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a b s t r a c t

The paper proposes a unified shear-induced lift force model which divides the lift force into four lift com-

ponents arising from the spin tensor, the volumetric and the deviatoric parts of the rate of deformation

tensor, and the inertia effect of the Stokes drag. This unified model is successfully simplified into a shear-

induced lift model for prolate spheroidal particles moving in arbitrary flow conditions via analogy argu-

ments. The simplified shear-induced lift model for prolate spheroidal particles is verified by comparing

it with several established lift force models via simulation of a prolate spheroidal particle moving in the

Poiseuille and lid-driven cavity flows. The computational results demonstrate that the present lift force

model for prolate spheroidal particles is applicable in flow cases with streamwise and non-streamwise

flow shear. The implementation of the simplified lift model leads to computational results with reason-

ably small difference to the results of the full lift model of Cui et al. [Int. J. Multiph. Flow, 111, 232–240

(2019)], with a significantly decreased computational cost, rendering it as suitable for the implementation

in large scale Lagrangian particle tracking.

© 2019 Elsevier Ltd. All rights reserved.
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. Introduction

The shear-induced lift force acting on particles moving at

mall, but finite Reynolds number (i.e. the so-called Saffman-type

ift) has been studied for several decades [4,6,7,9–12,14,15,18–

3,26,27,32,36].

In the case of spherical particles, Saffman [26,27] first in-

estigated a sphere moving through a highly viscous liquid in a

imple shear flow and calculated the lift force at small, but finite

eynolds numbers via singular perturbation methods. Saffman’s

alculation has been shown to be in a good agreement with exper-

ments [33,34] and remains significant also today [32]. Crowe et al.

6] extended the Saffman lift by generalising the simple shear flow

o an arbitrary linear shear flow. However, Saffman-type lift has

everal restrictions, such as the particle moving in the unconfined

ow, the particle Reynolds number Rep = Dp |u − v|/ν � 1 (where

p is the particle diameter, u − v is the slip velocity, and ν is
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he fluid kinematic viscosity), the particle shear Reynolds number

eG = D2
p |G|/ν � 1 (where G is the velocity gradient tensor) and

ep � Re1/2
G

. With these constraints, Saffman lift cannot be applied

n most of the flow situations. McLaughlin [21] extended the

affman’s theory and successfully removed one of the Saffman

ssumptions, i.e. Rep � Re1/2
G

. Bagchi and Balachandar [4] and

egendre and Magnaudet [18] calculated the lift force acting on

spherical particle and a bubble, respectively, in a viscous linear

hear flow over a wide range of Reynolds number values (i.e. 0.1 ≤
ep ≤ 500) and Legendre and Magnaudet [18] found that a small

ut consistent decrease of the lift coefficient occurs when the

hear rate becomes large. Magnaudet [19] studied the influence

f the wall effect on the shear-induced lift acting on a spherical

rop. In [20] the deformation-induced migration of a buoyant drop

as also studied. Although most of Magnaudet’s studies focus on

ubbles or drops, one can deduct some important findings also

or particles. In recent years, there were many reports on the

omputation of the lift force acting on a particle by using Direct

umerical Simulation (DNS) [10,15–17,25]. Cui and Sommerfeld

10] calculated the lift force acting on a spherical particle sitting on

smooth plane wall by using Lattice Boltzman Method (LBM) and
ound that the lift coefficient becomes a constant value of about 3
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when the particle shear Reynolds number is less than 1. Jebakumar

et al. [16] calculated the lift acting on a finite-sized particle moving

in a wall-bounded flow by using the LBM and found that at low

Stokes number the particle behaves like a neutrally buoyant parti-

cle and exhibits the Segré-Silberberg effect. In [17], LBM simulation

of fully-resolved large particles (i.e. larger than the Kolmogorov

scale) moving in a turbulent channel flow was performed.

In the case of non-spherical particles, the studies of shear in-

duced lift are far less numerous. Harper and Chang [14] found that

particles in a Newtonian fluid adopt an orientation with respect

to the maximum energy dissipation and generalised Saffman’s

calculation to three-dimensional (3D) bodies in a linear shear flow

by introducing a lift tensor calculated via asymptotic methods.

Fan and Ahmadi [11] initially applied Harper & Chang’s calculation

in the case of axisymmetric ellipsoidal particles. Feng and Klein-

streuer [12] generalised the lift model of [14], valid for a linear

shear flow, to a complex shear flow by superimposing results for

several pure shear flows based on the values of the extra-diagonal

components of the velocity gradient tensor. A simple counter

example [13] is given by the lift tensor obtained for a particle in a

rotating fluid under the same assumptions as in Harper & Chang.

In the case of a rarefied gas, based on the gas kinetic theory a lift

model for axial symmetric particles moving in a linear shear flow

was investigated by Wang et al. [36].

One of the key challenges of a shear-induced lift model for

non-spherical particles is to derive a computational method which

would allow the accurate computation of shear-induced lift forces

acting on small non-spherical particles in a general fluid flow,

i.e. would not be limited to a certain type of flow (e.g. linear

shear flow), as is the case with all the previous derivations. In

general, it is not possible to transform an arbitrary velocity gra-

dient into a pure (linear) shear flow, since a rotational flow, or a

pure deformational flow, have intrinsic properties that differ from

each other and, in particular, differ from those of a pure shear

flow. However, if the particle Reynolds number values considered

are sufficiently small, it is reasonable to approximate the fluid

flow around a particle as linear and dominated by viscous forces

(creeping flow approximation). Cui et al. [7,9] proposed a generic

method to extend the shear-induced lift force models that were

originally devised for linear shear flow to arbitrary flow conditions

by performing two coordinate rotations. This method is applied to

the computation of the shear-induced lift force acting on a prolate

spheroidal particle moving in arbitrary non-uniform flow. Cui et

al. [7] (Part I of a two-part research work, abbr. Part I) calculated

the lift force arising from the dominant streamwise flow shear. In

[9] (abbr. Part II) the influence of the non-streamwise flow shear

on the lift force was also taken into account. By assuming that the

particle slip velocity is parallel to the fluid velocity along the par-

ticle trajectory, the lift force model for prolate spheroidal particle

proposed in Part II is applicable in flow cases with streamwise and

non-streamwise flow shear. In fluid flows which are dominated by

the streamwise shear, the lift force model of Part I is slightly more

accurate than the lift force model of Part II. However, the shear-

induced lift force models proposed by Part I and II are numerically

expensive since the calculation involves two coordinate rotations

for each particle for every time step. The aim of the present work

is therefore the development of a computationally more efficient

yet acceptably accurate shear-induced lift force model for prolate

spheroidal particles moving in an arbitrary non-uniform flow,

directly applicable in the Lagrangian particle tracking.

In the present study, we restricted ourselves to the following

four conditions:

1. The particle is moving in an unconfined flow, i.e. the influence

of the wall effect on the shear-induced lift is not taken into

account;
2. The particle is a Lagrangian point particle, i.e. the influence of

the finite size effect on the shear-induced lift is not taken into

account;

3. All Saffman’s assumptions are kept;

4. The derivation is made from the standpoint of non-spherical

shaped particles.

The third condition would limit the usage of the shear-induced

ift model significantly, however in our previous studies [7,9] it

as established that the Saffman’s assumptions are usually valid

or micro-sized particles. Therefore, the proposed shear-induced

ift model could be applied in a wide range of applications, e.g.

n drug delivery, sedimentation of sludge flocs, or concentration

f fine particulate matter. The present study focuses only on the

on-spherical shaped particle, without the aim to incorporate all

he available lift-correction models for spherical particles from the

cientific literature into the present shear lift model.

The paper is organized as follows. In Section 2, a unified

hear-induced lift force model is proposed. By implementing

nalogy arguments, this unified model is then simplified based on

he previous insights obtained for the case of prolate spheroidal

articles [9]. In Section 3, the simplified unified shear-induced

ift force model for prolate spheroidal particles is verified with

espect to other lift force models for the case of the Poiseuille and

id-driven cavity flows.

Notation: Tensors of various order are expressed in bold italic

ont, i.e. a first-order tensor (vector) and a second-order tensor are

enoted by A and B, respectively. In a Cartesian coordinate system

ith base vectors ei (i = 1, 2, 3) they have the coordinate represen-

ation A = Aiei and B = Bi jei � e j, respectively, whereby Einstein’s

ummation convention applies for repeated indices. Ai and Bij are

he coefficients of A and B, respectively, in the chosen coordinate

ystem ei. They may be arranged into coefficient matrices

:=
[

A1

A2

A3

]
and B :=

[
B11 B12 B13

B21 B22 B23

B31 B32 B33

]

hereby bold non-italic font is used for coefficient matrices. In-

eed A is a column matrix, the superscript T denotes transposition

o that AT = [A1, A2, A3] (a row matrix).

. A unified shear-induced lift force model and its

implification

Particle transport in fluid flow is governed by the particle-fluid

nteraction, which is in the case of small particles typically ac-

ounted for within the Lagrangian particle tracking, where the

inematics equation and force balance equation in form of ordi-

ary differential equations are solved along the particle trajectory

7]. The force balance equation typically reads as

p
dv

dt
= FD + FSL + gVp

[
ρp − ρ f

]
(1)

here mp, Vp, ρp are the mass, the volume and the density,

espectively, of the particle, ρ f is the fluid density, and v, FD,

SL, g are the corresponding coefficient (column) matrices of the

article velocity v, the drag force FD, the shear lift force FSL, and

he gravity acceleration g, respectively. Similarly to the study of

7], in the present study the particle dimensions have a scale of

icrometres and the relative velocity (or the slip velocity) between

he particle and the fluid is very small, resulting in a Stokes flow

round the particle. Therefore, the profile lift force, the lift force

ue to the relative particle rotation with respect to the fluid, the

rownian motion force, the pressure gradient force, the added

ass, and the Basset history force are neglected.

Let us first recall the model of drag force acting on a prolate

pheroidal particle (or axisymmetric ellipsoidal particle) derived
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y Brenner [5] for the case of Stokes flow:

D = πaρ f νK [u − v] =: D [u − v] (2)

here a is the semi-minor axis of the prolate spheroidal particle

ith aspect ratio λ = b/a (where b is the semi-major axis), ν is

he kinematic viscosity of the fluid, and u, [u − v], FD, K, D are the

orresponding coefficient matrices of the fluid velocity u, the slip

elocity [u − v], the drag force FD, the geometric resistance tensor

, and the physical resistance tensor D, respectively. K is initially

efined in the particle frame of reference and is then transformed

nto the inertial frame of reference. The spherical particle limit

enders K = 6 I, where I is the identity matrix. In the case of

rolate spheroidal particles, D = πaρ f νK and the calculation of K

n terms of the particle geometry can be found in [7].

The shear-induced lift force acting on a particle arises from the

nertia effects in the viscous flow around the particle [11] and the

on-uniform slip velocity distribution over the particle and the

esulting non-uniform pressure distribution [30]. The celebrated

affman lift for a freely rotating spherical particle moving at a

onstant velocity in a linear shear flow u = [ux(z), 0, 0] in the

− z plane (whereby ux,z = ∂ux/∂z is constant) at low Reynolds

umber [26,27] reads:

SL = 6.46ρ f a2
√

ν sgn (ux,z) |ux,z|1/2 B [u − v] (3)

ith

=
[

0 0 0
0 0 0
1 0 0

]
, (4)

here FSL is the corresponding coefficient (column) matrix of

he shear-induced lift force FSL, and sgn() is the signum function

hat extracts the sign of a real number. For linear shear flow

= [ux(z), 0, 0] in the x-direction, thus by applying the coefficient

atrix B the Saffman lift force points in the z-direction.

Crowe et al. [6] extended the expression of the Saffman lift,

q. (3), to the case of a sphere in an arbitrary linear shear flow,

xpressed here in tensor (vector) notation as

SL = 6.46ρ f a2
√

ν
1√|w| [[u − v] × w], (5)

here w := curlu is the fluid vorticity (curl of the fluid velocity)

t the particle location. In a linear shear flow u = [ux(z), 0, 0],

q. (5) degenerates to Eq. (3).

Let us analyse the Crowe expression in more detail. Note that

he corresponding coefficient (column) matrix of the cross product

u − v] × w is equal to

2 Gskw [u − v],

here Gskw is the corresponding coefficient matrix of the spin

ensor Gskw (i.e. the skew part of the velocity gradient tensor G).

he magnitude of Gskw can be defined as [31]

|Gskw|| =:
√

2 Gskw : Gskw.

y using the above definition, the spin tensor and the vorticity

ave the same magnitude, i.e.

|Gskw|| = |w|,
here w is the coefficient (column) matrix of the fluid vorticity w

t the particle location.

Therefore, the generalised Saffman lift acting on a sphere

roposed by Crowe et al. [6] can alternatively be expressed in a

atrix notation as

SL = 6.46ρ f a2
√

ν
1√||Gskw||

[
−2 Gskw [u − v]

]
(6)

∝ D Gskw D [u − v], (7)
here, in the case of spherical particles, D = πaρ f νK = 6πaρ f νI.

The extension of Saffman’s model from the spherical particle

o an arbitrarily shaped three-dimensional (3D) rigid body moving

n a linear shear flow u = [ux(z), 0, 0] in the x − z plane (whereby

x,z = ∂ux/∂z is constant) was proposed by Harper and Chang

14] and is given by

SL = 1

ρ f ν3/2
sgn (ux,z) |ux,z|1/2 D Lxz D [u − v] (8)

∝ D Lxz D [u − v], (9)

here the coefficient matrix of the lift tensor Lxz was calculated

ia asymptotic methods and is expressed as

xz =
[

A 0 B
0 C 0
D 0 E

]
, (10)

here the coefficients of Lxz are given as

= 0.0501, B = 0.0329, C = 0.0373, D = 0.0182, E = 0.0173.

(11)

ecall that D reads in the case of prolate spheroidal particles as

= πaρ f νK (Eq. (2)), thus one can rewrite Eq. (8) as [11]

SL = π2ρ f a2
√

ν sgn (ux,z) |ux,z|1/2 K Lxz K [u − v]. (12)

From the above listed studies general model properties could

e deducted, namely that all shear-induced lift force models

re directly related to the velocity gradient tensor. The gradient

ensor has intrinsic properties and can be decomposed into the

pin tensor Gskw and the rate of deformation tensor Gsym (i.e. the

ymmetric part of G), whereby the symmetric part can be further

ecomposed into its volumetric and deviatoric parts, i.e. Gsym =
sym,vol + Gsym,dev. In the case of incompressible flows, Gsym,vol = 0.

As illustrated in Eq. (7), the lift model proposed by Crowe

t al. [6] can be written as a force proportional to the skew part

f the velocity gradient tensor times slip velocity. Note that the

ift tensor Lxz of [14] is neither skew nor symmetric, and can be

nterpreted as a weighted sum of various contributions. Applying

he described rationale, the Harper & Chang’s lift model can also

e written as a sum of the force proportional to the skew part

contributed by the coefficient D of the lift tensor), the symmetric

art of velocity gradient tensor (contributed by the coefficient B)

nd the inertia effect of the Stokes drag (contributed by the coef-

cients A, C and E) times the slip velocity. Therefore, a generalised

orm of the shear-induced lift force model can be expressed as

SL = D
[
C0 + c1 Gskw + c2 Gsym,vol + c3 Gsym,dev

]
D [u − v], (13)

here C0 is a fluid-property-related coefficient matrix, c1, c2 and

3 are fluid-property-related coefficients, Gsym, vol and Gsym, dev are

he coefficient matrices of volumetric and deviatoric parts, respec-

ively, of the rate of deformation tensor Gsym. The term D C0 D [u −
] has the effect of changing the shape of the Stokes orbit [14], and

epresents the inertial effect of the Stokes drag [7]. The general

orm of the shear induced lift force model can now serve as the

asis for the derivation of a unified lift force model, based on the

stablished lift force models, which would preserve the effects of

he streamwise and non-streamwise flow shear effects, but would

omputationally be less demanding than alternative models [7,9].

In fluid flows that are dominated by the streamwise flow shear

e.g. Poiseuille flow) or in the case of spherical particles moving

n an arbitrary non-uniform flow (e.g. lid-driven cavity flow),

ur previous studies [7,9] have shown that the coefficients B, C

nd E of the lift tensor (Eq. (10)) proposed by Harper and Chang

14] have insignificant influence on the shear-induced lift force

n the particle. The coefficient A of the lift tensor generates a lift
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Fig. 1. Illustration of two coordinate rotations of two different shear-induced lift models for prolate spheroidal particles; Part I: Cui et al., Int. J. Multiph. Flow, 2018 [7]; Part

II: Cui et al., Int. J. Multiph. Flow, 2019 [9].
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component acting in the same direction as the drag force, and

represents the inertia effect of the drag, which is much smaller

than the drag itself. The main contribution to the lift component

in the direction perpendicular to the drag force is given by the co-

efficient D of the lift tensor, which is only related to the skew part

of the velocity gradient tensor. Based on the previous arguments

it is reasonable to simplify the lift tensor of [14] by taking into

account only the coefficients A and D. Note that the lift component

produced by the coefficient A arises from the velocity difference

in the direction of the drag force. By assuming that the particle

slip velocity is parallel to the fluid velocity along the particle

trajectory (assumption used by Saffman et al. [26] and Cui et al.

[9]), it follows that C0 = c0 I, where c0 is a fluid-property-related

coefficient. Under such a condtion, Eq. (13) can be simplified to

FSL = D
[
c0 I + c1 Gskw

]
D [u − v]. (14)

As Eq. (14) must also be valid for spherical particles, c0 and c1 can

be calculated by comparing Eq. (14) with Eqs. (6) and (12) (i.e.

analogy arguments), resulting in

c0 = A
√||Gskw||
ρ f ν3/2

and c1 = −2D

ρ f ν3/2
√||Gskw|| . (15)

Although the lift model of [6] is only valid for spherical particles,

it can also be used to establish a lift model for non-spherical

particles via analogy arguments, as the lift model of [6] is a gener-

alisation of the Saffman lift model, which can easily be deducted

from the coefficient D of the lift tensor [14], i.e. 36π2D = 6.46.

By inserting Eq. (15) into Eq. (14), the simplified unified shear-

induced lift force model for prolate spheroidal particles can finally

be expressed as:

FSL = π2ρ f a2
√

ν
1√||Gskw|| K

[
A ||Gskw|| I − 2D Gskw

]
K [u − v].

(16)

In the case of spherical particles, K = 6 I, so that the lift com-

ponent calculated by the second part of the present model (i.e.

c Gskw) is identical to the lift model of [6].
1
.1. Differences between the shear-induced lift model of Part I,

art II, and the present model

At first, we give a short description of the formulation of the

hear-induced lift model of Part I and II. As aforementioned, Part I

alculates the shear-induced lift force arising from the dominate

treamwise flow shear, whereas Part II takes the non-streamwise

ow shear into account. Both models are derived by means of two

oordinate rotations.

In Part I, as shown in Fig. 1, the first coordinate rotation,

escribed by the rotation matrix V∗
I
, rotates the inertial frame

ith base vectors ei (i = 1, 2, 3) into a new reference frame

ith base vectors e∗
i

(i = x, y, z), so that the e∗
1 is parallel to the

treamwise direction at the particle location. As only the lift force

ue to the streamwise flow shear is included in the analysis, for

he flow velocity at the coordinate system e∗
i
, only two shear

ates of G∗
xy = ∂u∗

x/∂y∗ and G∗
xz = ∂u∗

x/∂z∗ remain to be taken into

ccount. The second coordinate rotation by the rotation matrix
∗∗
I is a rotation around the x∗-axis. The goal of the rotation is to

ompress the two streamwise shear rates in the coordinate system
∗
i
, i.e. G∗

xy and G∗
xz, into one shear rate G∗∗

xz in the new reference

rame with base vectors e∗∗
i

(i = x, y, z). G∗∗ can be calculated by
∗∗ = V∗∗

I
V∗

I
G V∗T

I
V∗∗T

I
. Next, to be able to apply the single linear

hear flow model [14] in a more general case, the following form

as proposed in Part I:

SL,I = π2ρ f a2
√

ν
√|G∗∗

xz | V∗T
I V∗∗T

I K∗∗ L∗∗
xz K∗∗ V∗∗

I V∗
I [u − v], (17)

here K∗∗ = V∗∗
I V∗

I K V∗T
I V∗∗T

I , and L∗∗
xz is the corresponding coeffi-

ient matrix of the lift tensor Lxz in the coordinate system e∗∗
i

.

Formal studies [2,3,6,30] show that the shear-induced lift force

s in the direction of the cross product between the particle slip

elocity (i.e. [u − v]) and the vorticity (i.e. w) at the particle loca-

ion). The unit direction of the shear-induced lift force is defined

n vector notation as û = [u − v] × w/|[u − v] × w|.
In Part II, as illustrated in Fig. 1, the first step is the deter-

ination of the rotation matrix V∗
II
, aligning the unit direction

ector û with the base vector e∗
z in the reference frame with base

ectors e∗
i

(i = x, y, z). Note that û is the unit vector of the cross

roduct between the particle slip velocity and the vorticity. In

ther words, û is perpendicular to the plane spanned by vectors

u − v] and w. Therefore, in the coordinate system e∗
i
, [u − v] lies

n the x∗ − y∗ plane and the z∗-component of [u − v] is zero.
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Table 1

The comparision of three shear-induced lift models for prolate spheroidal particles.

Part I [7] Part II [9] Present model

Applicability in streamwise flow shear Yes Yes Yes

Applicability in non-streamwise flow shear No Yes Yes

Accuracy in streamwise flow shear High Medium Medium

Accuracy in non-streamwise flow shear N/A. Medium Low

Computational cost High High Low
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n the following we make a critical assumption: the particle slip

elocity is parallel to the fluid velocity, i.e. [u − v] ∝ u or v∝u. In

act, this assumption is one of the key assumptions of Saffman

ift [26,27,32]. If the particle size is in the micro and submicron

ange, this assumption is usually satisfied since gravity plays only

minor role with respect to other forces acting on the particle.

nder such a condition, the fluid velocity in the coordinate system
∗
i

lies in the x∗ − y∗ plane with its z∗-component being zero, i.e.
∗ = V∗

II
u = [u∗

x, u∗
y, 0]T , where u∗ and u are the corresponding

oefficient (column) matrices of fluid velocities in the coordinate

ystems e∗
i

and ei, respectively. The second coordinate rotation by

he rotation matrix V∗∗
II rotates the coordinate system e∗

i
around

he z∗-axis into a new coordinate system e∗∗
i

, so that the fluid

elocity in the new coordinate system e∗∗
i

is in the direction of
∗∗
x . After two coordinate rotations, in the coordinate system e∗∗

i
,

he particle can be considered as moving in a linear shear flow
∗∗ = V∗∗

II
u∗ = [u∗∗

x , 0, 0]T in the x∗∗ − z∗∗ plane, with the corre-

ponding shear rate being |G∗∗
xz − G∗∗

zx |. Therefore, in the coordinate

ystem e∗∗
i

, the shear lift force can be calculated by using lift

odels which are devised for linear shear flows. The novel shear

ift force for prolate spheroidal particles is expressed as

SL,II = π2ρ f a2
√

ν
√

|G∗∗
xz − G∗∗

zx | V∗T
II V∗∗T

II K∗∗ L∗∗
xz K∗∗ V∗∗

II V∗
II [u − v].

(18)

In fluid flows which are dominated by the streamwise flow

hear, the present model has the same accuracy as the lift force

odel of Part II since the assumption is the same (i.e. the particle

lip velocity is parallel to the fluid velocity), and is less accurate

han the lift force model of Part I [7]. In fluid flows in which

he non-streamwise flow shear also plays an important role, the

resent model is less accurate than the lift model of Part II [9] in

he case of non-spherical particles since the coefficients B, C and

of the lift tensor [14] were not taken into account. Table 1 sum-

arises the limitations and advantages of the three different shear-

nduced lift models for prolate spheroidal particles. In Section 3.2,

quantitative study on the accuracy of the computational results

y using the proposed unified shear lift force model is performed.

It should be noted that the lift tensor proposed by [14] is

pplicable for any arbitrarily shaped 3D body. Therefore, the

resent model can also be used to compute the shear-induced lift

orce on oblate particles or other shaped particles, by replacing

he (geometric) resistance tensor K for prolate spheroids with

orresponding (geometric) resistance tensors for oblate particles.

The computational cost of the present model was measured by

sing the profiling function of MATLAB®. The results show that

he present model is about 68 times faster than the lift model of

art I and Part II, which is not a surprise, as both previous models

se two additional coordinate system transformations in order to

alculate the shear lift force components.

The numerical algorithms used in computation of the kine-

atics, the dynamics of translational motion, and the dynamics of

otational motion of prolate spheroidal particles are summarised

n [7], and will thus not be repeated here. The particle tracking

lgorithms have been implemented into MATLAB® and Open-

OAM®, which were used in the computational studies of the
umerical verification of the unified shear lift force model. The

mplicit Euler backward scheme was applied in both codes. The

uid flow solver within the OpenFOAM® distribution used is the

coFoam, which solves the incompressible laminar Navier-Stokes

quations using the PISO algorithm.

. Numerical verification of the novel shear-induced lift force

odel for prolate spheroidal particles in poiseuille and

id-driven cavity flows

Direct validation of the present model by comparing it with

irect numerical simulation (DNS) results of a fully-resolved pro-

ate spheroidal particle or experiments is difficult. The difficulty

ies in the fact that, from both the experimental measurement

nd the DNS point of view, the results of simulated or measured

uid dynamic forces are in the form of only one single fluid force.

nfortunately, with the results of an interface resolved simulation

here still remains the problem of evaluating each single fluid force

ontribution, such as the drag, the Magnus lift, the profile lift, the

ift due to viscous force (i.e. Saffman-type lift) and the lift due

o non-uniform pressure distribution around the particle. In most

ecent studies [1,24,28,37], where the particle is fully-resolved,

nly the profile lift of a stationary non-spherical particle in an

niform flow was calculated by varying the angle of incidence and

he Reynolds number. The profile lift is, in fact, a component of

he drag force, which is described by a tensorial drag coefficient

or non-spherical particles [29]. To the best of our knowledge,

nly Hölzer and Sommerfeld [15] provides the DNS data for the

hear-induced lift force acting on a prolate spheroid by performing

attice Boltzmann (LB) simulations. However, as mentioned by [15],

he shear-induced lift on a prolate spheroid is very sensitive to the

ize of the fluid domain, hence a good agreement with Saffman

ift can hardly be obtained.

Although a direct validation is difficult, the present lift model

an be validated indirectly by comparing it with the lift model

f Part II. The lift model of Part II improved the lift model of

arper & Chang by only performing coordinate system rotations,

hich is physically correct for every numerical step if the assump-

ions hold exactly. Harper & Chang’s model has been validated

y experimental data in their paper and is widely applied in

umerous publications. From this point of view, we adopt the

arper & Chang’s model as an established one and considered

t as a reference result. Also, in [7], the lift model of Part II has

een verified by comparing it with DNS results of a sphere and

B simulation results for a prolate spheroid in Couette flow given

y Hölzer and Sommerfeld [15], and a good agreement has been

ound. In this work, the present model is numerically verified

y comparing it with Part I, Part II and two other lift models in

oiseuille and lid-driven cavity flows.

.1. Poiseuille flow

The novel shear-induced lift force model (Eq. (16)) is first

erified in a Poiseuille pipe flow, which is dominated by the

treamwise flow shear. As shown in Fig. 2, the complete simula-

ion setup is the same as that used in [7,9]. The pipe radius R is
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Fig. 2. Schematic diagram of a particle in Poiseuille flow.

Table 2

Information of two intial positions P1 and P2 of the particle in Poiseuille flow.

Point Position Euler Angle Flow Direction

P1 [0,−r, 0]T [0, π /2, 0]T [0.5Um , 0, 0]T

P2 [0.6124r,−0.6124r, 0.5r]T [π /4, π /3, 0]T [Um/
√

2,Um/
√

2, 0]T

Fig. 3. Translational motion of a spherical particle in Poiseuille flow for different

shear lift force models and initial positions (tracking time: 50 s, time step: 10 μs,

Dp = 20 μm).

Fig. 4. Translational motion of a prolate spheroidal particle in Poiseuille flow for

different initial positions and aspect ratios (tracking time: 50 s, time step: 10 μs,

λ = 10, Dp = 20 μm).
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2.1 mm. The fluid density is 1000 kg/m3 and the fluid kinematic

viscosity is 1 mm2/s. The flow field of the Poiseuille pipe flow is

analytically given in cylindrical coordinates by

u = Um

[
1 −

[
r

R

]2
]

(19)

where r is the radial distance between the particle and the pipe

centreline, and Um is the maximum flow velocity at r = 0 with a

magnitude of 0.5 m/s being used in the present study. The gravity

acceleration g acts in the opposite streamwise direction.

In the simulation of Poiseuille flow, only one particle is placed

in the flow field, and its semi-major axis b points into the pipe

centreline. The volume equivalent diameter of the particle Dp is

20 μm, and the particle density ρp is 2560 kg/m3. The initial radial

distance between the particle and the pipe centreline r is 0.1 mm.

The initial particle velocity is v = 0.99 u, therefore the particle

Reynolds number at the start of simulation is Rep = UmR/ν ≈ 0.1.

In the present study, the particle is a Lagrangian point particle and

therefore the Segré-Silberberg effect was ignored. The particle will

move to the pipe centreline due to the action of the shear-induced

lift force. Moreover, regardless of the initial circumferential loca-

tion of the particle, at the same radial distance r, the particle must

experience the same magnitude of the lift force, which has to act

radially towards the pipe centreline. In order to validate this ability

of the present model on capturing the correct direction and magni-

tude of the lift force regardless of the initial particle positions, the

initial circumferential location of the particle as well as the flow

direction were varied. The informations on the two initial positions

of the particle being used in the present study (i.e. P1 and P2) are

summarised in Table 2. The radial distances between the particle

and the pipe centreline at P1 and P2 are identical. The orientation

of the particle is controlled by the Euler angle or Euler parameters

[7], listed in Table 2, and the semi-major axis b of the particle for

both initial positions points towards the pipe centreline.

The present shear lift model (Eq. (16)) is compared with lift

models proposed by Crowe et al. [6] (Eq. (5)) for the case of spher-

ical particles, and those of Part I and Part II for the non-spherical

case. The corresponding numerical algorithms for calculating the

shear-induced lift forces of Part I and II, which use the lift tensor

of [14] as a basis, are given in [7,9]. Among these shear-induced lift

models, the lift force model proposed by Part I [7] is considered

as the benchmark model, since it is identical to the lift force
odel of [14] in the case of the linear shear flow and produces

he same computational results for P1 and P2. The lift force model

f [6] only computes the lift component perpendicular to the slip

elocity for spherical particles; and the lift force model of Part II is

lightly less accurate than the model of Part I for the reason that

he underlying assumption of ”the particle slip velocity is parallel

o the fluid velocity along the particle trajectory” is not perfectly

atisfied along the computed particle trajectory.

As shown in Fig. 3, in the case of spherical particles, the dif-

erence in results between the present model and the benchmark

odel is very small, and shows an excellent agreement with the

ift model of Part II. In the case of prolate spheroidal particles,

he numerical discrepancy between the present model and the

enchmark model steadily increases but is still acceptable as

ighlighted in Fig. 4. The difference in results between the present

odel and the lift model of Part II shows a good agreement as

ell. This is reasonable since in fluid flows dominated by the

treamwise flow shear the coefficients A and D play the most

mportant roles in calculating the lift force, which agrees with the

nding in [9]. Moreover, it is shown that the numerical results

or the two different initial particle positions, i.e. P1 and P2, are

dentical, proving the validity of the present model for calculating

he shear-induced lift force in arbitrary non-uniform flows which

re dominated by the streamwise flow shear.

Fig. 5 plots the ratio between the lift components calculated by

he present model and the lift model of Part I. In the streamwise

irection (i.e. x-direction), the lift component calculated by the

resent model (i.e. FSL,x,present) is slightly larger than the lift compo-

ent calculated by the lift model of Part I (i.e. FSL,x,partI). However,
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Fig. 5. Time evolution of the ratio of the lift force calculated by the present model

to the lift force calculated by the model of Part I of a particle moving in Poiseuille

flow for different aspect ratios; a) the ratio of lift forces in the streamwise direc-

tion calculated by two lift models; b) the ratio of lift forces in the radial direction

calculated by two lift models (initial particle position: P1, tracking time: 50 s, time

step: 10 μs, Dp = 20 μm).

Fig. 6. Numerically computed flow streamlines of a 3D lid-driven cavity flow in a

cube, slice at y = 0.4L (Re = 470, the dimension of the domain: L = 0.1 m, the top

wall moves in the x-direction).
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Fig. 7. Time evolution of the lift force components of a spherical particle moving

in the lid-driven cavity flow for different shear-induced lift force models; a) lift

component in the direction perpendicular to the slip velocity; b) lift component in

the direction of the slip velocity (tracking time: 4 s, time step: 10 μs, Dp = 100 μm).
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n the direction perpendicular to the streamwise direction (i.e.

-direction), this ratio is slightly smaller than one. In the case of

pherical particles, the difference between the two models origi-

ates in how accurate the assumption of “the particle slip velocity

s parallel to the fluid velocity along the particle trajectory” can

e satisfied. In the case of prolate spheroidal particles, in addition

o satisfying the assumption, the absence of the coefficients B, C

nd E of the lift tensor in constructing the present model also

ontribute to the increases in the difference of the results.
.2. Lid-driven cavity flow

The lid-driven cavity flow is an ideal test case since the non-

treamwise flow shear also plays an important role on calculating

he shear-induced lift force [8,9,35]. In the present study, the

omplete set-up of the simulation is the same as being used by

sorng et al. [35] (i.e. for the fluid phase) and Cui et al. [9] (i.e.

or the particle phase). The cavity is a cubic domain with the edge

ength L equal to 0.1 m. The density and the kinematic viscosity of

he fluid are 1210 kg/m3 and 17.3 mm2/s, respectively. The upper

all moves with the constant velocity of U0 = 0.0813 m/s, yield-

ng the flow Reynolds number Re = U0 L/ν = 470. The boundary

onditions on all the walls are the non-slip conditions. Fig. 6 plots

he computed flow streamlines. The particle is released at the

osition of [0.4L, 0.5L, 0.95L]T with its semi-major axis b pointing

n the z-direction. The initial particle velocity is equal to the flow

elocity at the particle location. The particle volume equivalent

iameter Dp is 100 μm, and the particle density is 2560 kg/m3.

n the present study, the considered fluid forces acting on the

article are the Brenner’s drag [5] and the shear-induced lift force

alculated by several different shear-induced lift force models, i.e.

ift models proposed by Miyazaki et al. [23], Crowe et al. [6], Cui

t al. [9] and the present model.

In order to have a clear set-up for the evaluation of the

ifference in the results between the applied shear lift models,

he first comparison is based on the trajectory of a spherical

article moving in a lid-driven cavity flow, under the action of the

renner’s drag and the gravity reduced by buoyancy, as presented

n Fig. 6. The flow field has been computed in [8]. The simulation

ime for particle tracking is 4 s, and the numbers along the particle

rajectory indicate the particle locations at corresponding times.
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Fig. 8. Time evolution of the lift force components of a prolate spheroidal particle

moving in the lid-driven cavity flow for different shear-induced lift force models

and aspect ratios; a) lift force component in the direction perpendicular to the slip

velocity; b) lift force component in the direction of the slip velocity (tracking time:

4 s, time step: 10 μs, Dp = 100 μm).

Fig. 9. The translational motion of a spherical particle in the lid-driven cavity flow

taking into account the shear-induced lift force; a): time period 0 s − 100 s; b): time

period 80 s − 100 s (tracking time: 100 s, time step: 10 μs, Dp = 100 μm).
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The lift force acting on a particle is calculated along the particle

trajectory, but is not taken into account when computing the

trajectory, so in this way the particle trajectories are identical for

all the cases which allows us to study the differences in lift force

evaluations between the selected lift force models.

As aforementioned, the lift tensor [14] in Eq. (8) not only

produces the lift force component in the direction perpendicular

to the drag force, i.e. [u − v] × w, but also yields a lift force com-

ponent in the direction of the drag, i.e. [u − v]. Therefore, the com-

parison of different lift force models requires separation of the lift

force (i.e. FSL) into a component in the direction of the slip velocity

(i.e. FSL,s) and into a component perpendicular to the slip velocity

(i.e. FSL,p). The magnitudes of FSL,s and FSL,p are calculated as:

FSL,s = F SL · [u − v]

|u − v| and FSL,p =
√

|F SL|2 − F 2
SL,s

(20)

In the case of spherical particles, the lift coefficient arising from

FSL,p is identical to the Saffman-lift coefficient. In the case of

non-spherical particles, it’s difficult to define the lift coefficient

since the cross-sectional area of the particle perpendicular to the

direction of the slip velocity varies due to the changing relative

orientation.

The computational results of the lift force components FSL,p and

FSL,s acting on a spherical particle by using different shear-induced

lift force models are plotted in Fig. 7. The results of FSL,p calculated

by four different lift force models show excellent agreement. This

is expected since the lift force component produced by the second

part of the present model (determined by c1 Gskw) is identical

to the values of FSL,p calculated by the lift force models of [6],

[23] and [9]. As shown in Fig. 7b, the results of FSL,s calculated by

the present model and the lift force model of Part II also show
xcellent agreement since the lift force on a sphere calculated by

art II only takes into consideration the coefficients A and D. The

ift model of [6] does not calculate the lift force component FSL,s.

n addition, there exists a numerical discrepancy in the results

etween the present model and the lift force model of [23].

owever, this numerical discrepancy is acceptable since in the

ase of spherical particles FSL,s acts in the same direction as the

rag but is much smaller than the drag, which corresponds to the

nding of [32].

In the case of prolate spheroidal particles, the magnitudes of

he lift force components of FSL,p and FSL,s both increase with in-

reasing aspect ratios, as shown in Fig. 8. The particle rotates due

o the flow resistance and tends to align its primary axis b along

he flow direction, where the particle with this orientation angle

xperiences a minimum drag [9]. However, at this orientation

ngle the cross-sectional area of the prolate spheroidal particle

s the largest in the direction perpendicular to the slip velocity,

eading to an increase in the lift force magnitude [9]. Moreover,

he numerical discrepancy between the present model and the

ift force model of Part II increases with increasing aspect ratios.

owever, the maximum numerical discrepancy at λ = 10 is about

3%, and can, therefore, be considered as acceptable. The main

eason lies in the absence of the coefficients B, C and E of the lift

ensor while constructing the present model.

Finally, the influence of the shear-induced lift force on the

article trajectories for different aspect ratios, Fig. 9 (i.e. spherical

article) and Fig. 10 (i.e. prolate spheroidal particle), is studied. In

his final case, simulation results were obtained by including the
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Fig. 10. The translational motion of a prolate spheroidal particle in the lid-driven

cavity flow taking into account the shear-induced lift force; a): time period 0 s −
120 s; b): time period 100 s − 120 s (tracking time: 120 s, time step: 5 μs, Dp =
100 μm).
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Fig. 11. Time evolution of lift components of a particle moving in lid-driven cavity

flow including the action of the lift force on the particle calculated by the present

model for diffeent aspect ratios; a) λ = 1; b) λ = 10 (tracking time: 100 s, time step:

5 − 10 μs, Dp = 100 μm).
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ction of the lift force when computing the particle trajectory. The

ntire simulation time varies between 100 s and 120 s depending

n the aspect ratio, and the time intervals between two neigh-

ouring positions are 2 s. Figs. 9a and 10 a plot the entire time

ange, and Figs. 9b and 10 b shows only the last 20 s in order

o emphasize the difference between the computed trajectories.

n all cases, the influences of the shear-induced lift force on the

article trajectories are evident, as illustrated in Figs. 9b and 10 b.

ig. 11 plots the lift force components (i.e. FSL,s and FSL,p) along

he particle trajectory. For the spherical particle (i.e. λ = 1), FSL,s

s proportional to the FSL,p, whereas FSL,s becomes disproportional

o the FSL,p at an aspect ratio of λ = 10. The reason is that the lift

orce model for prolate spheroidal particles of Part II also takes

nto account the coefficients B, C and E of the lift tensor. However,

s illustrated in Fig. 10, the difference between the present model

nd the lift force model of Part II in the computed particle trajec-

ories is very small, therefore neglecting the coefficients B, C and

by the present model could be justified.

. Conclusions

The present work proposes a general form of the shear-induced

ift force model which can be related to any existing shear-induced

ift model. The model divides the lift into four components, arising

rom the skew part of the velocity gradient tensor (i.e. Gskw),

he volumetric and the deviatoric parts of the symmetric part

f the velocity gradient tensor, (Gsym, vol and Gsym, dev), and the

nertial effect of the Stokes drag. In the incompressible flow case,
sym,dev = 0 holds and can therefore be neglected. The novelty

f the present work is the derivation of a simplified version of

he unified shear-induced lift force model, with the goal of being

pplicable to the calculation of the lift force acting on a prolate

pheroidal particle moving in an arbitrary non-uniform flow. The

nified model is derived via analogy arguments and only takes

nto account the lift force component caused by Gskw (i.e. coeffi-

ient D of the lift tensor) and the lift force component caused by

he part of the inertial effect of the Stokes drag (i.e. coefficient A

f the lift tensor), whereas the coefficients B, C and E of the lift

ensor [14] are neglected. The proposed unified lift force model

or prolate spheroidal particles can be used in Lagrangian particle

racking and is applicable in flow cases with both streamwise and

on-streamwise flow shear and is, in comparison with the lift

odels of Part I and II, computationally much more efficient.

The unified model is first verified in the Poiseuille flow case by

imulating the axial migration of a prolate spheroidal particle at

wo different points with the same radial coordinates. The com-

uted particle trajectories for two initial particle locations by using

he unified model are the same, proving the validity of the unified

ift force model for calculating the lift force in arbitrary flows. The

ifference in the results between the unified lift force model and

he lift force model of Part I steadily increases with increasing

spect ratio but remains acceptable, which can be attributed to

he assumption of the particle slip velocity being parallel to the

uid velocity along the particle trajectory. In order to verify the

bility of the unified lift force model to take into account the

on-streamwise flow shear, the present model is compared with

everal established generalised Saffman-type lift force models in

ase of the lid-driven cavity flow. In the case of spherical particles,

he values of the lift force component perpendicular to the slip

elocity calculated by all lift force models are the same. In the

ase of prolate spheroidal particles, the differences in particle
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[

[

[

[

[

[

[

[

trajectories calculated by the unified lift force model and the

lift force model of Part II is very small, and the corresponding

magnitudes of lift forces between two models for the case of

λ = 10 are less than 13%, which is considered to be acceptable.

The reason for this difference lies in the absence of the coefficients

B, C and E from the lift tensor when constructing the unified lift

force model. Finally, compared with the lift models of Part I

and II, the computational effort of the unified lift force model is

significantly decreased (i.e. 68 times faster than the lift model of

Part II) proving the model to be suitable for implementation in

Lagrangian tracking of a large amount of particles.
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