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a b s t r a c t 

The paper covers a porous particle drying problem, which can be divided into two or three stages. The first stage 
is drying of surface moisture, the second stage is drying inside the particle, and the third, one which is relevant 
only to hygroscopic material, represents the change of particle moisture due to the change of environmental 
moisture. The second stage is the most relevant for the porous materials, and is, therefore, covered in more detail 
in this paper, with the main focus on the heat transfer inside the particle which affects the drying kinetics. The 
heat transfer problem inside the spherical particle has been solved using BEM, by transforming a 3D problem 

into a quasi 1D case by assuming uniform boundary conditions all around the particle, resulting in the solution 
depending only on the radial direction. The solution of the heat transfer needs to be calculated accurately as it 
directly affects the evaporation rate of the liquid on the interface between the dry crust and the wet core, which 
dictates the drying speed and affects the drying time. An in-depth analysis of space and time discretisation was 
performed on a typical spray drying example, where it is shown that a choice of a correct time step is cruicial for 
achieving good computational accuracy of the drying kinetics. The proposed numerical approach has also been 
tested on various drying conditions, with changing the particle size and the temperature of the drying gas, which 
have a largest effect on the drying kinetics. Finally, an analysis of the computed drying times is made as this is 
the most important parameter from the practical point of view, especially when designing the drying chambers. 
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. Introduction 

Modelling of the drying process presents a challenge in research as
ell as in the industrial environment. A special challenge is numerical
odelling of drying of porous particles. Most of the commercial CFD

Computer Fluid Dynamic) codes for particles drying treat all the mois-
ure as a surface moisture using one-stage models, where only particle
urface moisture is removed. However, because porous particles contain
lso the fluid phase (moisture), more complex models have to be used,
nd the one-stage drying model is not sufficient. One of such processes,
here multi-stage drying models are more suitable to use, is the spray
rying process. The one stage drying models are suitable for solid, non-
orous materials drying, where the interior does not contain moisture. 

In spray drying, the solution to be dried is typically atomized by
 spray nozzle, located in the drying cyclone, which produces slurry
roplets with a size between 50 μm and 300 μm. Depending on the spray
ryer size, from a hundred thousand to a few hundred thousand parti-
les are typically present in the system. Usually hot air is used as the
rying medium. Drying of small particles with hot air or any different
rying medium was studied in several works. A simplified Reaction En-
ineering Approach (REA) was developed by Fu et al. [1] , for simulating
hree different stages in drying kinetics, where a fractional coefficient
∗ Corresponding author. 
E-mail address: timi.gomboc@um.si (T. Gomboc). 

[  

t  

a  

d  

ttps://doi.org/10.1016/j.enganabound.2019.07.019 
eceived 29 March 2019; Received in revised form 8 July 2019; Accepted 29 July 20
955-7997/© 2019 Elsevier Ltd. All rights reserved. 
as introduced to model kinetics of vapour density at the surface of
 droplet during all drying stages, hence, determining the convective
ux of moisture from the outer surface. Based on the similar idea, Lan-
rish and Kockel [2] developed a drying kinetics model where a typi-
al material characteristic drying curve in the case of milk powder was
sed. A physically more complex model, where a two stage approach
or modelling heat, mass and momentum transfer in a coal-water slurry
roplet, was developed by Levi-Hevroni et al. [3] . A simple heat bal-
nce was used to determine the average temperatures of the wet core
nd the dry crust. A numerical solution of the balance equations was
btained using Gear‘s method [4] , where mass transfer through the dry
rust was modelled with Stefan diffusion. A published two stage model
y Mezhericher et al. [5] was extended to the solution of Partial Differ-
ntial Equation (PDE), to solve the temperature profile within the parti-
le. In Mezhericher et al. [6] , a diffusion based model, for predicting the
ass transfer rate through the dry crust, was replaced by the PDE based
iffusion equation for the vapour fraction in the dry crust, where the
apillary pore was treated as a straight cylindrical tube. A fully implicit
nite difference scheme was applied for solving the resulting PDE. A new
odel based on population balance theory was presented by Handscomb

t al. [7] . The model is able to give details on morphology evolution for
ulti-component mixtures within the drying particle. In Sagadin et al.

8] , a two stage model was presented for drying of porous particles. The
emperature profile within the particle was solved through the PDE and
 Stefan diffusion model was used for mass transfer rate through the
ry crust. A sphere shaped droplet with spherical symmetry was used,
19 
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Fig. 1. Schematic presentation of the drying particle through the second drying 
stage. 
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hich reduced all the PDEs in the final model to a single spatial dimen-
ion. The presented model was upgraded to a three stage drying model
or zeolite-water suspension droplet drying in Sagadin et al. [9] , where
dditionally the adsorption characteristics of the zeolite were taken into
ccount. The Finite Difference Method was applied for the solution of
he heat transfer problem in the interior of the particle. The developed
hree stage porous particle drying models are suitable for the implemen-
ation in the context of Computational Fluid Dynamics (CFD), especially
or the case of Lagrangian particle tracking (Langrish [10] , Ravnik et al.
11,12] , Fletcher et al. [13] ). 

For solving mathematical models derived for porous particle dry-
ng, usually Finite Difference (FD) method was used [6,8,9] . However,
n this paper, we are proposing the BEM (Boundary Element Method)
or the solution of governing equations in the three-stage mathematical
odel for porous particle drying [9] . BEM has been proven on various

inear and non-linear problems, from diffusion problems of heat and
ass transfer, freeze-drying, bioheat problems, fluid flow etc. [14–16] .
rying of porous particles is divided into three stages. In the first stage

he surface moisture is removed, while, in the second stage, the drying
nside the porous particle takes place. At this stage, the particle is di-
ided into two regions (the outer region which is already dry and the
nner region which is still wet). Dry crust and wet core are separated by
 drying front, where the moisture evaporation takes place. Mass trans-
er through the particle interior is modelled using the Stefan diffusion
odel. After the moisture in the porous particle interior is removed,

he process of desorption now becomes the main mechanism of drying,
hich characterises the third stage of drying. A mathematical model of

he first and third drying stages contain only an accumulation term lead-
ng to ordinary differential equations, which can be solved by using an
terative method (Runge–Kutta method, Euler method). The heat trans-
er problem in the particle interior has to be solved in the second drying
tage, where the mechanism of diffusion governs the physics of the prob-
em. In the present paper, the heat transfer problem was solved using the
EM, with the particle modelled as a small sphere with uniform bound-
ry conditions prescribed in the exterior of the particle, leading to the
eat transfer problem solved only in the radial direction. 

The paper is organised as follows. Section 2 describes the mathemat-
cal model of the second drying stage. Description of the BEM implemen-
ation with fundamental solution and numerical discretisation of gov-
rning equations are presented in Section 3 . Computational examples
re presented in Section 4 , while results and discussion are presented in
ection 5 . The paper ends with the Conclusion and Acknowledgments
n Section 6 . 

. Mathematical model 

A three-stage model should be used to describe porous particles dry-
ng. However, in this paper, we are covering just the modelling of the
econd stage, which is governed by the heat transfer inside the particle
nd the Stefan diffusion through the dried part of the particle accounting
or the mass transfer. As already mentioned, the governing equations for
he first and the third drying stages are Differential Equations with re-
pect only to time, and can be solved by standard iterative solvers based
n Euler or Runge–Kutta algorithms, and are of no interest here. 

During the second stage, drying inside the particle takes place, where
he moisture is evaporated and transferred to the outer surface of the
article by means of the Stefan diffusion. Therefore, the particle can
e divided into two regions during the second stage - the dry and wet
egions as shown in the Fig. 1 . The dry region is usually called a dry
rust, and the the wet region a wet core. These two regions are sepa-
ated with the interface area where evaporation takes place. During the
rying stage, the interface area is changing as the wet core decreases in
ize until there is no wet region inside the particle. Therefore, to solve
he second stage, we have to solve the heat transfer inside the particle,
hich affects the drying speed, taking into account the evaporation on

he interface area. 
t  

159 
Heat transfer inside the wet core and the dry crust can be described
y the conservation of energy as 

𝑖 𝑐 𝑖 
𝜕𝑇 𝑖 

𝜕𝑡 
= ∇⃗ ⋅

(
𝜆𝑖 ⃗∇ 𝑇 𝑖 

)
, (1)

here ∇⃗ represents nabla operator, c effective specific heat capacity,
effective heat conductivity, T temperature, t time and index 𝑖 = 𝑤, 𝑑

enotes wet or dry region. 
To solve the unsteady heat transfer through the dry and wet regions

e also have to impose boundary and interface conditions. Due to the
article spherical shape, we introduce a spherical coordinate system ⃗𝑟 =

⃗ ( 𝑟, 𝜑, 𝜃) for simpler annotation. Heating or cooling of a particle on the
uter surface is described with Robin boundary condition as 

 = − 𝜆𝑑 ⃗∇ 𝑇 𝑑 ⋅ 𝑛 = 𝛼( 𝑇 𝑔 − 𝑇 𝑑 ) , 𝑟 = 𝑅 𝑝 , 0 ≤ 𝜑 ≤ 2 𝜋, − 𝜋 ≤ 𝜃 ≤ 𝜋, (2)

here q represents the heat flux, T d the temperature of the dry crust,
 g is the temperature of the drying gas far away from the particle, 𝛼
s the heat transfer coefficient, 𝜆d the effective heat conductivity of the
ry region, 𝑛 is a normal vector of the surface, and R p the radius of the
article. At the interface we impose a compatibility condition for the
emperature as 

 𝑤 = 𝑇 𝑑 , 𝑟 = 𝑅 𝑖 , 0 ≤ 𝜑 ≤ 2 𝜋, − 𝜋 ≤ 𝜃 ≤ 𝜋, (3)

here T w represents the temperature of the wet core, R i is the interface
adius, and equilibrium conditions, where evaporation of the moisture
s included, as 

𝑑 

𝜕𝑇 𝑑 

𝜕𝑟 
= 𝜆𝑤 

𝜕𝑇 𝑤 

𝜕𝑟 
+ ℎ 

�̇� 𝑓 ,𝑖 

𝐴 𝑖 

𝑟 = 𝑅 𝑖 , 0 ≤ 𝜑 ≤ 2 𝜋, − 𝜋 ≤ 𝜃 ≤ 𝜋 (4)

here 𝜆w represents the effective thermal conductivity of the wet core,
 is the specific heat of evaporation, A i is the interface surface area, and
̇  𝑓 ,𝑖 the fluid vapour mass flow rate at the interface. Because the bound-
ry conditions on the particle surface (2) are uniform in all directions
nd the particle is treated as homogeneous, the drying rate will also be
he same in all directions. Therefore, heat transfer does not depend on
ngles, but only on the radial direction and the problem can be treated
s quasi 1D problem. 

As stated, mass transfer of vapour from the interface area to the par-
icle surface through the dried crust is solved by using the solution of
he Stefan diffusion through a porous material under the assumption of
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ylindrical inner channels, which is described with the equation [5] 

̇  𝑓 ,𝑖 =− 

8 𝜋𝜀 𝛽𝐷 𝑓 ,𝑑 𝑀 𝑓 𝑝 𝑔 

𝜅
(
�̄� 𝑑 + �̄� 𝑤 

) 𝑅 𝑝 𝑅 𝑖 

𝑅 𝑝 −𝑅 𝑖 

𝑙𝑛 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑝 𝑔 − 𝑝 𝑓 ,𝑖 

𝑝 𝑔 − 

( 

𝜅

4 𝜋𝑀 𝑓 𝛼𝑚 𝑅 
2 
𝑝 

�̇� 𝑓 ,𝑖 + 

𝑝 𝑓, ∞
𝑇 𝑔 

) 

𝑇 𝑖 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
, (5)

here 𝜀 represents the porosity of the particle, 𝛽 the power coefficient,
 f the fluid molecular weight, 𝜅 the universal gas constant, p g the dry-

ng gas pressure, D f,d the vapour diffusion coefficient in the dry crust, �̄� 𝑑 
nd �̄� 𝑤 are the average temperature of the dry crust and the wet core,
espectively, T i represents the temperature at the wet core-dry crust in-
erface, p f,i is the saturation pressure of vapour on interface while p f , ∞
epresent the partial pressure of the vapour in the drying gas and 𝛼m 

the
ass transfer coefficient. The saturation pressure of the vapour depends

n the temperature and is calculated from the model [9] : 

 𝑓 ,𝑖 = 

𝑒 
𝑎 1 + 𝑎 2 𝑇 𝑖 

𝑎 3 
𝑇 𝑖 

𝑇 
𝑎 4 
𝑖 

, (6)

hile other parameters in the Eq. (5) are kept constant. Variables a 1 ,
 2 , a 3 , and a 4 in the Eq. (6) are constants. As can be seen, Eq. (5) for
alculation of mass flow rate for the evaporated fluid at the interface is
on-linear and has to be solved using an iterative approach. 

The change of the wet core volume is calculated using the conser-
ation of mass written for the fluid, assuming that the wet core has a
pherical shape, as 

𝜕𝑅 𝑖 

𝜕𝑡 
= − 

1 
𝜀𝜌𝑓 4 𝜋𝑅 

2 
𝑖 

�̇� 𝑓 ,𝑖 , (7)

here 𝜌f represents the fluid density. 
The heat transfer problem described with Eq. (1) , written for dry

nd wet regions, together with boundary and interface conditions (2) –
4) has been solved using the BEM method that will be described in the
ext section, while Eq. (5) has been solved using an iterative solver and
q. (7) and the classical Euler algorithm. 

As can be seen from the described model for the second drying stage,
e are dealing with a transient problem that is terminated when the

adius of the interface reaches zero, 𝑅 𝑖 = 0 , while for the starting point,
e prescribed a constant temperature of the particle T 0 for both regions,
nd the starting radius for the interface was set to 𝑅 𝑖, 0 = 0 . 99 𝑅 𝑝 . 

. Boundary element method 

The BEM was used to solve the heat transfer process inside the porous
article described with Eq. (1) and boundary and interface conditions
2) –( 4 ). The main reason for choosing this method is its advanced treat-
ent of boundary conditions, especially the treatment of flux or nor-
al derivative of the field function, which is incorporated directly in

he formulation without any additional approximation, and, therefore,
ncreases the accuracy of the numerical solution. The numerical formu-
ation used to solve the quasi 1D heat transfer problem for 3D spherical
omputational domain presented in this paper is based on the elliptic
undamental solution. In this section a short description of BEM formu-
ation will be presented, treating the problem as 3D that can be trans-
ormed to a quasi 1D problem in a radial direction due to the spheri-
al shape of the computational domain, and assumption of the uniform
oundary conditions. 

Heat transfer through the porous particle for wet and dry regions
escribed by Eq. (1) , has been treated as a Poisson equation, for which
he BEM formulation is made. Poisson equation can in general be written
s 

⃗
 

2 𝑢 ( ⃗𝑟 ) = 𝑏 ( ⃗𝑟 ) , (8)

here ∇⃗ 

2 represents the Laplace operator, 𝑢 ( ⃗𝑟 ) is a field function, which,
n our case, represents temperature, 𝑏 ( ⃗𝑟 ) is a non-homogenous term on
160 
he right hand side, and ⃗𝑟 = ⃗𝑟 ( 𝑟, 𝜑, 𝜃) is an arbitrary spatial vector. Intro-
ucing the integral form of Green’s second identity for Poisson equation,
e can write it as: 

( ⃗𝜉) 𝑢 ( ⃗𝜉) + ∫Γ 𝑢 ( ⃗𝑅 ) 𝑞 ∗ ( ⃗𝜉, �⃗� ) 𝑑Γ + ∫Ω 𝑏 ( ⃗𝑟 ) 𝑢 ∗ ( ⃗𝜉, ⃗𝑟 ) 𝑑Ω = ∫Γ 𝑞( ⃗𝑅 ) 𝑢 ∗ ( ⃗𝜉, �⃗� ) 𝑑Γ (9)

here Ω represents the computational domain, Γ is its boundary, 𝜉 =
⃗( 𝑟, 𝜑, 𝜃) is the position of the source point, �⃗� = �⃗� ( 𝑟, 𝜑, 𝜃) is the spatial
ector of the boundary, ⃗𝑞 = ∇⃗ 𝑢 ⋅ 𝑛 represents the normal derivative of the
eld function, 𝑐( ⃗𝜉) is the free coefficient that depends on the position of
he source point, and u ∗ and q ∗ are the fundamental solution and its
ormal derivative, respectively. An elliptical fundamental solution for
D is defined as 

 

∗ ( ⃗𝜉, ⃗𝑟 ) = 

1 
4 𝜋𝑑( ⃗𝜉, ⃗𝑟 ) 

, (10)

here 𝑑( ⃗𝜉, ⃗𝑟 ) represents the distance from the source and the field
oint: 

( ⃗𝜉, ⃗𝑟 ) = 

√ 

𝑟 2 
𝜉
+ 𝑟 2 𝑝 − 2 𝑟 𝜉𝑟 𝑝 cos ( 𝜃𝜉− 𝜃𝑝 ) − 2 𝑟 𝜉𝑟 𝑝 sin ( 𝜃𝜉) sin ( 𝜃𝑝 ) 

[
cos ( 𝜑 𝜉− 𝜑 𝑝 ) − 1 

]
, 

(11) 

here the source point is defined by coordinates ⃗𝜉 = 𝜉( 𝑟 𝜉 , 𝜑 𝜉 , 𝜃𝜉) , and the
eld point by ⃗𝑟 = ⃗𝑟 ( 𝑟 𝑝 , 𝜑 𝑝 , 𝜃𝑝 ) . The normal derivative of the fundamental
olution is defined by the equation: 

 

∗ ( ⃗𝜉, �⃗� ) = ∇⃗ 𝑢 ( ⃗𝜉, �⃗� ) ⋅ 𝑛 = 

𝜕𝑢 ∗ ( ⃗𝜉, �⃗� ) 
𝜕𝑟 

𝑛 𝑟 + 

1 
𝑟 sin ( 𝜃) 

𝜕𝑢 ∗ ( ⃗𝜉, �⃗� ) 
𝜕𝜑 

𝑛 𝜑 

+ 

1 
𝑟 

𝜕𝑢 ∗ ( ⃗𝜉, �⃗� ) 
𝜕𝜃

𝑛 𝜃 , (12) 

here surface normal vector 𝑛 is defined as 𝑛 = 𝑛 ( 𝑛 𝑟 , 𝑛 𝜑 , 𝑛 𝜃) . 
Because the computational domain for the wet core or dry crust is

lways presented by a sphere or hollow sphere, therefore, the free co-
fficient 𝑐( ⃗𝜉) , which depends on the position of the source point, can
e: 

( ⃗𝜉) = 1 , 𝜉 ∈ Ω, 

( ⃗𝜉) = 0 . 5 , 𝜉 ∈ Γ. (13) 

ssuming a constant interpolation for the field function 𝑢 ( ⃗𝑅 ) and normal
erivative 𝑞( ⃗𝑅 ) on the spherical surface or boundary of the wet or dry
egions a surface integral in Eq. (9) can be evaluated analytically as 

Γ𝑗 

𝑞 ∗ ( ⃗𝜉, �⃗� 𝑗 ) 𝑑Γ𝑗 = 0 , ∫Γ𝑗 

𝑢 ∗ ( ⃗𝜉, �⃗� 𝑗 ) 𝑑Γ𝑗 = 𝑅 

2 
𝑗 ∕ 𝑟 𝜉 , 𝑟 𝜉 > 𝑅 𝑗 (14)

here r 𝜉 represents the radial coordinate of the source point ⃗𝜉, and index
 the spherical surface Γj with radius R j . For the case when the position
f the source point is inside the spherical surface, the surface integrals
re: 

Γ𝑗 

𝑞 ∗ ( ⃗𝜉, �⃗� 𝑗 ) 𝑑Γ𝑗 = −1 , ∫Γ𝑗 

𝑢 ∗ ( ⃗𝜉, �⃗� 𝑗 ) 𝑑Γ𝑗 = 𝑅 𝑗 , 𝑟 𝜉 < 𝑅 𝑗 (15)

nd when the source point is on the integration surface: 

Γ𝑗 

𝑞 ∗ ( ⃗𝜉, �⃗� 𝑗 ) 𝑑Γ𝑗 = −0 . 5 , ∫Γ𝑗 

𝑢 ∗ ( ⃗𝜉, �⃗� 𝑗 ) 𝑑Γ𝑗 = 𝑅 𝑗 , 𝑟 𝜉 = 𝑅 𝑗 . (16)

However, the domain integral in Eq. (9) can not be solved analyt-
cally, and numerical integration has to be used. Due to the uniform
oundary conditions on the spherical surface, the field function depends
nly on the radial distance, 𝑢 ( ⃗𝑟 ) = 𝑢 ( 𝑟 𝑝 ) , and, therefore, only discretisa-
ion of computational geometry is needed in the radial direction. Do-
ain discretisation can, therefore, be represented by a 1D numerical
esh composed of linear elements. For the approximation of the non-
omogeneous part 𝑏 ( ⃗𝑟 ) , we used the quadratic interpolation function
nside the domain, with the 3 node linear element. Using domain dis-
retisation, by dividing domain Ω into n sub-domains Ω and by using
e 
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he quadratic interpolation inside Ωe , the domain integral can be calcu-
ated as: 

Ω
𝑏𝑢 ∗ ( ⃗𝜉, ⃗𝑟 ) 𝑑Ω = 

𝑛 ∑
𝑒 =1 

3 ∑
𝑘 =1 

𝑏 𝑘 ∫Ω𝑒 

Φ𝑘,𝑒 𝑢 
∗ ( ⃗𝜉, ⃗𝑟 ) 𝑑Ω𝑒 , (17)

here index e represents the element or sub-domain, k the interpola-
ion or node number of the element, n is the number of elements, and

the interpolation function. Therefore, b k represents the value of non-
omogeneous terms in node k and Φk,e is the interpolation function for
ode k of element e . The sub-domain integral in Eq. (17) was solved
umerically using Simpson’s rule, where integration in the spherical co-
rdinates has been used, as 

Ω𝑒 

Φ𝑘,𝑒 𝑢 
∗ ( ⃗𝜉, ⃗𝑟 ) 𝑑Ω𝑒 = ∫

𝑅 𝑒 2 

𝑅 𝑒 1 
∫

2 𝜋

0 ∫
𝜋

− 𝜋
Φ𝑘,𝑒 𝑢 

∗ ( ⃗𝜉, ⃗𝑟 ) 𝑟 2 sin ( 𝜃) 𝑑 𝑟𝑑 𝜑𝑑 𝜃

= 

𝑛 𝑟 ∑
𝑖 =1 

𝑛 𝜑 ∑
𝑗=1 

𝑛 𝜃∑
𝑘 =1 

𝜔 Φ𝑘,𝑒 𝑢 
∗ ( 𝑟, 𝜑, 𝜃) 𝐽Δ𝑟 Δ𝜑 Δ𝜃, (18) 

here R e 1 and R e 1 represent the radius of the boundary of subdomain Ωe 

r element e, n r , n 𝜑 and n 𝜃 represent the number of subdivisions in the
adial and both angular directions, Δ𝑟 = ( 𝑅 𝑒 2 − 𝑅 𝑒 1 )∕ 𝑛 𝑟 represents the
ntegral discretisation in the radial direction, Δ𝜑 = 2 𝜋∕ 𝑛 𝜑 discretisation
f subdomain Ωe along the angle 𝜑 , Δ𝜃 = 2 𝜋∕ 𝑛 𝜃 discretisation along the
angle, J represents the Jacobian, which is 𝐽 = 𝑟 2 sin ( 𝜃) , and 𝜔 are the

ntegration weights. 
When the source point 𝜉 is set in every computational node defined

y the numerical mesh, we can write the system of linear equations as:

 𝐻 ] { 𝑢 } = [ 𝐺 ] { 𝑞 } + [ 𝑆 ] { 𝑏 } , (19)

here [ H ], [ G ] and [ S ] represent matrices, { u } represents the vector
f field variable u at computational nodes, { q } represents the vector of
ux at the computational nodes, and { b } the vector of non-homogenous
erm b in computational nodes. Elements of the matrices [ H ], [ G ] and
 S ] are according to Eqs. (14) –(17) : 

 𝑖,𝑗 = ∫Γ𝑗 

𝑞 ∗ ( ⃗𝜉𝑖 , �⃗� 𝑗 ) 𝑑Γ𝑗 , 𝑔 𝑖,𝑗 = ∫Γ𝑗 

𝑢 ∗ ( ⃗𝜉𝑖 , �⃗� 𝑗 ) 𝑑Γ𝑗 , 

𝑠 𝑒 𝑖,𝑗 = ∫Ω𝑒 

Φ𝑗,𝑒 𝑢 
∗ ( ⃗𝜉𝑖 , ⃗𝑟 ) 𝑑Ω𝑒 . (20) 

he derived system of Eqs. (19) solves a Poisson equation (8) for the
eld function u in the radial direction, and, therefore, it is solving a
iffusion problem in quasi 1D, with numerical mesh needed only in the
adial direction. 

Now, we can apply the derived formulation on the case of the heat
ransfer equation (1) , which, for constant material properties, can be
ewritten in the Poison form as 

⃗
 

2 𝑇 𝑖 = 

1 
𝑎 𝑖 

⋅
𝜕𝑇 𝑖 

𝜕𝑡 
(21)

here 𝑎 𝑖 = 𝜆𝑖 ∕( 𝜌𝑖 𝑐 𝑖 ) represents thermal diffusivity. To approximate the
ime derivative in Eq. (21) , we used an first order finite difference
cheme as 

𝜕𝑇 𝑖 

𝜕𝑡 
≈

𝑇 𝑡 
𝑖 
− 𝑇 𝑡 −1 

𝑖 

Δ𝑡 
(22) 

here superscript t and 𝑡 − 1 represent different time steps, and Δt is the
ime difference between two time steps. Including the approximation
22) into Eq. (21) and using a fully implicit scheme ( 𝑇 𝑖 = 𝑇 𝑡 

𝑖 
, 𝑞 𝑖 = 𝑞 𝑡 

𝑖 
) the

lobal system of Eq. (19) can be rewritten as: 

[ 𝐻 ] − 

1 
𝑎 ⋅ Δ𝑡 

[ 𝑆 ] 
){

𝑇 𝑡 𝑖 
}
= [ 𝐺 ] 

{
𝑞 𝑡 𝑖 
}
− 

1 
𝑎 ⋅ Δ𝑡 

[ 𝑆 ] 
{
𝑇 𝑡 −1 𝑖 

}
. (23)

riting a system of Eq. (23) for the wet and dry regions, imposing the
nterface and boundary conditions, a global linear system of equations
s obtained, which has to be solved only once in each time step using
 standard solver. The result of the heat transfer equation is the radial
161 
emperature distribution inside the porous particle that affects the dry-
ng kinetic described by Eqs. (5) and (7) . 

Eq. (5) for the mass flow rate at the interface has been solved using
 classical iteration method, while for Eq. (7) , the Euler algorithm has
een used, which can be written as 

 

𝑡 +1 
𝑖 

= 𝑅 

𝑡 
𝑖 − 

�̇� 

𝑡 
𝑓 ,𝑖 

𝜀𝜌𝑓 4 𝜋( 𝑅 

𝑡 
𝑖 
) 2 

, (24)

here superscript 𝑡 + 1 and t represent the next and current time steps,
espectively. 

Because of the changing interface between the wet and dry regions,
he computational domain has to follow the movement of the interface
y a simple interface tracking procedure, and the system of Eq. (23) has
o be therefore re-evaluated at each time step. The system of Eqs. (1) ,
5) and (7) , together with the interface conditions (3) and (4) , is non-
inear, and has been solved assuming constant mass flow rate and inter-
ace radius inside each time step. The algorithm for solving the particle
econd drying stage inside each time step can therefore be written as: 

ALGORITHM 

1. Solving heat transfer inside the particle: 
• Calculating the matrices [ H ], [ G ] and [ S ] defined by Eq. (20) for

wet and dry region, 
• imposing the compatibility and equilibrium interface conditions

(3) and (4) , 
• applying Robin boundary condition (2) , 
• solving temperature field 𝑇 = 𝑇 ( 𝑟 ) inside the particle, 
• calculation of average temperature �̄� 𝑤 and �̄� 𝑑 . 

2. Calculating mass flow rate �̇� 𝑓 ,𝑖 at the interface by Eq. (5) , 
3. Calculating the new interface radius R i by algorithm (24) , 
4. Move the computational mesh and data interpolation on the new

mesh. 

. Computational examples 

The paper presents a development of the numerical model for porous
article drying based on the BEM solution of the heat transfer inside the
article. In this section, we will present several computational examples
o evaluate the numerical model, and show how the space and time
iscretisation affects the solution of the second drying stage. A special
ttention will be devoted to reducing the numerical error to a minimum
o achieve an accurate numerical solution and to reducing the drying
ime, which becomes important when the derived model is used in the
ontext of CFD. 

In the literature, no real benchmark tests for the second drying stage
ould be found, therefore, we had to set up our own test examples by
arying the particle diameter and temperature of the drying gas, which
ffect the drying kinetics at most. The test example set-ups are based
n the drying of Zeolite 4 A -water suspension by means of hot drying
ir, where the moisture inside the Zeolite is water, case which was
alidated in [9] . Depending on the nozzle for particle formation, par-
icle sizes can vary from a hundred to a few hundred micro meters.
herefore, for our mesh validation, two different sizes of particles were
sed; 𝐷 𝑝 = 2 𝑅 𝑝 = 100 μm and 300 μm, while, for the drying tempera-
ure, 𝑇 𝑔 = 100 °C and 300 °C were used, where the latter one represents
he conditions where the evaporation process is very intense. Depending
n the particle size and the drying temperature, different test examples
ere defined, while the other model parameters and material proper-

ies have been kept constant for all test examples. The most important
arameter for practical use is particle drying time. For this reason the
nalysis of the influence of the particle diameter, the particle-drying
ir relative velocity and drying temperature, on the drying time was
one. The drying gas temperature has been varied in the range between
00 °C and 300 °C with the step 20 °C the particle diameter in the range
etween 100 μm and 300 μm with the step 20 μm , and the particle rel-
tive velocity in the range between 0.4 m/s and 1.4 m/s with the step
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Table 1 

Material properties for Zeolite 4 A , wet core and water. 

Density 
( kg/m 

3 ) 
Specific heat 
( J/kg K ) 

Thermal conduc. 
( W/m K ) 

Zeolite 4A 1270 850 0.2 

Wet core 1590 4185 0.6 

Water 983 1926 (vapour) –
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.1 m/s , which presented the basis for execution of a full factorial DOE
Design of Experiment). 

The used material properties for water, Zeolite 4 A and its wet core
re presented in the Table 1 . For the material properties for the dry crust
e used the Zeolite 4 A properties, while, for the wet core, the effective
aterial properties were calculated based on Zeolite 4 A porosity, which

s 𝜀 = 0 . 26 , and water. 
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Fig. 2. Particle temperature profile through the particle drying, for different me

162 
In the numerical simulations the following constant values were
sed: heat transfer coefficient, determined on the basis of the Nusselt
umber and the particle relative velocity, was 𝛼 = 950 . 1 W ∕ m 

2 K 

1 , mass
ransfer coefficient 𝛼𝑚 = 0 . 32 m / s , partial pressure of the vapour in the
rying gas 𝑝 𝑓 , ∞ = 3156 . 5 Pa , universal gas constant 𝜅 = 18 . 0153 kg/kmol
nd vapor diffusion coefficient in the dry crust 𝐷 𝑓 ,𝑑 = 0 . 00009 m 

2 ∕ s .
alue of parameters in the Eq. (6) were: 𝑎 1 = 77 . 345 , 𝑎 2 = 0 . 0075 , 𝑎 3 =
235 and 𝑎 4 = 8 . 2 . 

. Results and discussion 

In this section, the simulation results of the porous particle drying
re presented for the different examples discussed in the previous sec-
ion. At the beginning, the space and time discretisation analysis has
een done to determine the appropriate mesh size and time step value
n order to achieve adequate numerical accuracy of the results. After
hat, the results for different examples are presented, followed by a dis-
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sh sizes at following times: (a) 0.03 s, (b) 0.05 s, (c) 0.06 s and (d) 0.07 s. 
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Fig. 3. Particle temperature profile through the particle drying, for different values of time steps at following times: (a) 0.03 s, (b) 0.05 s, (c) 0.06 s and (d) 0.07 s. 
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n 𝑛  
ussion about the drying kinetics. Results are shown in Graph, Table and
ictures forms. 

.1. Space and time discretisation 

Several different calculation were made, to verified the accuracy of
he numerical model. Adequacy of the mesh size and time step value
ere tested for particle diameter 𝐷 𝑝 = 100 μm and drying gas temper-
ture 𝑇 𝑔 = 300 ◦C , which represents a fast drying kinetics, because the
article is small and air temperature high. The desired mesh element size
as labelled with dx and number of computational nodes with N n . Parti-

les consist of a wet core and dry crust, whose sizes change through the
163 
rying process, so that the wet core size is decreased and the dry crust
ize is increased. At the start of the drying simulation most of the mesh
lements belong to the wet core. Close to the end of the particle drying,
he situation is the opposite, and most of the mesh elements belong to
he dry crust. For this reason, for every time step, a new mesh has to
e generated, with different numbers of mesh elements in the wet core
nd dry crust. Along the remeshing the values of the field functions at
ach node were interpolated from the old nodes positions to the new
nes. At first we vary element size by keeping the time step size con-
tant. Four different mesh element sizes were tested; 𝑑𝑥 = 10 μm , 2 μm ,

 . 5 μm and 0 . 2 μm , which corresponds to the number of computational
odes 𝑁 = 11 , 51, 201 and 501, respectively. To generate computa-
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Fig. 4. Particle temperature for particle size 100 μm and drying gas temperature 300 ∘C at (a) drying time 0 . 03 s , (b) drying time 0 . 05 s , (c) drying time 0 . 06 s , (d) 
drying time 0 . 07 s . 
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ional mesh a structured 1D mesh in the radial direction has been used.
f the mesh region (wet or dry core) was smaller than the desired mesh
lement size, then two quadratic mesh elements or five computational
odes were used. Particle temperature profile was compared at four dif-
erent times along the drying process: 𝑡 = 0 . 03 s , 0 . 05 s , 0 . 06 s and 0 . 07 s .
esults are presented in Fig. 2 , where the adequacy of two different
esh element sizes is seen. The biggest deviation between the results

re present when using coarse mesh with element size of 10 μm and 11
omputational nodes. When element size of 2 μm is used the numerical
ccuracy is better, however it still deviates slightly from the results using
esh size 0 . 5 μm and 0 . 2 μm . Identical results were obtained using mesh

izes of 0 . 5 μm and 0 . 2 μm , which were then taken as the numerically
ccurate results to which other results were compared. 

The adequacy of the selected time step value was tested next. Four
ifferent time steps were used, and results are presented in Fig. 3 show-
ng the particle temperature profile at four different times through the
164 
rocess of particle drying. In all calculations the mesh element size was
et to 𝑑𝑥 = 0 . 5 μm leading to 201 computational nodes. Because the
rying kinetics is fast, the drying process inside the particle proceeds
ery quickly, and large time steps are not suitable. Selected time steps
 ⋅ 10 −3 𝑠 and 1 ⋅ 10 −3 𝑠 are not suitable to use, because the results devi-
ted to much. Time steps 1 ⋅ 10 −4 s and 1 ⋅ 10 −5 s are suitable for use, as
esults comparison in Table 2 shows a low deviation. In order to lower
umerical calculation costs, which, by using the time step 1 ⋅ 10 −5 s are
igher than in the case when time step 1 ⋅ 10 −4 s is used, the latter value
as our choice. 

We repeated the same analysis also for the test example with the
article size 𝐷 𝑝 = 300 μm and the drying gas temperature 𝑇 𝑔 = 300 ◦C ,

here the same number of nodes has been used. Results gathered in
able 3 show, that using 201 computational nodes provide accurate nu-
erical results, because numerical computational error compared to the
nest space and time discretisation was only 0.14%. Regarding the time
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Table 2 

Drying time through the second drying stage for various time step values and 
mesh sizes together with relative error compared to the finest mesh discretisa- 
tion of the particle size 100 μm and drying gas temperature 300 ◦C . 

dt [ s ] Error [%] 

N n 5 ⋅ 10 −3 1 ⋅ 10 −3 1 ⋅ 10 −4 1 ⋅ 10 −5 5 ⋅ 10 −3 1 ⋅ 10 −3 1 ⋅ 10 −4 1 ⋅ 10 −5 

11 0.0850 0.0750 0.0728 0.0726 11.65 5.18 3.16 3.44 

51 0.0850 0.0770 0.0750 0.0747 11.65 4.94 0.13 0.54 

201 0.0850 0.0780 0.0753 0.0751 11.65 3.72 0.27 0.00 

501 0.0850 0.0780 0.0753 0.0751 11.65 3.72 0.27 0.00 

Table 3 

Drying time through the second drying stage for various time steps and mesh 
sizes together with relative error compared to the finest discretisation for the 
particle size 300 μm and drying gas temperature 300 ◦C . 

dt ( s ) Error (%) 

N n 5 ⋅ 10 −3 1 ⋅ 10 −3 1 ⋅ 10 −4 1 ⋅ 10 −5 5 ⋅ 10 −3 1 ⋅ 10 −3 1 ⋅ 10 −4 1 ⋅ 10 −5 

11 0.6 0.566 0.5638 0.5634 2.57 3.29 3.69 3.77 

51 0.595 0.584 0.5811 0.5822 1.75 0.10 0.60 0.41 

201 0.595 0.586 0.5838 0.5845 1.75 0.24 0.14 0.02 

501 0.595 0.587 0.5844 0.5846 1.75 0.41 0.03 0.00 
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tep value the choice of 𝑑𝑡 = 1 ⋅ 10 −4 s is suitable, however it can be in-
reased when simulating a slow drying process, occuring when the dry-
ng gas temperature is low. For all the further analysis on drying kinetics
 time step of 𝑑𝑡 = 1 ⋅ 10 −4 s and 201 computational nodes were therefore
elected. 

In Figs. 2 and 3 the temperature profiles inside the particle com-
uted using a FD (Finite difference) method are shown along the BEM
ased results, using the same space and time discretisation as in the op-
imal BEM configuration. The calculation was done using Sagadin et. all
9] code with results shown with dashed orange line. It is evident that
EM based computations deliver the same accuracy of the results as the
D also when using coarser discretisations and larger time step values,
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Fig. 5. Interface radius change (a) and particle abso

165 
learly indicating a higher numerical accuracy of the derived BEM based
omputational algorithm. 

.2. Drying kinetics 

Solving heat transfer problem is the basis for simulating drying pro-
ess of the particle. In this section we will present drying kinetics for
he particle size 100 μm which was dried with drying gas at 300 ◦C
nd analysis of how particle size, drying air temperature and particle
elative velocity influence the drying time for the second stage. 

Fig. 4 shows a temperature contour trough the second drying stage
f the porous particle at different times. In the spray drying process,
lurry droplets, usually at room temperature (25 ◦C ), are produced by
pplying a pressure nozzle in the drying chamber, where it comes into
ontact with the hot drying air. After the first drying stage, where the
urface moisture has been removed, second drying stage begins where
article interior is dried. Whenever a part of the particle interior is dried,
he surface temperature increases close to the drying air temperature.
 particle consists of a wet core and dry crust, which are separated by

he interface where the evaporation of moisture occurs. Some heat is
onsumed due to the moisture evaporation at the interface. For this rea-
on, the particle’s wet core has a lower temperature than the dry crust.
he black round line inside the particle presents the interface position
etween wet core and dry crust. 

The temporal decrease of the interface radius is presented at
ig. 5 (a), which, in the drying process, presents decreasing of the wet
ore and increasing of the dry region. When the particle interface
eaches the value of zero, the particle interior is dry. The initial particle
oisture content for the second drying stage of Zeolite 4 A is 0.62 kg/kg,
hich decreases through the drying process, as can be seen from the
ig. 5 (b). 

The drying kinetics of porous particles are strongly dependent on the
article size and drying gas temperature. When the drying particles are
mall and drying air temperatures high, we are dealing with very fast
rying kinetics, which demand the finest space and time discretisation.
ig. 6 (a) shows the particle drying time depending on the particle di-
meter and drying gas temperature. For small particles, temperature of
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Fig. 6. Influence of particle diameter and drying gas temperature on drying time. 
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Fig. 7. Influence of particle diameter and particle relative velocity on drying time. 
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he drying gas do not have a great influence on the total drying time,
s is the case for the bigger ones. This is especially visible from the
ig. 6 (b) showing the drying time for three different particle sizes. As
an be observed, the drying gas temperature has the biggest influence on
he drying time in the lower temperature range, this is between 100 ∘C
nd 150 ∘C. 

Fig. 7 shows the effect of the relative particle velocity and the parti-
le diameter on the drying time. As already observed form the Fig. 6 the
iameter has a high impact on the drying time, however the relative
elocity does not, as the change in the value o the heat transfer coeffi-
166 
ient is not substantial. Fig. 7 (a) shows the three lines presenting the
argest relative velocity between the drying gas and the particle size
hat can occur in the drying column for different particle density of the
et zeolite, which range between the 1440 kg/m 

3 and 1740 kg/m 

3 . The
argest relative velocity depends on the particle diameter and has been
etermined by equation [17] : 

 = 

1 . 4 

√ √ √ √ 

𝑀 𝑝 𝑔 

1 
2 18 . 5μ

0 . 6 𝐷 

−0 . 6 
𝑝 𝜌0 . 4 

𝑓 
𝐴 

, (25)
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here M p represents particle mass, g gravity acceleration, 𝜇 dynamic
iscosity of drying gas, D p particle diameter, 𝜌f drying fluid density
nd 𝐴 = 𝜋𝐷 

2 
𝑝 ∕4 projected area of the particle. To conclude, Figs. 6 and

 show the drying time for different particle size and drying con-
itions that can be practically used in designing the drying column,
here drying gas temperature and particle size play an important

ole. 

. Conclusion 

In this paper, a porous particle drying problem was studied using
he Boundary Element Method based computational model. Although
he drying of a spherical porous particle is typically divided into two
r three stages, depending on if the material is hygroscopic or not, this
aper investigates the numerical solution of the second drying stage,
hich is most relevant for the porous material. The heat transfer prob-

em inside the spherical particle with moving drying front was solved
sing BEM approach. Because drying of the spherical particle under uni-
orm boundary conditions was assumed, a 3D problem was transformed
nto a quasi 1D problem with the solution depending only on the radial
irection. The solution of the heat transfer inside the particle is the most
mportant aspect in accurate evaporation calculation on the interface be-
ween the dry and wet region within the particle, as it directly affects the
evel of vapor saturation pressure and consequently the drying time. The
nalysis of the space and time discretisation was done on two different
est examples showing that the 201 nodes and 𝑑𝑡 = 1 ⋅ 10 −4 s is sufficient
o accurately simulate second drying stage even for small droplets and
igh drying times. An extensive analysis showed how the particle diame-
er, the drying gas temperature and the relative velocity affect the drying
ime, with the particle size and drying temperature being the most im-
ortant ones. From this study the drying time of the second stage for the
eolite 4 A water droplet was evaluated under conditions found in dry-
ng column design. In the future work, the elliptic fundamental solution
ill be replaced by the parabolic fundamental solution, which will al-

ow an elimination of the domain integral, which is now solved using nu-
erical integration and represents the computationally most demanding
art. 
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