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Abstract
The paper proposes a hybrid analytical–numerical model for calculating the maximum elastic force acting on a flow-driven
prolate spheroidal particle during its collision with a rigid wall. This model assumes that the maximum elastic force is a
function of normal impact velocity, particle material properties, particle size, particle aspect ratio and particle orientation
angle. The relationship between the parameters is determined by dimensional analysis. The remaining unknown coefficients
are calibrated by performing finite element (FE) simulations. The solutions for particle aspect ratios of 1.5, 2 and 3 are
presented. The proposed model is verified by comparison with independent FE simulation results for different normal impact
velocities, particle material properties, particle sizes, particle aspect ratios and particle orientation angles. The results of
the comparison between the results of the proposed model and the FE simulation results show a good agreement for small
deformations of the particle. The model is valid for any properties of particle material, particle sizes and particle orientation
angles.
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1 Introduction

In dispersed multiphase flow, the elastic force acting on a
particle during its collision with a wall needs to be correctly
determined in order to gain insight-seeing into the particle–
wall interaction. For example, the deposition of particles on
an adhesive surface arises from an energy balance by com-
paring the dissipation of kinetic energy of the particle with
the incident kinetic energy, in which the elastic force plays
an important role in the kinetic energy [15,23]; shot peening
is used to produce a compressive residual stress layer and
strengthen the surface of metals, and the elastic force acting
on the particle is used to estimate the residual stress [13,24].

Most studies focus on the interaction between a spherical
particle and a wall [1,8], whereas studies on non-spherical
particle–wall collision are far less numerous, despite the fact
that flows with non-spherical particles occur in many practi-
cal cases. One of the reasons for this lies in several difficulties
in dealing with such multiphase systems:
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(1) It is difficult to derive an analyticalmodel for calculating
the elastic force acting on a non-spherical particle due
to the increasing number of parameters. Unlike in the
case of spherical particles, it is necessary to take into
account the aspect ratio λ (i.e. λ = b/a, where b and
a are the semi-major and the semi-minor axis of the
particle, respectively) [7,21] as well as the orientation
angleβ of the non-spherical particle (i.e.measured from
the angle between the major axis of the particle and the
wall) [2].

(2) Thedeterminationof the elastic force canbe achievedby
performing numerical simulations using particles with
specific particle material properties, shapes, and sizes.
Although this approach is straightforward, it always
leads to a large number of numerical simulations. For
example, in Cui et al. [4], the elastic force acting on
a glass fibre was studied. The glass fibres had a uni-
form shape (i.e. λ = 22.4) and size (i.e. particle volume
equivalent diameter Dp = 3.29µm) andmore than 200
FE simulations were performed in order to construct
the elastic force model of the fibre. Therefore, it is cur-
rently not feasible to derive an elastic force model for
arbitrary particle material properties and sizes by per-
forming only direct numerical simulations.

Regarding the above observations, it is clear that combin-
ing the advantages of the generality of theoretical derivations
with targeted results of direct numerical simulations could
lead to the derivation of a general elastic forcemodel by using
FE simulations to determine the unknown model parameter
values. Using this approach in the case of non-spherical par-
ticles, it would be possible to derive an elastic force model
with a wide range of applicability.

The solution of the elastic force as a function of compres-
sion distance was initially given by Landau et al. [16] for
small deformations of two elastic solid particles for arbitrary
properties and sizes of particlematerial. Cui and Sommerfeld
[6] took the force model of Landau et al. [16] as a basis and
proposed an analytical solution for calculating the maximum
elastic force acting on an elastic spherical particle during the
collision with a rigid plane wall taking the particle impact
velocity and impact angle into account. This model is veri-
fied by comparison with the FE simulation results in Fig. 4,
and a good agreement is found for small deformations of the
particle. The analytical solution to determine the changes in
the translational and rotational velocities of the particle dur-
ing the collision was also proposed by Cui and Sommerfeld
[6]. In the non-spherical particle–wall collision, most studies
calculate the elastic force acting on the particle by performing
FE simulations. Fang et al. [9,10] calculated the elastic force
acting on disk-like graphite particles by performing FE sim-
ulations at two fixed orientations, i.e. vertical and horizontal.
The influence of the particle sizes and material properties on

the critical sticking velocity was studied. Cui et al. [4] cal-
culated the maximum elastic force acting on a glass fibre at
arbitrary particle orientation angles and found that the fibre
tends to collide with the wall twice in a collision event if the
orientation angle is larger than 60◦.

Prolate spheroidal particles have been widely used to rep-
resent the shape of non-spherical particles, e.g. quartz sands
[18,22], sludge flocs [5] and fibres [3,11]. In particular, a
prolate spheroidal particle is identical to a spherical particle
for aspect ratio λ = 1. Therefore, it would be advantageous
to derive an analytical model as a template for the elastic
force using the prolate spheroidal particle. The process of
deriving the elastic force model for a prolate spheroidal par-
ticle is as follows: first, a general model is proposed using
analogy arguments (Sect. 2); then the relationship between
the various parameters is determined by dimensional analysis
(Sect. 2); after that, the remaining unknownmodel parameter
values are calibrated by performing FE simulations (Sect. 4).
Finally, the proposed model is verified by comparison with
independent FE simulation results (Sect. 4). In Sect. 5, the
advantages and limitations of the proposed model are sum-
marised.

2 Derivation of the elastic force model

As shown in Fig. 1, a prolate spheroidal particle with an
impact velocity U0, collides with a wall at an impact angle
α (i.e. measured from the angle between the direction of the
impact velocity and the plane wall) and an orientation angle
β. The normal impact velocity is UN = U0sinα. During
the collision, the elastic particle deforms, and its incident
kinetic energy is transformed into elastic potential energy.
This deformation induces an elastic force Fe acting on the
particle away from thewall. The fluid dynamic drag force and
gravity are much smaller than the elastic force (i.e. as shown
in Fig. 5) and can therefore be neglected. The Hertz contact
[14] is applied to simplify the collision process. Therefore,
the particle is assumed to be an elastic body, and the plane
wall is assumed to be rigid.

The analytical solution of the elastic force acting on an
elastic spherical particle during its collisionwith a rigid plane
wall was proposed by Cui and Sommerfeld [6]:

Fe(y) = 4Ep
√
Rp

3[1 − σ 2
p]
y

3
2 , (1)

where y is the compression distance, and σp, Ep, Rp are
the Poisson’s ratio, the Young’s modulus and the radius of
the particle, respectively. It is obvious that the maximum
elastic force acting on the particle is reached at the maximum
compression distance h = max(y), which is given by
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Fig. 1 A schematic diagram of the collision between a prolate
spheroidal particle and a plane wall

h
5
2 = 15

16

mp [U0 sin α]2
√
Rp

1 − σ 2
p

Ep
, (2)

wheremp is themass of the particle. Therefore, themaximum
elastic force acting on the spherical particle can be expressed
as

Fe,max = 0.7574ρ0.6
p U 1.2

N D2
p

[
Ep

1 − σ 2
p

]0.4

. (3)

The above equation demonstrates that the maximum elas-
tic force acting on the particle is a function of the particle
density ρp, the normal impact velocity, the volume equiva-
lent diameter, Young’s modulus and the Poisson’s ratio. In
the case of prolate spheroidal particles, the particle aspect
ratio λ and orientation angle β are necessary to be taken
into account. Therefore, a generalised form of the maximum
elastic force model can be proposed as

Fe,max = ξ (λ, β) ρi
pU

j
N Dk

p

[
Ep

1 − σ 2
p

]l

(4)

where i , j , k, l are exponents, and ξ (λ, β) is an unknown
function of the particle aspect ratio and orientation angle. For
any given particle aspect ratio and orientation angle, ξ (λ, β)

has a dimensionless value.
In order to decrease the number of unknown parameters

in Eq. (4), first a dimensional analysis is performed. The
dimensions of mass, length and time are represented as {M},
{L} and {T}, respectively. Thus, Eq. (4) is written in terms
of primary dimensions

{MLT−2} = {MiL−3i}{LjT−j}{Lk}{MlL−lT−2l}. (5)

The dimensional analysis reveals that k = 2, j = 2i and
l = 1 − i . Therefore, Eq. (4) can be simplified to

Fe,max = ξ (λ, β) ρi
pU

2i
N D2

p

[
Ep

1 − σ 2
p

]1−i

(6)

In the case of spherical particles, ξ (λ = 1) = 0.7574 and i =
0.6; in the case of prolate spheroidal particles, the remaining
unknown function ξ(λ, β) and exponent i can be determined
by performing FE simulations.

3 Setup of finite element simulations

The non-linear FE simulations are performed by using the
commercial software ABAQUS�. The Nlgeom (non-linear
geometry) explicit dynamics solver is applied. Before the
deformation, a Dirichlet boundary condition [20] is applied
on the particle; during the deformation, aNeumann boundary
condition [17] is applied in the contact region. The elastic
force acting on the elastic particle is the same in magnitude
as the elastic force acting on the rigidwall (i.e. Newton’s third
law). Therefore, it is not necessary to integrate the stress field
over the entire particle body to obtain the force; instead, the
elastic force acting on the rigid wall is recorded.

The particle is discretized by using a fully unstructured
mesh. A local grid refinement is adopted near the contact
region as shown in Fig. 2. The particle can collide with the
wall at three principal orientations: horizontal, vertical and
oblique. The required grid resolution differs in each case. As
illustrated in the mesh refinement study (see Fig. 3), the grid
resolution of the oblique orientation is the finest, and more
than 100,000 grid elements are needed for the simulation to
obtain mesh independent results. For horizontal and vertical
orientations, 50,000 grid elements are sufficient for the FE
calculation as the contact regions are symmetric in both cases.

Particles of different material types are used in this study,
as listed in Table 1. The spherical particle is used to verify the
FE simulation results with the analytical solution of Eq. (3).
To determine the unknown coefficients ξ and i in Eq. (6),
type I of the prolate spheroid is used, and thus the current
model is established. Type II and III of the prolate spheroids
have different particle aspect ratios and material properties
and are used to verify the established model.

Numerical verification of finite element simulations

FE simulation results are first verified by comparisonwith the
analytical solutions in the case of spherical particles for dif-
ferent particle sizes and materials as shown in Fig. 4. The
difference in values φ between the FE simulation results
Fe,FE and the analytical results Fe,an is sufficiently small
at small impact velocities, i.e. φ = |Fe,FE − Fe,an|/Fe,an ≤
0.93% for UN ≤ 0.2. Because the analytical model of
Eq. (3) was derived based on the assumption of small particle
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Fig. 2 Local grid refinement of the prolate spheroidal particle at three
principal orientations: horizontal (a), vertical (b) and oblique (c) (λ =
2)

Fig. 3 Mesh refinement study of the maximum elastic force acting on a
prolate spheroidal particle during its collisionwith a planewall by using
unstructured meshes for three principal orientations (UN = 0.1m/s,
ρp = 2500 kg/m3, Ep = 64GPa and σp = 0.24)

deformations. The difference in values increased signifi-
cantly with increasing impact velocities; φ reaches to 5.1%
at UN = 20m/s.

The magnitudes between the maximum elastic force, the
fluid dynamic drag force and the gravity are compared in
Fig. 5 (note that the ordinate axis is on a logarithmic scale).
The drag force model used in this comparison is according
to Schiller and Naumann [19]. The relative velocities used
in both models are kept the same (i.e.

∣∣up − u f
∣∣ = UN ,

where up and u f are the particle velocity and the fluid
velocity, respectively). Compared with the maximum elastic
force, the drag force is 5000 times smaller, and the gravity is
158,000 times smaller. Therefore, it is reasonable to neglect
the drag force and the gravitational force during the analysis
of particle–wall collisions.

4 Results analysis and determination of the
elastic force model

Figure 6 plots the maximum elastic force acting on the pro-
late spheroidal particle for different particle aspect ratios and
orientation angles. For all aspect ratios, the maximum elas-
tic force is the greatest at the horizontal orientation angle
(i.e. β = 0◦) and then decreases with increasing orienta-
tion angle. At the orientation angle of 45◦, the maximum
elastic reaches the lowest value. After that, the maximum
elastic force increases with increasing orientation angle and
reaches another peak value at the vertical orientation angle
(i.e. β = 90◦). However, the maximum elastic force at the
vertical orientation is still much lower than in the horizontal
orientation case. Interestingly, it is found that all three curves
(i.e. maximum elastic force as a function of the orientation
angle for three different aspect ratios) have an intersection
point at β = 5◦ (see Fig. 6). Figure 7 plots the von Mises
stress distribution at orientation angles of 3◦ and 45◦ for three
different aspect ratios. The region that has the largest level
of the von Mises stress distribution in the case of β = 3◦ is
larger than in the case of β = 45◦. The reason is that more
kinetic energy of the particle can be transformed into elastic
potential energy if the contact region becomes symmetric. In
the case of β = 45◦, the deformation cannot fully develop
as the particle can rotate around the contact region.

In order to calculate the coefficient i in Eq. (6), the par-
ticle size and material properties are kept constant. Only
the normal impact velocity and the orientation angle are
varied in the FE simulations. In this way, the terms of ρi ,

D2
p and

[
Ep/

[
1 − σ 2

p

]]1−i
of Eq. (6) become constant val-

ues, and the maximum elastic force Fe,max ∝ U 2i
N . Then

the coefficient i can be calculated by fitting the curve of
Fe,max = cU 2i

N , where c is a coefficient that relates to the
particle shape, size andmaterial properties. Figure 8 plots the
maximum elastic force as a function of the normal impact
velocity for different orientation angles. By fitting the curve
of the simulation data for all orientation angles, it is found
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Table 1 Material properties of different types of particles

Particle types Young’s modulus
[GPa]

Poisson’s ratio
[–]

Density [kg/m3] Volume
equivalent
diameter [µm]

Aspect ratio
[–]

Sphere (E-glass) 80 0.22 2560 2.45, 3.29 1

Prolate spheroid type I (glass) 63 0.24 2500 2.45, 5, 10 1.5, 2, 3

Prolate spheroid type II (copper) 115 0.35 8960 2.45 2

Prolate spheroid type III (iron) 203 0.29 7690 2.45 1.5

Fig. 4 Numerical verification of the FE simulated results by compari-
son with an analytical solution in the case of sphere-wall collision for
different particle sizes and materials (ρp = 2560 kg/m3, Ep = 80GPa
and σp = 0.22)

Fig. 5 Comparison of themaximum elastic force, the drag force and the
gravity acting on a spherical particle (Dp = 2.45µm,ρ = 2560 kg/m3,
Ep = 80GPa, σp = 0.22)

that the coefficient i remains a constant value of 0.6, which
coincide with the analytical solution of the spherical particle.
Therefore, Eq. (6) simplifies to

Fig. 6 The influence of the orientation angle on the maximum elas-
tic force acting on the prolate spheroidal particle for different particle
aspect ratios (UN = 0.0457m/s, ρp = 2500 kg/m3, Ep = 64GPa and
σp = 0.24)

Fe,max = ξ (λ, β) ρ0.6
p U 1.2

N D2
p

[
Ep

1 − σ 2
p

]0.4

. (7)

The general expression of ξ(λ, β) is difficult to derive
since both λ and β are dimensionless values. However, we
should keep in mind that ξ(λ, β) is a constant value for any
given particle aspect ratio and orientation angle. If the parti-
cle aspect ratio is fixed, the coefficient ξ is a function of the
orientation angle, i.e. ξ(λ = const, β). Therefore, it is pos-
sible to determine the function ξ(λ = const, β) for different
particle aspect ratios. In this work, three particle aspect ratios
are considered, i.e. λ = 1.5, 2, 3. Figure 9 plots the coeffi-
cient ξ as a function of the orientation angle for these three
particle aspect ratios. By applying polynomial fitted curves
on these data, the function ξ(λ = 1.5, 2 or 3, β) can finally
be obtained as
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Fig. 7 The instantaneous von
Mises stress distribution of
prolate spheroidal particles
during the collision with a plane
rigid wall for different particle
aspect ratios
(UN = 0.0457m/s,
ρp = 2500 kg/m3,
Ep = 64GPa and σp = 0.24)

Fig. 8 The influence of normal impact velocity on themaximum elastic
force of the prolate spheroidal particle for different orientation angles
(ρp = 2500 kg/m3, Ep = 64GPa, σp = 0.24, and λ = 2)

⎡

⎣
ξ(λ = 1.5, β)

ξ(λ = 2, β)

ξ(λ = 3, β)

⎤

⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0.7864 0.82837 0.9087
8.2293 ∗ 10−5 −0.00652 −0.0377
−5.2329 ∗ 10−4 −9.7135 ∗ 10−4 8.1284 ∗ 10−4

1.6670 ∗ 10−5 4.6124 ∗ 10−5 −6.6192 ∗ 10−6

−1.9929 ∗ 10−7 −8.1944 ∗ 10−7 1.9372 ∗ 10−8

9.5851 ∗ 10−10 6.6760 ∗ 10−9 0
−1.1658 ∗ 10−12 −2.0774 ∗ 10−11 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

T ⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1
β

β2

β3

β4

β5

β6

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (8)

Equations (7) and (8) are the proposed maximum elastic
force model for prolate spheroidal particles. This model is
straightforward and the functions of ξ(λ = 1.5, 2 or 3, β)

are explicitly given in this study. For other values of the aspect
ratio λ, the user can follow the same FE simulation steps and
construct a new function ξ(λ = const, β).

Verification of the proposed elastic force model

First, the proposed model is compared with independent FE
simulation results for different particle materials. Here, two
types of particlematerials are considered, i.e. copper and iron

Fig. 9 The influence of the orientation angle on the coefficient of
ξ(λ = const, β) for different aspect ratios (UN = 0.0457m/s, ρ =
2500 kg/m3, Ep = 64GPa and σp = 0.24)

(particle type II and III as listed in Table 1) [12]. In order to
increase the difference between the two cases, the particle
aspect ratio is also varied. The aspect ratios for particle type
II and III are 2 and 1.5, respectively. Figure 10 compares the
results between the proposed model and the FE simulation
for different particle material types. The difference between
the results is very small, proving the validity of the proposed
model.

The proposed model is further verified by varying the
particle size and aspect ratio. Two types of particles are com-
pared: Dp = 5µm, λ = 2; and Dp = 10µm, λ = 1.5.
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Fig. 10 Comparison of the results calculated by using the proposed
maximum elastic force model and independent FE simulations for dif-
ferent particle material properties and aspect ratios; a particle material:
copper, λ = 2; b particle material: iron, λ = 1.5 (β = 45◦, particle
material properties are listed in Table 1)

Figure 11 compares the results calculated by the present
model and the FE simulation. In both cases, a good agree-
ment between results is again found. However, as shown in
Fig. 11b, the inertia of the particle becomes four times larger
when the particle size is increased from 5 to 10 µm, and
therefore the difference in results reaches 13.6% atUN = 20
m/s. Finally, the proposed model is verified by varying both
the particle orientation angle and the particle aspect ratio. As
shown in Fig. 12, at β = 80◦ and λ = 3, the difference in
results between the proposed model and the independent FE
simulation is very small.

The difference between the analytical solution and the FE
simulation results increases with large particle deformation,
as illustrated in Fig. 4. However, the threshold value of par-
ticle deformation varies from case to case and is influenced
by the particle size and aspect ratio. Since the deformation
decreases with increasing particle aspect ratio, it is reason-
able to use the threshold value of particle deformation in the

Fig. 11 Comparison of the results calculated by using the proposed
maximum elastic force model and independent FE simulations for
different particle sizes and aspect ratios; a Dp = 5µm, λ = 2; b
Dp = 10µm, λ = 1.5 (β = 45◦, ρp = 2500 kg/m3, Ep = 64GPa
and σp = 0.24)

Fig. 12 Comparison of the results calculated by using the proposed
maximum elastic forcemodel and independent FE simulations at aspect
ratio λ = 3 and orientation angle β = 80◦ (Dp = 2.45µm, ρp =
2500 kg/m3, Ep = 64GPa and σp = 0.24)
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case of a spherical particle as a reference value. In all cases,
if the analytical solution of Landau et al. [16] is applicable,
the proposed force model can be applied as well.

5 Conclusions

In this work, a straightforward hybrid analytical–numerical
model is proposed to calculate the maximum elastic force
acting on an elastic prolate spheroidal particle during the
collision with a solid plane wall. The generalised form of the
model is derived through analogy arguments, and the number
of coefficients of the model is reduced by using dimensional
analysis. The remaining two unknown coefficients, i.e. i and
ξ(λ, β), are determined by performing FE simulations. It is
found that the coefficient i = 0.6 is constant for different par-
ticle orientation angles, which coincides with the analytical
solution for spherical particles. ξ(λ, β) is solely a function
of the particle aspect ratio and orientation angle. The func-
tions of ξ(λ = const, β) at three different aspect ratios (i.e.
λ = 1.5, 2 and 3) are given in this study. Intense verifications
have been performed by varying particle material properties,
sizes and shapes. Good agreement between the results of the
proposedmodel and the FE simulationwas found in all cases.
The proposed model can be used to calculate the maximum
elastic force acting on a prolate spheroidal particle during the
collision with a wall at small deformations of the particle for
arbitrary properties of particle material, sizes, aspect ratios
andorientation angles. Thismodel canbe easily implemented
into a Lagrangian particle tracking algorithm and allows an
accurate prediction of the elastic force of prolate spheroidal
particles during their collision with a wall.
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