 1.128 1.116
0.05 1.201 1.192 1.171

0.0 1.092 1.092 1.092
10° 10 0.025 1.152 1.148 1.137 4
005 1218 1.208 1.187

0.0 1.403 1.403 1.403

1002 100 0.025 1.437 1429 1.418 |
005 1475 1456 1.436

0.0 2736 2736 2.736

1004 100 0.025 2.695 2.671 2.657 T
0.05 2.653 2599 2577

0.0 3.240 3.240 3.240

10® 100 0.025 3.160 3.127 31131
0.05 3.080 3.009 2.988

0.0 3.282 3.282 3.282

1002 1000 0.025 3.345 3.328 3.303 |
0.05 3.400 3.359 3.317

0.0 9.072 9.072 9.072

1004 1000 0.025 9.115 9.063 9.002 1
0.05 9.132 9.003 8.908

0.0 13.238 13.238 13.238
10°® 1000 0.025 13.131 13.032 12.9571
0.05 12.991 12.756 12.642

of porosity, which is specially obvious at high values of Da [Fig. 6(a)]. With a decrease of Da, the addition of
nanoparticles starts to slow down the convective motion, which results in lower values of Nu, as clearly shown in
Figs. 6(b), 6(c), and 6(d).

In Figs. 7, 8, 9, and 10 temperature and velocity profiles at the horizontal midsection of the cavity are shown.
Figure 7 presents the dependence of temperature and velocity gradients op #téRa 10 *. Higher temperature
gradients can be observed at higher values gf, Rereover, the velocity profile seems to have peaks near to the
vertical walls. However, when Ra= 10, the temperature profile is almost linear, indicating the pure conduction
regime, which can also be clearly observed from the velocity profile. The dependance on the Da numper at Ra
1000,¢ = 0.4, andp = 0.05 is shown in Fig. 8. In the case of a Darcy flow regime (Da=°)ahe highest temperature
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FIG. 3: Streamlines fokp = 0.4, ¢ = 0.05, and Ra= 10 (upper row), Ra= 100 (middle row), Rga = 1000 (bottom row), and
various Da

and velocity gradients can be observed, while the maximum and minimum values of velocity can be found near to
the vertical walls as a typical characteristic for the pure Darcy flow. The temperature profile seems to be similar for
the transition regime at Da = 18. With an increase of Da toward a non-Darcy flow regime, the velocity peaks are
located away from the vertical walls and exhibit lower values in comparison to the Darcy flow regime.

Moreover, Fig. 9 presents the influence of solid volume fraction gt=R8000, Da = 10%, and¢ = 0.4. There
seem to be only slight differences between the temperature and velocity profiles due to a change of solid volume
fraction, namely, the velocity profile exhibits the highest pealp at 0.05. On the other hand, the type of nanofluid
does not influence the course of the temperature or velocity profiles, since in Fig. 10, it is obvious that the profiles for
different types of added nanoparticles coincide with each other.
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6. SUMMARY

Numerical analysis of natural convection in a two-dimensional cavity fully filled with nanofluid-saturated porous me-

dia has been carried out using the boundary element method. A single-phase mathematical model was used, assuming
that the concentration of nanoparticles is low (up to 5%) and that the nanoparticles behave in the same way as the
water molecules. The conservation of momentum is described with the Brinkman—Forchheimer momentum equation,
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at Rg, = 1000 and Da = 10*

where the inertial effects are taken into account. The numerical procedure is based on the combination of the single-
and subdomain boundary element method, which solves the velocity—vorticity formulation of governing equations.
The proposed numerical code was validated by a comparison of present results with the available results from the
literature for a wide range of governing parameters. Furthermore, the influence of different types of added nanopar-
ticles into the base fluid on possible heat transfer enhancement was investigated, focusing on the volume fraction of
nanoparticles as well as different porous media properties.
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The addition of nanoparticles results in higher heat conductivity of the fluid, but it suppresses the natural convec-
tion phenomena in general. In the case of the non-Darcy regime (high values of Da), the influence of the Brinkman
viscous term in the momentum equation is significant, and the overall heat transfer through a nanofluid-saturated
porous cavity is higher in comparison to pure fluid. With a decrease of Da number, the model approaches the Darcy
regime, and the overall heat transfer decreases with addition of nanoparticles. When comparing different types of
added nanopatrticles, the Cu nanoparticles seem to be the most efficient for heat transfer enhancement.
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