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Abstract

The paper proposes a generic method to extend lift force models that were

originally devised for single linear shear �ow, to arbitrary �ow conditions. The

method computes the lift force due to the dominant streamwise �ow shear in

the Stokes �ow regime by implementing a series of coordinate transformations,

facilitating the computation of the lift force from dominant streamwise �ow

shear. The derived numerical algorithm is applied to the computation of a ded-

icated shear lift force model for prolate spheroidal particles (or axisymmetric

ellipsoidal particles) and a novel generalised Sa�man-type lift force model for

spherical particles in a general shear �ow. In order to verify the proposed shear

lift force for prolate spheroidal particles, numerical simulations of a particle

moving in Poiseuille �ow at four di�erent initial positions and two aspect ra-

tios are perfomed. The new generalised Sa�man-type lift model is compared

with an established generalised Sa�man-type lift model by simulating the axial

migration of a spherical particle in Poiseuille �ow. The computational results

con�rm the correctness of the proposed shear lift force models.
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1. Introduction

In-depth understanding of �uid �ows with dispersed solid particles is im-

portant in several �elds of sciences, e.g. life sciences, natural sciences, medical

sciences and engineering sciences. Processing of suspensions with �bres in the

pulp industry (Marchioli et al., 2010), heat transfer augmentation based on the5

use of particles with favourable thermal properties (Jafari et al., 2008), drug

detachment within dry powder inhalers (Cui et al., 2014; Cui & Sommerfeld,

2017), drug deposition in the pulmonary delivery (Koullapis et al., 2017), mix-

ing of particles in stirred tanks (Delafosse et al., 2015), separation of particles in

wastewater treatment (Hriber²ek et al., 2011) and magnetic separation of par-10

ticles from liquids (Zadravec et al., 2014) are only a few of many applications.

Dispersed �ows consist of particles that interact with the �uid phase, i.e.

they exchange mass, linear and angular momentum, and energy. When one

derives dedicated numerical methods for the computation of dispersed two-phase

�ows, the case of small rigid particles travelling in the Stokes �ow regime is15

predominantly taken into account. Furthermore, in the case of dilute suspension

of rigid particles, considered in this article, only the �uid �ow impact on the

particle motion shall be modelled (Crowe et al., 1998). When the particles

are smaller than the smallest �ow scales, the point source model within the

Lagrangian particle tracking framework can be implemented.20

As one can not a�ord to resolve �ow structures in the vicinity of the par-

ticles directly, it is necessary to apply the appropriate constitutive models for

the interaction between the particles and the �uid �ow. Among particle-�uid

interactions that predominantly in�uence the particle trajectory, the linear mo-

mentum transfer is typically the most important one. However, in the case of25

high shear �ow �elds or rotating particles, especially for non-spherical shaped

particles, angular momentum must also be considered. In the linear momentum

transfer case, the drag force is the predominant �uid force. Besides, when a

particle encounters a high shear �ow region, the shear-induced lift forces can
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signi�cantly in�uence the particle trajectory and should not be neglected (Derk-30

sen, 2003). Theoretically, there are mainly two directions to develop shear lift

force models: one focuses on a simple shear around a particle at low particle

Reynolds numbers, while the other considers the inviscid limit of week simple

shear around a particle at high particle Reynolds numbers (Daly et al., 2014).

The low Reynolds number regime was initially investigated by Sa�man35

(Sa�man, 1965, 1968), who found that a sphere moving through a very vis-

cous liquid with velocity relative to a uniform simple shear experiences a lift

force perpendicular to the �ow direction. However, Sa�man didn't account for

the wall interaction and the neutrally buoyant limit (Stone, 2000). McLaughlin

(1993) built on Sa�man's work by calculating the lift force on a particle in a40

linear shear �ow in the presence of the wall. Miyazaki et al. (1995) calculate the

mobility tensor of a sphere moving in a �uid by generalising the simple shear

�ow to an arbitrary linear shear �ow. In the case of non-spherical particles,

a lift tensor introduced by Harper & Chang (1968) can be used to model the

shear-induced lift for any arbitrarily shaped 3D body in a linear shear �ow.45

In the steady limit, the closed form for the mobility tensor of Miyazaki et al.

(1995) becomes similar to the lift tensor of Harper & Chang (1968). However,

there appears to be some (reasonably small) numerical discrepancy between the

mobility tensor and the lift tensor (Stone, 2000). Later Fan & Ahmadi (1995)

used the lift tensor of Harper & Chang (1968) to build the shear-induced lift50

force model for axisymmetric ellipsoidal particles in a linear shear �ow.

When a sphere is placed in a weak shear �ow of an inviscid �uid under high

particle Reynolds numbers, a lift force is generated by the secondary velocity

resulting from advection of vorticity by the irrotational component of the �ow

around the sphere surface (Auton, 1987; Auton et al., 1988). In the case of55

non-spherical particles, Zhang et al. (2001) pioneered simulations of the trans-

port and deposition of ellipsoidal particles in turbulent channel �ow by using

empirical models. Hölzer & Sommerfeld (2009) and Zastawny et al. (2012) use

direct numerical simulation (DNS) to calculate the shear lift force on di�erently

shaped single particles with a wide range of �ow Reynolds numbers. Likewise,60
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Ouchene et al. (2016) derive and validate new correlations for the lift coe�cient

for non-spherical particles by �tting the results extracted from DNS compu-

tations of the �ow around prolate ellipsoidal particles. The highlight of their

work is to provide a complete set of correlations for prolate ellipsoidal particles

outside the Stokes regime.65

A generic approach used to extend lift force models that were originally

devised for linear shear �ow to arbitrary �ow conditions in the Stokes �ow regime

is proposed in this work. The idea is based on the assumption that the dominant

contribution to the �ow-induced lift force arises from the streamwise �ow shear.

As the streamwise direction locally varies in the �uid �ow �eld, the computation70

of the lift force caused by the streamwise �ow shear needs to be performed in a

local coordinate system, which has to be aligned with the streamwise direction

at the particle location; therefore a suitable coordinate system rotation has to

be applied. Another dedicated coordinate system rotation is needed to establish

the conditions where a resultant shear can directly be applied in the shear lift75

models devised for the linear shear �ow. Since this approach is applied to

extend the lift model of Harper & Chang (1968) from the linear shear �ow to

the arbitrary �ow condition, prerequisites on using Harper & Chang's lift model

are needed as well, e.g. particles moving in the regime of creeping �ow (Stokes

�ow).80

The paper is organized as follows. In Section 2, the equations of kinematics

and dynamics of prolate spheroidal particles are presented, including the trans-

lational and rotational motion of particles. Particular attention is devoted to

the derivation of the dedicated lift force model for prolate spheroidal particles

due to the streamwise �ow shear. To prove the numerical algorithm for cal-85

culating the generalised shear lift force is not restricted to prolate spheroids,

the original Sa�man lift force model, which is applicable for spherical particles

in a simple shear �ow, is extended to the case of an arbitrary shear �ow by

applying the same computational method. In Section 3, numerical veri�cation

of the new shear lift force model for prolate spheroidal particles in Poiseuille90

�ow is presented. The predictions of the present numerical models for prolate
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spheroids on the motion of ellipsoidal �bres in low Reynolds number pipe �ow

are compared with available numerical results (Tian et al., 2012). Moreover,

the new generalised Sa�man-type lift force is veri�ed against the established

generalised Sa�man-type lift force proposed by Crowe et al. (1998) in Poiseuille95

�ow. The paper ends with conclusions.

Notation:. Tensors of various order are expressed in bold italic font, i.e. a

�rst-order tensor (vector) and a second-order tensor are denoted by A and

B, respectively. In a Cartesian coordinate system with base vectors ei (i =

1, 2, 3) they have the coordinate representation A = Aiei and B = Bijei ⊗

ej , respectively, whereby Einstein's summation convention applies for repeated

indices. Ai and Bij are the coe�cients of A and B, respectively, in the chosen

coordinate system ei. They may be arranged into coe�cient matrices

A :=


A1

A2

A3

 and B :=


B11 B12 B13

B21 B22 B23

B31 B32 B33


whereby bold sloping sans serif font is used for coe�cient matrices. Indeed

A is a column matrix, the superscript T denotes transposition so that AT =

[A1, A2, A3] (a row matrix). In the sequel we restrict ourselves to the use of

Cartesian coordinate systems ei and e′i that are related via rotation with rota-

tion matrix V (or likewise by rotation tensor Q), i.e.

e′i = Vikek = [Vlkek ⊗ el] · ei =: Q · ei with Q = V T .

Without loss of generality we will thus only use the corresponding matrix ar-

rangements of tensor coe�cients, i.e. the coe�cient matrices

A′ = V A and B ′ = V B V T .

Finally, it is noted that we will use x1, x2, x3 and x, y, z interchangeably.
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Figure 1: Schematic of a prolate spheroidal particle and the corresponding coordinate system.

2. Equation of Motion for Prolate Spheroidal Particles100

2.1. Kinematics

A schematic diagram of a prolate spheroidal particle (or axisymmetric el-

lipsoidal particle) with semi-minor axis a and semi-major axis b, and thus with

aspect ratio λ = b/a ≥ 1, and the associated reference frames are illustrated

in Fig. 1. The co-translational frame (or the co-moving frame) [x′′, y′′, z′′] is105

attached to the prolate spheroidal particle with its origin at the particle centroid

and its axes being parallel to the inertial frame [x, y, z]. The co-rotational frame

(or the particle frame) [x′, y′, z′] is de�ned with its origin at the centroid of the

particle and its axes being along the principal axes of the prolate spheroidal

particle, in which z′ is in the direction of the semi-major axis.110

For tensor coe�cients that do not change between the inertial and the co-

moving frame (the coe�cients of the position vector are an exception) we shall

not distinguish between the corresponding coe�cient matrices and will thus

abstain from the double prime notation in the following sections.

Orientation in space may be parametrised by the Euler angles [φ, θ, ψ] by115

using the x-convention (Goldstein, 1980). However, when kinematic relations

between the angles and angular velocity are set up, we observe that a singu-
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larity exists for θ = 0 and θ = π (Fantoni, 2008). To avoid this problem, we

express the rotation matrix in terms of the Euler parameters (or the quater-

nions) [e0, e1, e2, e3], which can be obtained as follows (Goldstein, 1980)120

e0 = cos

[
1

2
[φ+ ψ]

]
cos

[
θ

2

]
, e1 = cos

[
1

2
[φ− ψ]

]
sin

[
θ

2

]

e2 = sin

[
1

2
[φ− ψ]

]
sin

[
θ

2

]
, e3 = sin

[
1

2
[φ+ ψ]

]
cos

[
θ

2

] (1)

The Euler parameters are subject to the constraint e20 + e21 + e22 + e23 = 1 (Gold-

stein, 1980).

The rotation matrix written in terms of the Euler parameters reads in the

inertial frame as

V =


e20 + e21 − e22 − e23 2[e1e2 + e0e3] 2[e1e3 − e0e2]

2[e1e2 − e0e3] e20 − e21 + e22 − e23 2[e2e3 + e0e1]

2[e1e3 + e0e2] 2[e2e3 − e0e1] e20 − e21 − e22 + e23

 (2)

In the rotational part of the kinematics, the time evolution of the Euler125

parameters is related to the angular velocity in the vector basis attached to the

particle, ωi′ (with i′ = x′, y′, z′), and is given by

de0
dt

=
1

2
[−e1ωx′ − e2ωy′ − e3ωz′ ],

de1
dt

=
1

2
[ e0ωx′ − e3ωy′ + e2ωz′ ]

de2
dt

=
1

2
[ e3ωx′ + e0ωy′ − e1ωz′ ],

de3
dt

=
1

2
[−e2ωx′ + e1ωy′ + e0ωz′ ]

(3)

2.2. Dynamics of translational motion130

The trajectory of a particle is a result of its interaction with the �uid �ow.

In the case of small particles, typically in the micro and submicron range, the

particles behave like rigid bodies, i.e. the deformation of a particle can be

neglected. Local values of velocity, vorticity and pressure in the �uid phase

and their di�erence to the state of the particle determine transport phenomena135

between the dispersed and the �uid phase. Particle transport is computed in the

7



Euler-Lagrangian framework by particle tracking, which is performed by solving

the following ordinary di�erential equation along the particle trajectories:

mp
dv

dt
= FD + FSL + gVp [ρp − ρf ] (4)

where mp, Vp, ρp are the mass, the volume and the density, respectively, of the

particle, ρf is the �uid density, and v , FD, FSL, g are the corresponding coe�-140

cient (column) matrices of the particle velocity v, the drag force FD, the shear

lift force FSL, and the gravity acceleration g, respectively. The gravity force

reduced by buoyancy is captured by the last term in Eq. 4. In the present study,

the particle dimensions have a scale of micrometres for reasons that will be ex-

plained in Section 2.2.2, and the relative velocity (or the slip velocity) between145

the particle and the �uid is very small, this resulting in a Stokes �ow around

the particle, i.e. particle Reynolds number Rep = Dp |u − v |/ν � 1, where ν,

Dp are the kinematic �uid viscosity and the volume equivalent diameter of the

particle, respectively, and u denotes the coe�cient (column) matrix of the �ow

velocity u at the particle's position. Therefore, the pro�le lift force, the lift150

force due to the relative particle rotation with respect to the �uid, the Brown-

ian motion force, the pressure gradient force, the added mass, and the Basset

history force are neglected (Hjelmfelt & Mockros, 1966; Sommerfeld et al., 2008;

Tu et al., 2013).

155

2.2.1. Drag force

Brenner (1964) derived the hydrodynamic drag force acting on an axisym-

metric ellipsoidal particle with semi-minor axis a in the Stokes �ow regime:

FD = πaρfνK [u − v ] =: D [u − v ] (5)

Particular to the hydrodynamic drag force in Eq. 5 is the introduction of the

(geometric) resistance tensor K with coe�cient matrix K (where D = πaρfνK160

could be denoted the coe�cient matrix of the physical resistance tensor for

axisymmetric ellipsoidal particles). In the particle frame of reference [x′, y′, z′]
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only diagonal components of K ′ are non-zero, these are a function of the particle

aspect ratio λ and may be written as

K ′x′x′ = K ′y′y′ =
16[λ2 − 1]3/2

[2λ2 − 3] ln(λ+
√
λ2 − 1) + λ

√
λ2 − 1

(6)

165

K ′z′z′ =
8[λ2 − 1]3/2

[2λ2 − 1] ln(λ+
√
λ2 − 1)− λ

√
λ2 − 1

(7)

The spherical particle limit renders limλ→1K
′ = 6 I , where I is the identity

matrix.

To express the coe�cients of the resistance tensor in the inertial frame of

reference, the rotation matrix V is used:

K = V T K ′V , (8)

where K and K ′ denote the coe�cients matrices of the resistance tensor K in170

the inertial and the particle frame of reference.

2.2.2. Lift force acting on prolate spheroidal particles in a linear shear �ow

Harper & Chang (1968) derived a shear lift force model for arbitrarily

shaped three-dimensional (3D) rigid bodies moving in a linear shear �ow u =175

[ux(z), 0, 0] in the x−z plane (whereby ux,z = ∂ux/∂z is constant) in the Stokes

�ow regime as

FSL =
1

ρf ν3/2
ux,z

|ux,z|1/2
D Lxz D [u − v ] (9)

where D is the coe�cient matrix of the physical resistance tensorD for arbitrar-

ily shaped 3D rigid bodies. Thereby the coe�cient matrix of the lift tensor Lxz

as calculated via asymptotic methods by Harper & Chang (1968) is expressed180

as

Lxz =


A 0 B

0 C 0

D 0 E

 (10)

where the coe�cients of Lxz are given as

A = 0.0501, B = 0.0329, C = 0.0373, D = 0.0182, E = 0.0173. (11)
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Recall that D reads in the case of prolate spheroidal particles as D = πaρfνK ,

thus one can rewrite the shear lift force of Harper & Chang (1968) as

FSL = π2ρfa
2
√
ν

ux,z

|ux,z|1/2
K Lxz K [u − v ] (12)

For the limiting case of a spherical particle with limλ→1K = 6 I Eq. 12 degen-185

erates to

FSL = 36π2ρfa
2
√
ν

ux,z

|ux,z|1/2
Lxz [u − v ] (13)

If the o�-diagonal coe�cients D and B are set to zero, the remaining coef-

�cients A, C and E have the e�ect of changing the shape of the Stokes orbit

(Harper & Chang, 1968), and represent the inertial e�ect of the Stokes drag.

For example, coe�cient A acts in the x-direction as a result of relative velocity190

in the x-direction which behaves the same as the x-component of the Stokes

drag. The particle motion remains periodic when the o�-diagonal coe�cients

are zero, and the non-zero o�-diagonal coe�cients render the aperiodic motion

of the particle orbit. The coe�cient D has a stronger in�uence on the shear

lift force than the coe�cient B. This is because the coe�cient B acts in the195

x-direction as a result of relative velocity in the z-direction, while the coe�cient

D acts in the z-direction and is due to the relative velocity in the x-direction

(Harper & Chang, 1968). The z-component lift force induced by the velocity

di�erence in the x-direction agrees with the result of Sa�man (Eq. 26), i.e.

36π2D = 6.46, which corresponds to the �nding of Harper & Chang (1968) and200

Fan & Ahmadi (1995).

In principle, the lift tensor Lxz can be applied to any arbitrarily shaped 3D

body (Harper & Chang, 1968) in the Stokes �ow regime. It is used to determine

the shear lift force for a prolate spheroidal particle by applying the product

K Lxz K , where the orientation of the prolate spheroid is taken into account205

by Eq. 8. Therefore, the shear lift force in Eq. 12 is applicable for particles

with prolate spheroidal and �bre shapes as well as spherical shape at very low

particle Reynolds numbers (i.e. Rep � 1) in a linear shear �ow.

It should be noted that Harper & Chang (1968) only proposed a general

form of the lift force acting on arbitrarily shaped 3D body in a linear shear210
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�ow. The lift model for prolate spheroidal particles was �rst introduced by Fan

& Ahmadi (1995) in a di�erent linear shear �ow u = [ux(y), 0, 0] in the x−y

plane (whereby ux,y = ∂ux/∂y is constant), which reads as

FSL = π2ρfa
2
√
ν

ux,y

|ux,y|1/2
K Lxy K [u − v ] (14)

where the coe�cient matrix Lxy of the lift tensor Lxy is a permuted version of

Lxz and is given by215

Lxy =


A B 0

D E 0

0 0 C

 (15)

Note that the main lift force contribution, due to the relative velocity in the

x−direction, is now in the y direction.

2.2.3. Lift force acting on prolate spheroidal particles due to the streamwise �ow

shear

The above models for the shear lift force acting on prolate spheroidal par-220

ticles are only applicable for linear shear �ows. In the following, we propose a

new lift force model for arbitrary shear �ows, which focuses on the action of

the lift force only in the plane perpendicular to the streamwise �ow direction at

the particle's position. As was also mentioned in the paper of Fan & Ahmadi

(1995): "only the lift force due to the streamwise �ow shear which is dominant is225

included in the analysis". The same conclusion can also be made from the works

of Sa�man (1965, 1968); Harper & Chang (1968); Stone (2000). It is necessary

to perform dedicated transformations of the coordinate systems in such a way,

that the lift force, induced by the streamwise �ow shear, could be determined

from Eq. 12. As will be shown, the procedure is based on performing rotation230

of the coordinate system twice in order to transform a general streamwise shear

�ow into a linear shear �ow. A preliminary study can be found in Ravnik et al.

(2013) and Cui et al. (2018).

In a general �ow, there exists six shear rates in the non-diagonal components

(i 6= j) of the velocity gradient tensor G := ∇u with coe�cients ∂ui/∂xj235
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arranged in the coe�cient matrix

G =


∂ux
∂x

∂ux
∂y

∂ux
∂z

∂uy
∂x

∂uy
∂y

∂uy
∂z

∂uz
∂x

∂uz
∂y

∂uz
∂z

 (16)

In the case of a pure shear �ow, only one non-diagonal component of G is

non-zero, and all the diagonal components of G must be equal to zero.

The �rst coordinate rotation, described by the rotation matrix V ∗, rotates

the inertial frame with base vectors ei (i = 1, 2, 3) into a new reference frame240

with base vectors e∗i (i = 1, 2, 3), so that the e∗1 is parallel to the streamwise

direction at the particle location. Therefore, the coe�cient (column) matrix

of the �ow velocity in the coordinate system ei, i.e. u = [ux, uy, uz]
T , is

transformed into the coe�cient (column) matrix of the �ow velocity in the

coordinate system e∗i , i.e. u∗ = [u∗x, 0, 0]
T with u∗x = |u|, by the rotation245

matrix V ∗:

u∗ = V ∗ u (17)

For the e�cient construction of the rotation matrix to rotate one vector into

another the method by Möller & Hughes (1999) was used in this work.

Since the �uid velocity at the particle location is taken to be tangential to e∗1,

the basis e∗i which corresponds to the Serret-Frenet frame is actually a curvilin-250

ear basis except if the component G∗11 is zero. In such a basis, the components

of G∗ cannot be obtained by using a simple rotation matrix because the local

vectors do depend on the spatial coordinates and their own spatial derivations

matter in the determination of the components of the velocity gradient. To

solve this problem we make an assumption:255

Assumption 1.

The spatial rate of change of the �uid velocity at the particle location is

approximately zero in the streamwise direction.

In the case of the developed �ow the above assumption holds exactly, whereas it

also holds when the particle characteristic time scale is much less then the time260
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scale of the smallest �ow structures, i.e. the particle Stokes number is much less

than one. The spherical particle Stokes number is de�ned as

St =
2

9

ρp
ρf

a2

ν

u0
L
, (18)

where u0 and L are the characteristic �uid velocity scale and the characteristic

problem length scale, respectively. To accomadate this condition the maximum

particle Stokes number should be less than O(10−2), since the particle trajecto-265

ries for St = 0.01 are close enough to �ow streamlines and hence the assumption

of small streamwise velocity changes is correct.

Under such a condition, G∗11 = ∂u∗x/∂x
∗ ≈ 0. Therefore, the coe�cient ma-

trix of the velocity gradient tensor in the coordinate system e∗i can be obtained

from the rotation of the coe�cient matrix of the velocity gradient tensor in the270

coordinate system ei,

G∗ = V ∗G V ∗T (19)

As only the lift force due to the streamwise �ow shear is included in the analysis,

for the �ow velocity at the coordinate system e∗i , only two shear rates of ∂u
∗
x/∂y

∗

and ∂u∗x/∂z
∗ remain to be taken into account. The part of G∗, that is taken

into account for the computation of the lift force from the streamwise �ow shear,275

in the coordinate system e∗i , is in the form of

G∗SL =


0 G∗12 G∗13

0 0 0

0 0 0

 (20)

where G∗12 = ∂u∗x/∂y
∗ and G∗13 = ∂u∗x/∂z

∗.

As shown in Fig. 2, the second coordinate rotation by the rotation matrix

V ∗∗ is a rotation around the x∗-axis. The goal of the rotation is to align the

unit vector e∗∗3 with the direction vector g∗sl, where g
∗
sl = [0, G∗12, G

∗
13]

T denotes280

the coe�cient (column) matrix of g∗sl. In this way, the two shear rates, i.e. G∗12

and G∗13 in the coordinate system e∗i , are compressed into one shear rate G∗∗13 in

the new reference frame with base vectors e∗∗i (i = 1, 2, 3). In other words, the

rotation around the x∗-axis by the rotation matrix V ∗∗ must meet the following

13



Figure 2: Illustration of the secondary rotation: compose two shear rates into one shear rate

by the rotation matrix V ∗∗.

condition:285

G∗∗SL = V ∗∗G∗SLV
∗∗T =


0 0 G∗∗13

0 0 0

0 0 0

 (21)

where G∗∗13 = ∂u∗∗x /∂z
∗∗. The rotation matrix V ∗∗ can be calculated by

e∗∗3 = V ∗∗
g∗sl
|g∗sl|

(22)

where e∗∗3 = [0, 0, 1]T .

After these two rotations, the coe�cient matrix of the resistance tensor in

the new coordinate system e∗∗i is given by

K∗∗ = V ∗∗K∗V ∗∗T (23)

with K∗ = V ∗K V ∗T .290

Next, to be able to apply the single linear shear �ow model (Harper &

Chang, 1968) in a more general case, we propose the following form of the lift

force acting on a prolate spheroidal particle in a general shear �ow:

FSL = π2ρfa
2
√
ν l (24)

with the coe�cient (column) matrix of the lift vector l de�ned as

l =
√
|g∗sl|V

∗T V ∗∗T K∗∗ Lxz K
∗∗V ∗∗V ∗ [u − v ] (25)
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295

The algorithm for calculating the shear lift force acting on a prolate spheroidal

particle from the streamwise �ow shear can now be summarised as follows:

Algorithm 1.

1. Compute the rotation matrix V ∗ by using Eq. 17;300

2. Compute the velocity gradient tensor G∗ by using Eq. 19;

3. Compute the rotation matrix V ∗∗ by using Eq. 22;

4. Compute the shear lift force FSL by using Eqs. 23 - 25.

As aforementioned, the lift tensor proposed by Harper & Chang (1968) is

applicable for any arbitrarily shaped 3D body. Therefore, Algorithm 1 can be305

used to compute the shear lift force on other shaped particles by replacing the

(geometric) resistance tensor K for axisymmetric ellipsoids with corresponding

(geometric) resistance tensors.

2.2.4. New generalised Sa�man-type lift force acting on spherical particles

The proposed algorithm for calculating the lift force from the streamwise310

�ow shear is not restricted to prolate spheroidal particles. It is a generic method

that can be used with models that were originally derived under assumptions

of single linear shear �ow conditions, in order to extend them to arbitrary �ow

conditions.

In the following, as the single linear shear �ow based Sa�man lift force315

model is the most important shear lift model used in numerous particle tracking

algorithms, an implementation of the derived algorithm for the Sa�man lift is

presented.

First, we rewrite the Sa�man lift force model for a freely rotating spherical

particle moving at a constant velocity in a linear shear �ow u = [ux(y), 0, 0]320

in the x−y plane (whereby ux,y = ∂ux/∂y is constant) at low Reynolds number

(Sa�man, 1965, 1968) in a 3D form:

FSL = 6.46ρfa
2
√
ν

ux,y

|ux,y|1/2
B [u − v ] (26)
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with

B =


0 0 0

1 0 0

0 0 0

 (27)

In the linear shear �ow u = [ux(y), 0, 0], by applying the coe�cient matrix B

the Sa�man lift force points in the y-direction.325

Second, a new generalised Sa�man-type lift force model is built as follows:

Algorithm 2.

1. Compute the rotation matrix V ∗ by using Eq. 17;

2. Compute the velocity gradient tensor G∗ by using Eq. 19;330

3. Compute the rotation matrix V ∗∗ by using Eq. 22;

4. Compute the new generalised Sa�man-type lift force as

FSL = 6.46ρfa
2
√
ν
√
|g∗sl|V

∗T V ∗∗T B V ∗∗V ∗ [u − v ] (28)

The only di�erence between Algorithm 1 and Algorithm 2 lies in the fourth

step, where the coordinate transformations are applied to the sphere (Sa�man)

lift model instead for the prolate spheroid. Therefore, in the case of a given shear335

lift model, developed under assumptions of a single linear shear �ow, one can

build a generalised shear lift force by following the steps (i) to (iv) of Algorithm

2.

In Section 3.3, the new generalised Sa�man-type lift force is veri�ed against

the established generalised Sa�man-type lift force proposed by Crowe et al.340

(1998), expressed here in tensor (vector) notation as

FSL = 6.46ρfa
2
√
ν

1√
|w|

[[u− v]×w] (29)

where w := curlu is the �uid vorticity (curl of the �uid velocity) on the particle

location. In a linear shear �ow, the lift component perpendicular to the �ow

direction calculated by the new generalised Sa�man-type lift model (Eq. 28)

and the established Sa�man-type lift model (Eq. 29) are identical.345
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2.3. Dynamics of rotational motion

The rotational motion of a non-spherical particle moving in a �ow �eld is

governed by

Ix′
dωx′

dt
− ωy′ωz′ [Iy′ − Iz′ ] = Tx′ (30)

350

Iy′
dωy′

dt
− ωz′ωx′ [Iz′ − Ix′ ] = Ty′ (31)

Iz′
dωz′

dt
− ωx′ωy′ [Ix′ − Iy′ ] = Tz′ (32)

where ωx′ , ωy′ , ωz′ are the particle angular velocities with respect to the prin-

cipal axes, Ix′ , Iy′ , Iz′ are the particle moments of inertia about the principal

axes [x′, y′, z′], i.e. the principal values of the particle's inertia tensor, and Tx′ ,

Ty′ , Tz′ are the hydrodynamic torques acting on the particle with respect to355

the principal axes. The rotational motion of the particle in Eqs. (30) - (32) is

stated in the particle frame of reference.

The moments of inertia for a prolate spheroid are

Ix′ = Iy′ =
[1 + λ2]a2

5
mp =

4π

15
λ[λ2 + 1]a5ρp (33)

Iz′ =
2a2

5
mp =

8π

15
λa5ρp (34)

As the �ow near a small particle may be approximated as a linear shear �ow,360

Je�ery (1922) derived the hydrodynamic torque acting on a prolate spheroidal

particle suspended in a linear shear �ow. In the particle frame of reference, we

have:

Tx′ =
16πρfνa

3λ

3[β0 + λ2γ0]

[
[1− λ2]f ′ + [1 + λ2][ξ′ − ωx′ ]

]
(35)

Ty′ =
16πρfνa

3λ

3[α0 + λ2γ0]

[
[λ2 − 1]g′ + [1 + λ2][η′ − ωy′ ]

]
(36)

365

Tz′ =
32πρfνa

3λ

3[α0 + β0]
[χ′ − ωz′ ] (37)

where f ′, g′ are elements of the deformation rate tensor D := Gsym and ξ′, η′

and χ′ are elements of the spin tensor W := Gskw with w the axial vector of

W , de�ned as

f ′ =
1

2

[
∂uz′

∂y′
+
∂uy′

∂z′

]
, g′ =

1

2

[
∂ux′

∂z′
+
∂uz′

∂x′

]
(38)
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ξ′ =
1

2

[
∂uz′

∂y′
− ∂uy′

∂z′

]
, η′ =

1

2

[
∂ux′

∂z′
− ∂uz′

∂x′

]
, χ′ =

1

2

[
∂ux′

∂y′
− ∂uy′

∂x′

]
(39)

In order to evaluate these terms, the coe�cient matrix of the velocity gradient370

tensor must be rotated into the particle frame of reference using the rotation

matrix as

G ′ = V G V T (40)

The nondimensional coe�cients α0, β0 and γ0 were de�ned by Gallily & Cohen

(1979) as

α0 = β0 =
λ2

λ2 − 1
+

λ

2[λ2 − 1]3/2
ln

(
λ−
√
λ2 − 1

λ+
√
λ2 − 1

)
(41)

375

λ2γ0 = − 2λ2

λ2 − 1
− λ3

[λ2 − 1]3/2
ln

(
λ−
√
λ2 − 1

λ+
√
λ2 − 1

)
(42)

Inserting moments of inertia (33) - (34) and torques (35) - (37) into the

equations of motion (30) - (32) and the governing equations for the rotational

motion of prolate spheroidal particles are obtained:

dωx′

dt
= ωy′ωz′

λ2 − 1

1 + λ2
+

20ν

a2[β0 + λ2γ0]

ρf
ρp

[
1− λ2

1 + λ2
f ′ + [ξ′ − ωx′ ]

]
(43)

dωy′

dt
= ωz′ωx′

1− λ2

1 + λ2
+

20ν

a2[α0 + λ2γ0]

ρf
ρp

[
λ2 − 1

1 + λ2
g′ + [η′ − ωy′ ]

]
(44)

380

dωz′

dt
=

20ν

a2[α0 + β0]

ρf
ρp

[χ′ − ωz′ ] (45)

A MATLAB program used for simulating the motion of prolate spheroidal

particles in a 3D �ow was developed by using the above models. The implicit

Euler backward scheme was applied in the code.

3. Numerical Veri�cation

3.1. Numerical veri�cation of the novel shear lift force model for prolate spheroidal385

particles

The novel shear lift force model for prolate spheroidal particles is veri�ed in

Poiseuille �ow as shown in Fig. 3. As the pipe is placed vertically this means

18



Figure 3: Schematic diagram of a particle in Poiseuille �ow with the �ow in the x-direction.

the gravity acceleration g is in the −x-direction. The gravity can help increase

the particle slip velocity, and thus increases the lift force. The pipe radius R is390

2.1 mm. The �uid is water with density of 1000 kg/m3 and kinematic viscosity

of 1mm2/s. The velocity pro�le of the Poiseuille pipe �ow is analytically given

in cylindrical coordinates (r = 0 denoting the centreline of the pipe) by the

expression

u = Um

[
1−

[ r
R

]2]
(46)

where Um is the maximum �ow velocity at r = 0, with its value set to 0.5m/s in395

the present study. In the numerical simulation, only a single particle is placed

in the �uid domain with its primary axis b pointing in the direction of the pipe

centreline. The volume equivalent diameter of the particle Dp = 20µm, and

its density is 2560 kg/m3. The initial vertical distance between the particle and

the centreline of the pipe is r = 0.1mm. The initial velocity of the particle is400

set to v = 0.99u, therefore the particle Reynolds number at the starting point

is about 0.1. Due to the velocity gradients in the radial direction, the shear lift

force is produced and due to its action, the particle is moved to the centreline of

the pipe. Regardless of the initial circumferential location of the particle, at the

same distance r, a particle must experience the same magnitude of the shear405

lift force, which has to act radially towards the centre of the pipe.

As aforementioned, the above numerical models have several restrictions.
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Point Position Euler Angle Flow Direction

P1 [0,−r, 0]T [0, π/2, 0]T [0.5Um, 0, 0]
T

P2 [0,−0.866r, 0.5r]T [0, π/3, 0]T [0.5Um, 0, 0]
T

Table 1: Information of two points P1 and P2 located in the y-z plane of a Poiseuille �ow

with the �ow in the x-direction.

First, in a Stokes �ow the particle Reynolds number must be much less than

one. Secondly, the torque obtained by Je�ery (1922) is valid when the inertia

of the �uid does not a�ect the angular motion, i.e. in the limit where the shear410

Reynolds number, Reg = D2
pG/ν, is zero. Moreover, the validity of Assumption

1 can be checked by calculating the ratio between G∗∗11 and G∗∗13, which must be

close to zero. Therefore, we run a test simulation by placing a spherical particle

on the y-axis (information on the location of the particle is summarised in

Table 1 as P1) and track the particle for 50 s. The time evolution of above415

dimensionless parameters are illustrated in Fig. 4, and it's obvious that the

above three requirements are satis�ed in the present simulation.

To verify the developed shear lift model, we �rst placed the particle at two

di�erent positions in the y−z plane with the same radial distance r, with infor-

mation on the location of the two points summarised in Table 1. P1 is located420

on the y-axis so that the shear lift model by Fan & Ahmadi (1995) (Eq. 14)

can be directly applied. Fig. 5 plots the translational motion of the particle for

di�erent aspect ratios and initial positions. In the case of a spherical particle,

the particle moves straight towards the pipe centreline; in the case of a prolate

spheroidal particle, the particle moves to the pipe centreline as well, but its tra-425

jectory is a periodic curve, caused by the action of the torque resistance. At the

position P1, the results of the present shear lift model show excellent agreement

with Fan and Ahmadi's model for both aspect ratios. When moving the parti-

cle from position P1 to P2, the application of Algorithm 1 is necessary in order

to apply the streamwise shear lift model, and the corresponding computational430

results prove that there are no di�erences in the computed particle trajectory.
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Figure 4: Time evolution of dimensionless parameters of the spherical particle in Poiseuille

�ow (tracking time: 50 s, time step: 10µs).
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Figure 5: The translational motion of prolate spheroidal particles for di�erent aspect ratios

and initial positions (tracking time: 5 s, time step: 10µs).
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Point Position Euler Angle Flow Direction

P3 [0.7071r,−0.7071r, 0]T [π/4, π/2, 0]T [Um/
√
2, Um/

√
2, 0]T

P4 [0.6124r,−0.6124r, 0.5r]T [π/4, π/3, 0]T [Um/
√
2, Um/

√
2, 0]T

Table 2: Information of two points P3 and P4 located in a Poiseuille �ow with the �ow in the

[Um/
√
2, Um/

√
2, 0] direction.

However, the above results only demonstrate that the coordinate transfor-

mation by V ∗∗ is correct, but the transformation by V ∗ is not veri�ed since

due to the veri�cation setup it was an identity matrix. To test both V ∗ and

V ∗∗, the pipe is rotated around the z-axis counterclockwise by the angle of π/4,435

resulting in a new �ow direction of [Um/
√
2, Um/

√
2, 0]T , and the gravity accel-

eration g is switched to the reverse �ow direction. After the modi�cation in the

�ow setup, the previous position of P1 has become P3, and P2 is transformed

into P4, with the information on the location of two new points summarised in

Table 2. The particle trajectories of all three di�erent initial particle locations,440

i.e. P1, P3 and P4, are plotted in Fig. 6. Under the same aspect ratio, i.e. λ = 1

or 10, the particle trajectories for all three di�erent initial particle locations are

identical, proving the validity of the sequential transformations V ∗ and V ∗∗ for

calculating the shear lift force.

3.2. Numerical veri�cation of the transport of ellipsoidal �bres in low Reynolds445

number pipe �ow

The developed Lagrangian particle tracking code is veri�ed by comparing its

prediction with avaiable numerical results on the transport and deposition of

ellipsoidal �bres in low Reynolds number pipe �ow Tian et al. (2012). The same

veri�cation case was also used by Feng & Kleinstreuer (2013). The ellipsoidal450

�bre can be represented by the prolate spheroid at large aspect ratios, e.g. in the

present case the aspect ratio λ = 14. The simulation setup of Tian et al. (2012)

is close to the Poiseuille �ow case as shown in Fig. 3 with several minor changes.

The semi-minor axis of the prolate spheroid is a = 0.5µm. The initial position
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Figure 6: Translational motion of prolate spheroidal particles for di�erent aspect ratios and

initial positions (tracking time: 5 s, , time step: 10µs).

of the particle is [0, 1.65mm, 0]T . The initial velocity of the particle is zero,455

resulting in the �ow-driven acceleration of the particle at the beginning. The

gravity acceleration is in the −y-direction. Based on their �ow Reynolds number

(i.e. Re = 169), the considered �uid is air at 15.62◦C, with the corresponding

density of 1.208 kg/m3 and the kinematic �uid viscosity of 1.491 · 10−5mm2/s.

The value of Um = 0.97m/s was used as it produces a nice �t with the developed460

axial velocity pro�le of Tian et al. (2012). The magnitude of radial velocity in

their developed velocity pro�le are very small and was thus neglected in the

present study. As in the original experiment (Tian et al., 2012) the particle was

injected in the middle of the pipe length direction, from where the pipe has fully

developed �ow, the �tting of the axial velocity pro�le is therefore justi�ed for465

the veri�cation of the present results.

In Fig. 8 comparison of the orientation of the ellipsoidal �bre between the

present numerical results and the results of Tian et al. (2012) in form of the
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Figure 7: Axial velocity pro�le at the cross section of the pipe, comparison with the axial

velocity pro�le of Tian et al. (2012).
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Figure 8: Time evolution of the orientation of an prolate spheroid in the pipe �ow (λ = 14,

tracking time: 0.2 s, time step: 0.0001 to 0.02µs).
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directional cosines of the angles formed by the ellipsoidal primary axis b and

the inertia frame during its trajectory path is presented. During the �rst 0.1 s470

the present numerical results in the form of the temporal evolvement of the

orientation of the ellipsoidal �bre agree very well with results of Tian et al.

(2012), while afterwards, the magnitudes and rotational patterns still show good

agreement, but the �ipping of the particle occurs with a di�erent frequency

than the particle of Tian et al. (2012). The reason may lie in the di�erence in475

the velocity pro�le and its gradients between the computed pipe �ow of Tian

et al. (2012) and the Poiseuille �ow. By increasing the maximum �ow velocity

slightly from 0.97m/s to 1.0m/s, a phase shift in particle orientation in the

results becomes apparent, as shown in Fig. 8. The velocity pro�le is shown

to be a sensitive parameter which can induce an evident frequency mismatch.480

Moreover, the velocity pro�le is analytical given in the present study, while the

accuracy of velocity pro�le used by Tian et al. (2012) is mesh-dependent and

the developed velocity pro�le along the pipe may change slightly. The numerical

accuracy between velocity pro�les can also produce the di�erence.

The above numerical veri�cation is not an ideal test case for the shear lift485

force since the gravity acts in the same direction as the lift. The particle has

the maximum shear lift force at the beginning of the simulation since the initial

velocity of the particle is zero so that the velocity di�erence between the particle

and the �uid is the largest. The �ow accelerates the particle, and the shear

lift force decreases signi�cantly from 4.9 pN to 0.0017 pN within a short time,490

i.e. 0.0003 s. Afterwards, the velocity di�erence becomes very small. The x-

component of the shear lift force is between 0.0012 pN and 0.0019 pN which

range is slightly larger than the range of the y-component of the shear lift force,

i.e. 0.0005 pN - 0.0012 pN . This is reasonable since the inertial e�ect of the

Stokes drag produced by the coe�cient A is larger than the lift force generated495

by the coe�cient D.

In order to produce a test case with a more pronounced action of the shear

lift force, the setting of the P1 as described in Section 3.1 is used again. Now the

gravity acceleration vector points to the −x-direction, hence the translational
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Figure 9: Time evolution of the shear lift force acting on the prolate spheroid (λ = 14, tracking

time: 0.2 s, time step: 0.0001 to 0.02µs).

movement of the particle in the radial direction is dominated by the shear lift500

force. As the present lift model is not only valid for prolate spheroids and �bres

but also valid for spherical particles, it is possible to compare the new lift model

with the generalised Sa�man-type lift force proposed by Crowe et al. (1998)

(Eq. 29). Fig. 10 plots the particle trajectories for di�erent numerical models

and aspect ratios. In the case of spherical particle, the particle trajectories505

of the present shear lift model (Eq. 24) and the generalised Sa�man-type lift

model show an excellent agreement. In the case of prolate spheroidal particle,

the particle rotates due to the �ow resistance, and this rotation brings a change

in the direction of the resulting �uid force, i.e. FD + FSL. As a result, the

particle trajectory becomes a periodic curve and approaches to the centreline510

of the pipe. When increasing the aspect ratio from 1 to 10, the period of the

rotational motion grows. Fig. 11 shows the orientation of the prolate spheroidal

particle. Eventually, the absolute value of cos[x, z′] becomes one and cos[y, z′]

reaches zero, meaning the primary axis b of the prolate spheroidal particle is

oriented into the �ow direction, where the particle with this orientation angle515

experiences a minimum drag with also the velocity gradient at the centreline of
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Figure 10: The translational motion of a prolate spheroidal particle in Poiseuille �ow (tracking

time: 50 s, time step: 10µs).

the pipe being zero.

3.3. Numerical veri�cation of the new generalised Sa�man-type lift model

To verify the new generalised Sa�man-type lift model as described in Algo-

rithm 2, the same simulation setup as described in Section 3.1 is applied. Fig. 12520

plots the particle trajectories for two di�erent initial positions (i.e. P1 and P4)

and two generalised Sa�man-type lift models (i.e. the current approach and the

Crowe's model). As expected, the results at P1 and P4 calculated by the same

lift models are identical. Moreover, the results between the two models show

an excellent agreement, proving the validity of the sequential transformations525

V ∗ and V ∗∗ for extending the use of the shear lift models that were originally

devised for a single linear shear �ow, to arbitrary �ow conditions.

4. Conclusions

In the present paper, a novel shear lift force model for prolate spheroidal

particles (or axisymmetric ellipsoidal particles) that can be used for Lagrangian530
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Figure 11: The orientation of a prolate spheroidal particle in Poiseuille �ow (tracking time:

50 s, time step: 10µs).
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Figure 12: The translational motion of a spherical particle in Poiseuille �ow for two di�erent

generalised Sa�man-type lift models (tracking time: 50 s, time step: 10µs).
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particle tracking is presented. The primary objective of the present study is

the evaluation of the drag force and the shear �ow induced lift force with re-

spect to the orientation of prolate spheroidal particles. Instead of the Euler

angles parametrisation of the rotation matrix in Euler parameters/quaternions

are used to avoid singularity issues. The time evolution of the Euler parameters535

is related to the angular velocity of the prolate spheroidal particle, resulting

from rotational dynamics, whereas as the resistance to the rotational motion

the linear Je�ery torque (Je�ery, 1922) is adopted. To account for the e�ect

of the particle shape in the Stokes �ow regime the resistance tensor of Brenner

(1963) is implemented. The main contribution of the present paper lies in the540

derivation of a computational algorithm for the evaluation of the shear-induced

lift force, acting on a prolate spheroidal particle. The approach of Harper &

Chang (1968) based on the lift tensor and the single linear shear �ow is used as

the starting point. By considering that the dominant contribution to the shear

lift force is the streamwise �ow shear, a double rotation of the frame of reference,545

in which the shear lift force is evaluated, is developed. The �rst rotation is used

for transformation into a local coordinate system, aligned with the streamwise

direction at the particle location. The second rotation is used for subsequent

transformation, ensuring that a general streamwise shear �ow is mapped into a

linear shear �ow, for which the model of Harper & Chang (1968) can be applied.550

Moreover, this sequential coordinate transformations is not restricted to com-

pute the shear lift force acting on prolate spheroidal particles, and also allows

the extension of the use of the shear lift models that were originally devised

for a single linear shear �ow, to arbitrary �ow conditions. As an example, a

new generalised Sa�man-type lift force model is derived by following the same555

procedures.

The new computational algorithm for the evaluation of the shear lift force

acting on prolate spheroidal particles is veri�ed in Poiseuille pipe �ow. By

placing the particle at di�erent circumferential positions in the pipe and by

keeping the radial direction constant the computed particle trajectories for four560

di�erent initial positions and two di�erent aspect ratios are identical, proving the

29



exactness of the developed rotational transformations. The predictions of the

present numerical models for prolate spheroids on the motion of ellipsoidal �bres

in low Reynolds number pipe �ow are compared with available numerical results

(Tian et al., 2012). The obtained numerical results of the temporal evolution of565

the orientation of the ellipsoidal �bre agree very well with Tian et al. (2012) for

the starting phase of the particle-�uid interaction, while afterwards, the �ipping

of the particle occurs with a di�erent frequency than the particle of Tian et al.

(2012). The reason mainly lie in the di�erence in the velocity pro�le and its

gradients between the computed pipe �ow of Tian et al. (2012) and the Poiseuille570

�ow. The new generalised Sa�man-type lift force model is veri�ed against the

established generalised Sa�man-type lift model proposed by Crowe et al. (1998)

in Poiseuille �ow. The excellent agreement between the results of two di�erent

lift models proves the ability of extensive application of the present algorithm.

In some special cases, e.g. lid-driven cavity �ow, the non-streamwise �ow575

shear (or the cross-stream shear) also plays an important role on the lift and

shall not be neglected. In the companion paper, referred as Part II, the lift force

due to the non-streamwise �ow shear will be taken into account. The improved

model in the companion paper is less accurate than the present model in �uid

�ows which are dominated by streamwise shear but can be applied to a broader580

range of applications.
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