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ORIGINAL ARTICLE

Daftardar-Jafari method for solving nonlinear thin film flow problem

Majeed Ahmed AL-Jawarya, Ghassan Hasan Radhia and Jure Ravnikb

aDepartment of Mathematics, University of Baghdad, College of Education for Pure Science (Ibn AL-Haitham), Baghdad, Iraq;
bFaculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia

ABSTRACT
The aim of this paper is to develop the Daftardar-Jafari iterative method (DJM) for a math-
ematical model that represents the nonlinear thin film flow of a non-Newtonian third-grade
fluid on a moving belt with the aim to obtain an approximate solution of high accuracy.
When applying the DJM there is no need to resort to any additional techniques such as eval-
uating Adomian’s polynomials as in the Adomian decomposition method (ADM) or such as
using Lagrange multipliers in the variational iteration method (VIM). The accuracy of our
results is numerically verified by evaluating the functions of the error remainder and the
maximal error remainders. In addition, these results are analyzed by comparing the accuracy
of the DJM solutions with those of the fourth order Runge-Kutta method (RKM), ADM and
VIM at the same parameter values. All the evaluations have been successfully performed in
an iterative way by using the symbolic manipulator MathematicaVR .
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1. Introduction

In recent decades, the use of numerical methods has
become a standard way to solve and evaluate differ-
ent types of complex nonlinear problems. In this
paper, we have proposed and developed an alterna-
tive approach – using iterative methods to find a
solution with a high degree of accuracy. The iterative
procedure leads to a series, which can be summed
up to find an analytical formula, or it can form a suit-
able approximation. The error of the approximation
can be controlled by properly truncating the series.

The subject of this study is about non-Newtonian
fluids. Unlike Newtonian fluids, where the shear
stress is linearly proportional to strain rate, the
non-Newtonian fluid exhibit behaviour that is more
complex. Examples of non-Newtonian fluids are salt
solutions and molten polymers. Non-Newtonian flu-
ids have been studied extensively in the last decades
(Rajagopal, 1983) and are currently still a focus of
many researchers (Bhatti, Zeeshan, & Ellahi, 2016;
Rashidi, Bagheri, Momoniat, & Freidoonimehr, 2017;
Ravnik & Skerget, 2015; Sheikholeslami & Zeeshan,
2017; Zeeshan & Atlas, 2017; Zeeshan et al., 2016).

Several iterative methods have been previously
proposed for finding solutions of initial or boundary
value problems. The most common are: the Adomian
decomposition method (ADM) (Adomian, 1994;
Siddiqui, Hameed, Siddiqui, & Ghori, 2010), the vari-
ational iteration method (VIM) (He, 1999b), the

homotopy analysis method (HAM) (Liao, 2004), the
homotopy perturbation method (HPM) (He, 1999a,
2000) and the differential transform method (DTM)
(Bildik, Konuralp, Bek, & Kucukarslan, 2006; Zhou,
1986), etc.

In this paper, we implemented the Daftardar-Jafari
method (DJM) (Daftardar-Gejji & Jafari, 2006) to solve
the thin film flow of a third grade fluid on a moving
belt. Our aim was to find an approximate solution
without using any restricted assumptions. The DJM
has been introduced for the first time by Varsha
Daftardar-Gejji and Hossein Jafari in 2006. This itera-
tive method has been successfully used to solve
many kinds of problems. For instance; the applica-
tion of DJM for solving different kinds of partial dif-
ferential equations (Bhalekar & Daftardar-Gejji, 2008,
2012; Daftardar-Gejji & Bhalekar, 2010), solving the
Laplace equation (Yaseen et al., 2013), solving the
Volterra integro-differential equations with some
applications for the Lane-Emden equations of the
first kind (AL-Jawary & AL-Qaissy, 2015), solving the
Fokker-Planck equation (AL-Jawary, 2016), Duffing
equations (Al-Jawary & Al-Razaq, 2016) and calculat-
ing the steady-state concentrations of carbon dioxide
absorbed into phenyl glycidyl ether solutions
(Al-Jawary & Raham, 2016), and others. The thin film
flow problem has been solved previously by the
ADM and VIM (Siddiqui, Farooq, Haroon, & Babcock,
2012a), the semi-analytical iterative method by
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Temimi and Ansari (TAM) (AL-Jawary, 2017) and other
known iterative methods (Gul, Islam, Shah, Khan, &
Shafie, 2014; Mabood, 2014; Mabood & Pochai, 2015;
Moosavi, Momeni, Tavangar, Mohammadyari, &
Rahimi-Esbo, 2016; Nemati, Ghanbarpour, Hajibabayi,
& Hemmatnezhad, 2009; Sajid & Hayat, 2008; Shah,
Pandya, & Shah, 2016; Siddiqui, Farooq, Haroon, Rana,
& Babcock, 2012b). The following sections review the
application of the DJM to solve the current problem
and the validity of this method in finding the appro-
priate approximate solution.

2. The nonlinear thin film flow problem

In this section, we consider the thin film flow of non-
Newtonian fluid on a moving belt (Siddiqui et al.,
2012a). The flow is steady, laminar and uniform. The
film thickness is also uniform. The following problem
is governed by (Siddiqui et al., 2012a):

d2w
dx2

þ 6 b2 þ b3ð Þ
l

dw
dx

� �2
d2w
dx2

� df
l

¼ 0; (1)

w 0ð Þ ¼ V0;
dw
dx

¼ 0 at x ¼ c; (2)

where; w represents the fluid velocity, b2 and b3 are
the material constants of the third-grade fluid, l rep-
resents the dynamic viscosity, d is the density, f is
the acceleration with respect to gravity, c is the uni-
form thickness of the film and V0 is the speed of
the belt.

The following dimensionless variables can be
introduced as follows:

~x ¼ x
c
; ~w ¼ w

V0
; b ¼ b2 þ b3ð ÞV2

0

lc2
; m ¼ dfc2

lV0
: (3)

The dimensionless form of the nonlinear boundary
value problem of (1) and (2) with � removed is

d2w
dx2

þ 6b
dw
dx

� �2
d2w
dx2

�m ¼ 0; (4)

w 0ð Þ ¼ 1;
dw
dx

¼ 0 at x ¼ 1: (5)

Since Equation (4) has two boundary conditions
and since it is a second order nonlinear ODE it is
considered to be a well-posed problem. By integrat-
ing Equation (4) twice and by using the boundary
conditions given in (5), one can arrive to

dw
dx

þ 2b
dw
dx

� �3

�mx ¼ C; (6)

where; C is the integration constant. When using
the second condition shown in Equation ð5Þ to cal-
culate the integration constant in (6), the integra-
tion constant will be C ¼ �m. Thus, the nonlinear

system of ð4Þ and ð5Þ can be represented with the
following problem:

dw
dx

þ 2b
dw
dx

� �3

�m x � 1ð Þ ¼ 0; w 0ð Þ ¼ 1: (7)

In the next sections, the basic steps of the DJM
will be reviewed and applied to find an approximate
solution for the problem presented by Equation ð7Þ.

3. The Daftardar-Jafari method

In order to demonstrate the steps of using the DJM;
we first begin with considering the following general
functional equation (Daftardar-Gejji & Jafari, 2006).

w ¼ f þ L wð Þ þ N wð Þ; (8)

where; L denotes the linear operator, N is the non-
linear operator, f represents a given function
and w is the solution for equation 8ð Þ; which can be
written as

w ¼
X1
i¼0

wi: (9)

Now, the following can be defined

G0 ¼ N w0ð Þ; (10)

Gm ¼ N
Xm
i¼0

wi

 !
� N

Xm�1

i¼0

wi

 !
; (11)

so that NðwÞ can decomposed as

N
X1
i¼0

wi

 !
¼ N w0ð Þ|fflffl{zfflffl}

G0

þ N w0 þw1ð Þ �N w0ð Þ� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
G1

þ N w0 þw1 þw2ð Þ �N w0 þw1ð Þ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
G2

þ N w0 þw1 þw2 þw3ð Þ �N w0 þw1 þw2ð Þ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
G3

þ . . . :

(12)

Moreover, the relation is defined with recurrence
so that

w0 ¼ f ; (13)

w1 ¼ L w0ð Þ þ G0; (14)

wmþ1 ¼ L wmð Þ þ Gm; m ¼ 1; 2; . . . : (15)

Since L represents a linear operator
Pm

i¼0 LðwiÞ ¼
L
Pm

i¼0 wi
� �

, we may write

Xmþ1

i¼1

wi ¼
Xm
i¼0

LðwiÞ þ N
Xm
i¼0

wi

 !

¼ L
Xm
i¼0

wi

 !
þ N

Xm
i¼0

wi

 !
; m ¼ 1; 2; . . . :

(16)
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So that,

X1
i¼0

wi ¼ f þ L
X1
i¼0

wi

 !
þ N

X1
i¼0

wi

 !
: (17)

From the equation above, it is clear that
P1

i¼0 wi

is the solution for Equation ð8Þ, where the
functions wi; i ¼ 0; 1; 2; . . . are obtained by the
algorithm 13ð Þ–ð15Þ. The k-term series solution,

which is given by w ¼Pk�1
i¼0 wi; represents an

approximate solution for Equation (17).

3.1. The convergence of the DJM

In 1922, the fixed point theorem has been proposed
by Stefan Banach “1892–1945” (Banach, 1922). This
theorem is very important in the field of functional
analysis. Let us review it here.

Definition 3.1: (Banach, 1922) Let ðX; dÞ be a metric
space and let N : X ! X be a Lipschitz continuous
mapping then N is called a contraction mapping, if
there exists a constant 0 � k < 1 such that
d N xð Þ;N yð Þ
� � � k:d x; yð Þ; for all x; y 2 X .

Banach fixed point theorem: (Banach, 1922) Let
ðX; dÞ be a complete metric space and N : X ! X be
a contraction mapping then N admits a unique fixed
point xf in X , i.e. N xfð Þ ¼ xf . Also xf can be found
as follows:

Starting with an arbitrary element x0 in X and
then defining a sequence fxng as xn ¼
Nðxn�1Þ, then xn ! xf .

Theorem 3.1: (Biazar & Ghazvini, 2009) Let X and Y
be Banach spaces and N : X ! Y be a contraction
nonlinear mapping such that for some constant
0 � k < 1

||N uð Þ � Nðuf Þ|| � k||u� uf ||; 8 u; uf 2 X;

Where, according to the fixed point theorem of
Banach, there is a fixed point w such that N wð Þ ¼ w,
hence the generated terms by the DJM will
regarded as

wn ¼ N wn�1ð Þ; limn!1 wn ¼ w, and suppose
that w0 2 BrðwÞ
where Br wð Þ ¼ w� 2 X; ||w� � w|| < r

	 

then we

have the following statements:

1. ||wn � w|| � kn||w0 � w||;
2. wn 2 Br wð Þ;
3. Limn!1 wn ¼ w:

Proof: See (Biazar & Ghazvini, 2009).

In order to analyze the convergence of the DJM
for solving the problem ð8Þ, we consider two solu-
tions: wDJM and wRKM. The first is the approximate

solution, which is obtained by the DJM and the
second is a numerical solution, which is obtained by
using the Runge Kutta method (RKM) (AL-
Jawary, 2017).

Now let wRKM � wDJM ¼ e be the error of the eval-
uated solutions wRKM and wDJM of ð8Þ. Let e sat-
isfy ð8Þ such that

e ¼ f þ L eð Þ þ N eð Þ: (18)

Then the recurrence relation in ð13Þ–ð15Þ will take
the following form

e0 ¼ f ; (19)
e1 ¼ L e0ð Þ þ N e0ð Þ; (20)

emþ1 ¼ L emð Þ þ N
Xm
i¼0

ei

 !
� N

Xm�1

i¼0

ei

 !
;m ¼ 1; 2; . . . :

(21)

According to the nonlinear contraction mapping
Theorem 3.1; if ||wn � w|| � kn||w0 � w||; 0 � k<1
then

e0 ¼ f ;

||e1|| ¼ ||Nðe0Þ|| � k||e0||;

||e2|| ¼ ||N e0 þ e1ð Þ � Nðe0Þ||
¼ ||Nðe1Þ|| � k||e1|| � k k||e0||

� � ¼ k2||e0||;

therefore ||e2|| � k2||e0||:

||e3|| ¼ ||N e0 þ e1 þ e2ð Þ � Nðe0 þ e1Þ||
¼ ||Nðe2Þ|| � k||e2|| � k k||e1||

� � � kðk k||e0||
� �Þ

¼ k3||e0||;

therefore ||e3|| � k3||e0||
In general, we have ||enþ1|| � knþ1||e0||:
So that as n ! 1 the error enþ1 ! 0 and that

proves the convergence of the DJM for the general
functional Equation ð8Þ. Please refer to (Bhalekar &
Daftardar-Gejji, 2011; Hemeda, 2013) for
more details.

4. Solving the governing problem by
the DJM

In order to use the DJM to find an approximate solu-
tion for the problem 7ð Þ; we have rewritten below
this equation in the following way

dw
dx

¼ m x � 1ð Þ � 2b
dw
dx

� �3

; w 0ð Þ ¼ 1: (22)

By integrating ð22Þ and using the given initial
condition, we get

w ¼ 1�mx þm
x2

2
� 2b

ðx
0

dw
dt

� �3

dt: (23)

We have N wð Þ ¼ �2b
Ð x
0

dw
dt

� �3
dt and f ¼ 1�

mxþ mx2
2 . Now, by applying the basic steps of the
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DJM, we obtain the following set of approximations

w0 ¼ 1�mx þm
x2

2
;

w1 ¼ � 1
2
m3 �1þ �1þ xð Þ4
� �

b;

w2 ¼ 1
5
m5 �2þ xð Þxb2

�
� 64m4x7b2 þ 8m4x8b2 þ 2m2x5b 45� 248m2b

� �
þm2x6b �15þ 232m2b

� �
þ 10 3� 6m2bþ 4m4b2

� �
� 20x 3� 9m2bþ 8m4b2

� �
� 40x3 1� 9m2bþ 16m4b2

� �
þ 10x2 7� 33m2bþ 40m4b2

� �
þ 2x4 5� 120m2bþ 344m4b2

� ��
;

..

.

The series solution wDJM;n xð Þ ¼Pk
i¼0 wi for

Equation (22) can be derived by making the sum of
the above components wi obtained by the DJM. For
ease and brevity, we mention the following series:

wDJM;2ðxÞ ¼
X2
i¼0

wi ¼ 1þm �1þ x
2

� �
x

� 2b �m3x þ 3m3x2

2
�m3x3 þm3x4

4
þ 6m5xb

�
� 15m5x2bþ 20m5x3b� 15m5x4bþ 6m5x5b

�m5x6b� 12m7xb2 þ 42m7x2b2 � 84m7x3b2

þ 105m7x4b2 � 84m7x5b2 þ 42m7x6b2 � 12m7x7b2

þ 3
2
m7x8b2 þ 8m9xb3 � 36m9x2b3 þ 96m9x3b3

� 168m9x4b3 þ 1008
5

m9x5b3 � 168m9x6b3

þ 96m9x7b3 � 36m9x8b3 þ 8m9x9b3 � 4
5
m9x10b3

�
:

(24)

In the next subsection, we present the difference
between the approximate solution of the DJM and
the three standard variational iteration algorithms
(He, Wu, & Austin, 2010; He, 2012).

4.1. The VIM algorithms

As in (He et al., 2010; He, 2012), the following form
of nonlinear equation has been considered

Lw þ Nw ¼ 0; (25)

where; L and N are the linear and nonlinear opera-
tors of this equation, respectively.

According to the VIM (He, 1999b), three vari-
ational iterative algorithms can be applied for solving
the current nonlinear problem ð7Þ (He, 2012).

Variational iteration algorithm-I:

wnþ1 xð Þ ¼ wn xð Þ þ
ðx
x0

k Lwn tð Þ þ Nwn tð Þ	 

dt: (26)

Variational iteration algorithm-II:

wnþ1 xð Þ ¼ w0 xð Þ þ
ðx
x0

kNwn tð Þdt: (27)

Variational iteration algorithm-III:

wnþ2 xð Þ ¼ wnþ1 xð Þ þ
ðx
x0

k Nwnþ1 tð Þ � Nwn tð Þ	 

dt;

(28)

Where, the Lagrange multiplayer k has been system-
atically explained in (He, 1999b). In general, when
applying the VIM for solving ð7Þ, one selects k ¼ �1
and the nonlinear operator is Nw xð Þ ¼ 2b dw

dx

� �3
. The

employed functional when applying the variational
iterative algorithm-I for solving ð7Þ finally takes in
the following form:

w1;nþ1 xð Þ ¼ w1;n xð Þ

�
ðx
0

dw1;n

dt
þ 2b

dw1;n

dt

� �3

�m t � 1ð Þ
 !

dt;

(29)

where; w1;0 xð Þ ¼ 1 and the other iterations are:

w1;1 xð Þ ¼ 1�mx þmx2

2
;

w1;2 xð Þ ¼ 1�mx þmx2

2
� 1
2
m3 �1þ �1þ xð Þ4
� �

b;

w1;3 xð Þ ¼ 1�mx þmx2

2
� 1
2
m3 �1þ �1þ xð Þ4
� �

b

� 12m5xb2 þ 30m5x2b2 � 40m5x3b2 þ 30m5x4b2

� 12m5x5b2 þ 2m5x6b2 þ 24m7xb3 � 84m7x2b3

þ 168m7x3b3 � 210m7x4b3 þ 168m7x5b3

� 84m7x6b3 þ 24m7x7b3 � 3m7x8b3 � 16m9xb4

þ 72m9x2b4 � 192m9x3b4 þ 336m9x4b4

� 2016
5

m9x5b4 þ 336m9x6b4 � 192m9x7b4

þ 72m9x8b4 � 16m9x9b4 þ 8
5
m9x10b4;

..

.

and so on. When applying the variational iterative
algorithm-II for solving ð7Þ the form of the employed
functional reads as:

w2;nþ1 xð Þ ¼ w2;0 xð Þ �
ðx
0

2b
dw2;n

dt

� �3

�m t � 1ð Þ
 !

dt;

(30)

and the final form of the functional used in the
application of algorithm-III to solve ð7Þ is
w3;nþ2 xð Þ ¼ w3;nþ1 xð Þ

�
ðx
0

2b
dw3;nþ1

dt

� �3

� 2b
dw3;n

dt

� �3

�m t � 1ð Þ
 !

dt:

(31)

The approximate terms obtained by Equations
(29), (30) and (31) are all the same.
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After simplifying both of the DJM series form,
i.e. wDJM;n xð Þ ¼Pk

i¼0 wi xð Þ and the nth iteration
obtained by the VIM wVIM;n xð Þ; we observe that:

wDJM;n xð Þ ¼ wVIM;nþ1 xð Þ: (32)

Consider this example: when making a simplifica-
tion for wDJM;2 xð Þ mentioned in ð24Þ and wVIM;3 xð Þ
we have:

wDJM;2 xð Þ ¼ wVIM;3 xð Þ ¼ 1þ 1
2
m �2þ xð Þx

� 1
2
m3x �4þ 6x � 4x2 þ x3ð Þb

þ 2m5x �6þ 15x � 20x2 þ 15x3 � 6x4 þ x5ð Þb2

� 3m7xð�8þ 28x � 56x2 þ 70x3 � 56x4 þ 28x5

� 8x6 þ x7Þb3 þ 8
5
m9x �10þ 45x � 120x2ð

þ 210x3 � 252x4 þ 210x5 � 120x6 þ 45x7

� 10x8 þ x9Þb4:

It is worth mentioning that the nth iter-
ation wVIM;n xð Þ represents the approximate solution
obtained by applying any of the three standard vari-
ational iteration algorithms 29ð Þ, ð30Þ and ð31Þ.

We used Mathematica, the symbolic computation
and manipulation software in our calculations. To
check the accuracy of this approximate solution, we
have suggested the following error remainder function

ERn xð Þ ¼ d
dx

Xn
i¼0

wi

 !
þ 2b

d
dx

Xn
i¼0

wi

 ! !3

�m x � 1ð Þ ¼ 0;

(33)

with the maximal error remainder parameter

MERn ¼ max
0�x�1

|ERn xð Þ|; (34)

All the terms that involve b and its powers give
the contribution for the non-Newtonian fluid.
Moreover, when setting b ¼ 0 in the approximations
above, we can retrieve the exact solution for the cur-
rent problem of the Newtonian viscous fluid.

5. Numerical simulations and results

When inserting the values of b and m in the
approximate solution ð24Þ we can get several
approximate solutions. We have chosen b ¼ 0:5
and m ¼ 0:3 as suggested by (AL-Jawary, 2017;
Siddiqui et al., 2012a). The approximations by the
DJM for this case are

w0 ¼ 1þ 0:3 �1þ x
2

� �
x;

w1 ¼ �1: �0:027x þ 0:0405x2 � 0:027x3 þ 0:00675x4ð Þ;

w2 ¼ 1: �0:027x þ 0:0405x2 � 0:027x3 þ 0:00675x4ð Þ
� 1:ð�0:020346416999999995x þ 0:024482776499999997x2

� 0:007056503999999997x3 � 0:0061474680000000006x4

þ 0:0031933115999999997x5 þ 0:0006680070000000001x6

� 0:0004199039999999999x7 � 0:000006561000000000002x8

þ 0:000019682999999999998x9 � 0:0000019683x10Þ;

..

.

The logarithmic plots of the maximum error
remainder parameters MERn, for n ¼ 1 through 5 are
shown in Figure 1 where an exponential rate of con-
vergence can be seen. To show the validity of the
DJM; Figure 2 shows the difference between the
approximate solution, which is produced by the DJM
and the numerical solution that is evaluated by using
the RKM (AL-Jawary, 2017).

To show the validity for the DJM in reaching the
best accuracy for the obtained approximate solu-
tions, we have used the root mean square (RMS)
norm to evaluate the difference between the solu-
tions of the DJM and RKM. For this matter, the RMS

1 2 3 4 5

5 10 5

1 10 4

5 10 4

0.001

0.005

n

M
E

R n

Figure 1. The logarithmic plots of MERn by DJM
when b ¼ 0:5 and m ¼ 0:3:

Figure 2. Comparison between the curves of the approxi-
mate series function by DJM and the numerical function
which obtained by RKM for 0 � x � 1 when b ¼
0:5 and m ¼ 0:3.
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is given in the following form

RMS wð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

wDJM � wRKMð Þ2P
wRKMð Þ2

s
; (35)

Figures 3 and 4 show the RMS differences
versus n. We observe good convergence in the RMS
curves as the value of n increases. At constant m
note that the higher the b value, the larger the RMS
difference, as shown in Figure 3. Also, keep-
ing b ¼ 0:1 with increasing the values of m will
make the convergence poorer (Figure 4). In all cases
we may conclude that the approximate DJM solution
becomes more accurate whenever n increases. The
rate of convergence with increasing n for the case of
b¼ 0.5 and m¼ 0.3 was estimated using log(MER4/
MER3)/log(MER3/MER2)¼ 1.0 proving linear conver-
gence of the method.

6. Numerical comparisons

In this section, we present a comparison between
our approximate solution obtained using the DJM
and the approximate solutions obtained by previous
studies using the ADM, VIM-I, VIM-II and VIM-III
methods. In comparison, the ADM requires to evalu-
ation the Adomian polynomials, which are computa-
tionally expensive. When comparing the DJM with
the VIM-j; we find that there is no need for evaluat-
ing the Lagrange multipliers in DJM, which requires
additional calculations when using the VIM-I, VIM-II

and VIM-III methods. Furthermore, the final solution
in the DJM is based on the sum of resulting iterative
terms. In contrast, the VIM-I approximate solution is
obtained by taking the limit of the resulting succes-
sive approximations. Tables 1 and 2 present the error
norm MER5 for the solutions obtained by the ADM,
VIM-I and DJM. It can be clearly seen that the best
accuracy is obtained by the DJM numerical solution.
The values of the MERn for the fifth order approxi-
mate solutions is express smaller error of DJM in
comparison to ADM and VIM-I.

Finally, when comparing the DJM with the other
numerical methods, especially Runge–Kutta method
(RKM); there is no need to use any type of truncation
errors to measure the accuracy of the obtained
approximate solution. There is no need for resorting
to any discretization processes or determining the
step size of the subintervals over the whole interval
in the DJM. Furthermore, there is no need for mak-
ing any round-off errors. The only limitation comes
from the physical properties of the underlying prob-
lem. As values of the parameters b and m are
increased the nature of the problem changes and
thus the error obtained at a specific n increases.
Changing of the parameters has an effect on conver-
gence rate as well.

7. Conclusions

In this work, we have derived an approximate solu-
tion of the thin film flow of a non-Newtonian fluid
by applying the Daftardar-Jafari iterative method.
The DJM does not require any restricted assump-
tions, as they are required when using other iterative
methods such as VIM or HAM. Furthermore, there is
no need to resort to additional calculations such as
evaluating Adomian polynomials as in the case of
ADM. The differences and similarities between DJM

Table 2. The MER5 for the solutions of the ADM, VIM-I and
DJM for different values of m when b ¼ 0:5:
m ADM VIM-I DJM

0:1 1:39442� 10�10 7:56112� 10�10 2:22449� 10�11

0:2 1:06931� 10�6 1:27554� 10�6 1:42288� 10�7

0:3 0:000189099 0:0000826431 0:0000192222
0:4 0:00708853 0:00137525 0:000521409
0:5 0:108326 0:0107724 0:00584935

Figure 3. The curves of the RMS differences at different val-
ues of b when m ¼ 0:1:

Figure 4. The curves of the RMS differences at different val-
ues of m when b ¼ 0:1:

Table 1. The MER5 for the solutions of the ADM, VIM-I and
DJM for different values of b when m ¼ 0:3:
b ADM VIM-I DJM

0:1 1:39694� 10�8 4:06296� 10�8 2:11964� 10�9

0:2 8:59592� 10�7 1:15823� 10�6 1:17068� 10�7

0:3 9:43745� 10�6 7:88187� 10�6 1:16024� 10�6

0:4 0.0000512 0:0000299 5:71314� 10�6

0:5 0:000189 0:0000826 0:000019
1 0:010431 0:001694 0:000707
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and VIM were explored in detail, highlighting the
most important ones. By examining convergence
properties of DJM for several parameter values of the
thin film fluid flow problem, we observe good con-
vergence properties. However, we did find that the
choice of the parameters does have an effect on
convergence.
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