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ABSTRACT
In this paper, we present a fast boundary element method (BEM) algorithm for the solution of the 
velocity-vorticity formulation of the Navier-Stokes equations. The Navier-Stokes equations govern 
incompressible fluid flow, which is inherently nonlinear and when discretizised by BEM requires the 
discretization of the domain and calculation of domain integrals. The computational demands of such 
method scale with O(N2), where N is the number of boundary nodes. To accelerate the solution process 
and reduce the computational demand, we present two different approaches, the subdomain method and 
an approximation procedure with hierarchical structure. Several approximation techniques exist, such 
as multipole approximation methods FMM (fast multiple method), SVD (singular value decomposition 
method), wavelet transform method and a cross approximation method. In this paper, we present the 
cross approximation method in combination with the hierarchical H-structure. The cross approximation 
method can reduce the computational demands from O(N2) to O(N log N). There are many forms of 
the cross approximation, like the algebraic cross approximation and the hybrid cross approximation. 
Here, we applied the algebraic cross approximation form. The main advantage is that we did not need to 
evaluate the integral and then to change it with a degenerate kernel function. The cross approximation 
algorithm was used to solve the kinematics equation for unknown boundary vorticity values. Results 
show that an increasing of the compression rate has a negative influence on the solution accuracy. On 
the other hand, the solution accuracy increases with computational grid density. Tests were performed 
using the 3D lid-driven cavity test case with Reynolds numbers up to 1000. Solution accuracy was 
similar for all Reynolds numbers considered. In conclusion, the tests showed that our implementation 
of the algebraic cross approximation for the acceleration of the solution of the kinematics equation can 
be applied to decrease the computational demands and to accelerate the BEM.
Keywords: adaptive cross approximation, boundary element method, boundary-domain integral method, 
fast algorithms, hierarchical structure, H-matrix, kinematics equation, lid-driven cavity, velocity- 
vorticity formulation

1 INTRODUCTION
The boundary element method (BEM) is a numerical method for solving partial differential 
equations (PDE). The numerical method is based on the Greens second theorem. Thus, only 
the discretization of the boundary is necessary [1]. However, due to the non-local nature of the 
fundamental solution, the resulting system of linear equations is fully populated. Due to this, 
the computational demands of the method scale with the square of the number of boundary 
unknowns O(N2).

To reduce computational demand, a number of accelerating procedures were proposed by 
diverse authors, which aim to reduce the cost from O(N2) to O(N logN) or even to O(N). We 
present the cross approximation algorithm in combination with a hierarchical structure for 
the acceleration of the solution process. The hierarchical structure or H-structure is a proce-
dure, which divides the full matrix formulation into smaller matrices, based on the shape of 
the numerical domain. A geometrical condition filters the matrix parts on which an approxi-
mation algorithm is applied and the matrix parts which are not admissible. Börm et al. [2] 
presented the application of hierarchical matrices and the bounding box and bisection method 
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for building cluster trees. Hackbusch [3] wrote the arithmetic based on H-matrices. A different 
hierarchical structure is an H2-matrix formulation. Börm [4] used the H2-matrix formulation 
to construct efficient approximations of discretized integral formulation.

There are different authors who present different forms and variants of the cross approxi-
mation method. Bebendorf [5] introduced the fully pivoting adaptive cross approximation 
algorithm (ACA). Rjasanow and Steibach [6] employed the partly pivoting adaptive cross 
approximation algorithm (ACA+). Tamayo [7] presented a special algebraic form named the 
multilevel adaptive cross approximation (MLACA). The MLACA is a procedure that divides 
the matrix into a number of levels and applies the ACA algorithm on each level. Bebendorf 
[8] used the cross approximation algorithm on a collocation BEM and Rjasanov [9] applied 
it for Galerkin BEM. Börm and Grasedyck [10] introduced the hybrid cross approximation of 
integral operators, where they used the H-matrix representation of finite element stiffens 
matrix.

Many authors used the cross approximation method in different applications. In all publi-
cations, the approximation procedure was introduced to accelerate the BEM. The most often 
used form of the cross approximation is the adaptive cross approximation. Schröder et al. 
[11] used the adaptive cross approximation algorithm to solve the electromagnetic field for a 
known current distribution. Kurz and Rjasanow [12] used the ACA algorithm to accelerate a 
coupled BEM and finite element numerical method to solve the distribution of a symmetric 
electromagnetic field. Grytsenko and Galybin [13] used the ACA to solve a large number of 
cracks on a plate with the, singular integral method. Maerten [14] used the adaptive cross 
approximation to solve a 3D elasticity problem. Wei et al. [15] solved the Laplace equation 
to predict the temperature distribution in a 2D domain by combining ACA with the singular 
boundary method.

The purpose of this work is to implement the cross approximation algorithm with the 
H-structure to speed up a BEM-based fluid flow solver. The fluid flow solver [16, 17] has 
been developed for the velocity-vorticity formulation of the Navier-Stokes equations. Our 
main motivation was to decrease the memory storage demands. We tested the application and 
assessed its usefulness using the lid-driven cavity benchmark test case [18].

2 GOVERNING EQUATIONS
The fluid flow is defined by two equations, the kinematic and the transport vorticity equation. The 
two equations are formulated in the velocity-vorticity formulation of the Navier-Stokes equations. 
Let v  denote the velocity field and 







ω = ∇×v  the vorticity field. With this consideration the  
kinematics equation may be specified from the continuity equation as [16]:

 ∇ +∇× =
2 0






v ω . (1)

For a non-compressible fluid, the velocity field and the vorticity field are divergence free. Eqn 
(1) represents a connection between the velocity and vorticity vector field. The fluid move-
ment governs the vorticity transport equation, written in a non-dimensional form, from the 
momentum equation as:
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 is the Reynolds number and l the characteristic length scale. The fluid  

viscosity n and fluid density r are considered constant.
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The system of equations that is formed with the discretization process is solved with an iter-
ative algorithm proposed by Ravnik et al. [17]. In this paper, we present an accelerated version 
of the estimation of boundary vorticity. In the second step, the vorticity momentum equation is 
solved with the sub-domain BEM to solve the domain velocity. Domain decomposition cannot 
be used for the solution of the kinematics equation due to the Biot-Savart law. Because of this, 
we used the cross approximation technique in combination with the H-structure to solve the 
boundary vorticity in eqn (1).

2.1 The kinematics equation for the boundary vorticity

The kinematic equation solves the vorticity field of the fluid flow, which is on the edge of the 
domain. Let us consider a domain Ω with a position vector, 



r ∈3 and with a boundary 
Γ Ω= δ . The integral form of the kinematics eqn (1) without derivatives of the velocity and 
vorticity fields takes the following form [17]:
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ξ  is the 

source point. In order to use the kinematics equation to solve the boundary vorticity values, 
we must rewrite eqn (3) in a tangential form by multiplying the system with a normal in the 

source point 




n ξ( ). This yields the following integral equation,
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The discretization process, divides the domain into domain elements Ω Ω=
=

∑ ii

d

1
 and the 

boundary into boundary elements Γ Γ=
=

∑ ii

b

1
, where d is the number of domain elements 

and b the number of boundary elements. With this, we can write the discrete form of the kin-
ematic equation. Each domain part Ωi is defined with 27 nodes φi and each boundary part Γi 
is defined with 9 nodes Φ i . A quadratic interpolation function was used for the boundary and 
domain nodes.

For each collocation node at the boundary 


ξf , we calculate the following integrals over 
boundary element c:
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and the following integrals over domain elements e
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The indexes i, j in eqns (5)–(7) stand for the coordinates x, y, z. For the integral in eqn (6), 
i j≠ . The character δ fcl  is the Kronecker delta, which is equal to 1 when source point and the 
grid point are equal.

In order to separate the unknown boundary vorticity values, the vorticity vector can be 
written as a sum of boundary and domain vorticity as ω ω ωi i i{ } = { } +{ }

Γ Ω Γ\
. Vector ωi{ }

Γ
 

includes the boundary vorticity and vector ωi{ }
Ω Γ\

 includes the vorticity at nodes in the 
domain. Hence, we can write the system of equations like this:
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Indexes i, j, k in eqn (8) are the coordinates i=x, j=y, k=z. From eqn (8), we write a system of 
three linear equations. In the first equation, the combination of indexes is i, j, k in the second 
the combination indexes is j, k, i and in the last one the combination is k, i, j.

Matrices [nx], [ny], [nz] are diagonal matrices that contain the components of the normal 

vector 


n n n nx y z= { }, , . The size of matrices H[ ] and Hij




 is n n× , where n is the number grid 

nodes on the boundary. The first domain matrices Di[ ] have the size n n× , while the second 

Di[ ]
Ω Γ\

 are of the size n m× , where i is the coordinate x, y, z and m is the number of domain 
nodes.

As the size of Di[ ]
Ω Γ/

 domain matrices is one order of magnitude greater than all other 
matrices, we implemented the cross approximation algorithm for these matrices.

3 APPROXIMATION OF THE DOMAIN MATRIX
Let us consider one of the domain integral matrices Di[ ]

Ω Γ\
 and denote it as D. Its size is 

n m×  and its entries are real numbers D n m
∈

×

 . To approximate the domain matrix D first, an 
H-matrix structure has to be built. The H-matrix structure is built from the block cluster tree. 
The block cluster tree is a combination of two cluster trees. The first cluster tree is built from 
the domain elements and the second one is built from the boundary elements. From the two 
cluster trees, a block cluster tree is formed. Each cluster of the block cluster tree is tested on 
a geometrical condition, which is based on the shape of the domain. Considering the geomet-
rical condition, we can split the matrix Dn m×  into smaller matrices ˆ ˆ

ˆ |n mD
×

. Matrix parts that 
fulfil the geometrical condition can be approximated.

3.1 Construction of the block cluster tree

A block cluster tree is a combination of the domain and boundary clusters. The computational 
domain is split into smaller boxes, which we will denote as clusters. In each level of the 
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domain cluster tree, the number of clusters increases and the size of the boxes decreases. 
Clusters that are at the end of the cluster tree are called leaves. The cluster tree that is built 
from the computational domain is denoted as TI. The total number of levels p defines the depth 
of a cluster tree. The following algorithm below was used to build the domain cluster tree TI:

•  for all levels i=1 to p

 • for all clusters Ik
i( ) at the level, i

•  find Ik
i( )‘s eight neighbouring clusters and join them into a new cluster at level i +1

For each domain cluster in TI cluster tree, we define a bounding box Qdm ⊆ IR3, which 
includes all domain nodes in the cluster as proposed by Börm [2]. Similarly, for each bound-
ary cluster in the TJ cluster tree, we define a bounding box Qbn ⊆3 from the boundary nodes 
in the cluster. In Fig. 1, we present a block cluster of the block cluster tree.

3.2 H structure formulation

From the block cluster tree, we build an H-matrix, by applying a geometrical condition. The 
block cluster tree includes several parts. We decide which cluster is admissible by defining a 
geometrical condition. The geometrical condition is:

 min dim Q dim Q dist Q Qdm bn dm bn( ) ( ){ } ≤ ( ), , .η  (9)

Expressions dim Q r rdm A B( ) = −
 

 and dim Q r rbn C D( ) = −
 

 are the diameters of boundary and 

domain bounding boxes. The distance dist Q Qdm bn,( ) is the minimal distance between nodes 

in the boundary and domain clusters. All expressions are illustrated in Fig. 1. Parameter h is 
the admissibility parameter, which is defined by the user. This parameter enables the user to 
vary the geometrical condition and to control the number of admissible block clusters.

Block clusters which fulfil the geometrical condition, are admissible. Thus, an approxima-
tion procedure can be applied. However, block clusters, which do not meet the geometrical 
condition, are split into smaller blocks.

Leaves, which meet the geometrical condition in eqn (10), are admissible leaves. Leaves 
that do not fulfil the geometrical condition are not admissible and they have to be maintained 

Figure 1: An illustration of a block cluster, which is tested for admissibility.
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in their original form. In our simulations, we used η =1 based on the recommendation given 
by Wei et al. [15].

3.3 Cross approximation

Cross approximation is a method that approximates matrices ˆ ˆ
ˆ

n mD
×

, from the full matrix 
formulation to an RK-form. Every matrix that has a rank k>1, can be written into the RK-
matrix formulation using the approximation rank r in the following way [2]:

 
( )

ˆ ˆ
ˆ ˆ

ˆ ˆˆ ,  .ˆ,T n r r m
r n mD AB A B× ×

+
≈ ∈ ∈    (10)

To store the RK-matrix into memory and perform matrix-vector multiplications, we need 
( )ˆ ˆO nm  computational resources [10]. The approximation rank r is the number of rows in 

matrix A and the number of columns in matrix BT . In this paper, we present the full pivoting 
cross approximation method. Full pivoting means that the algorithm evaluates each element 
in the matrix and picks the highest valued element, to determine a cross, which is the building 
block of the RK-matrix formulation. The cross approximation algorithm with full pivoting is 
written bellow:
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1 1 12.4 ˆ ˆ u u u uR R a b+ + +
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In point (1) of the algorithm, we define the residual matrix. The second point (2) is a start of 
a loop that performs the approximation. In eqn (2.1), the largest element in the matrix uR̂  is 
found, with the full pivoting procedure. The full pivoting algorithm needs to perform ( )ˆ ˆO nm  
pivoting steps. To reduce the number of pivoting steps Rjasanow and Steibach [6] proposed 
a partly pivoting cross approximation method (ACA+). However, the partly pivoting algo-
rithm demands more computational resources. Because of this, the algorithm is less desirable. 
Next in eqn (2.2), the reverse of the largest element * *

u
i , j

R̂  is calculated. In eqn (2.3) vectors 
au+1 and bu+1 are defined. These two vectors build a cross around the element * *

u
i , j

R̂ . Eqn (2.4) 
calculates a new residual matrix u 1R̂ + .

We propose to use a user defined compression factor a, which defines the approximation 
rank r in the following way:

 r k= ⋅α , (11)

where k is the rank of the matrix 
( )ˆ ˆ

ˆ
r n mD

+
. Based on r, we can calculate the compression  

ratio ϕ
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n m r n m
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which, is the memory ratio of the approximated matrix versus the original matrix. The coun-
ter is the sum of the matrix elements in admissible block clusters and leaves 

( )ˆ ˆr n mD
+



 plus the 
elements in inadmissible matrix parts ˆ ˆ

ˆ
n mD
×  . And the denominator is the number of elements 

in the original matrix Dn m× .

4 NUMERICAL MODEL AND EXPERIMENTS
Flow in a 3D lid-driven cavity is one of the standard test cases used in the development of 
flow solvers. The domain as well as the boundary conditions are unambiguously defined and 
do not change with the Reynolds number.

We tested the proposed algorithm using the lid-driven cavity problem [18]. The domain 
was a unit cube. We sought steady state flow solutions using three different grid densities, 
having 253, 413 and 493 nodes. The grid was structured and non-uniform. The size of hexahe-
dral elements changed from the boundary to the middle elements by a length ratio 1:6.5.

The side and bottom walls of the cube are no-slip walls. The top wall is moving with a 
velocity, which is determined from the Reynolds number. The boundary vorticity is obtained 
by the solution of the accelerated kinematics equation, except for the ωx = 0  on the left and 
right wall, ωy = 0 on the front and back wall and ωz = 0 on the top and bottom walls. The flow 
was solved for three Reynolds numbers Re=100, 400 and 1000. Boundary conditions are 
shown in Fig. 2. The linear system of equations was solved with the LU-decomposition 
method. Iterations were stopped when the difference between subsequent iteration of all field 
functions dropped below 10 6− . The maximum number of iterations for each run was 8000.

The cross approximation was used on the matrices [Dx]Ω/Γ, [Dy]Ω/Γ, [Dz]Ω/Γ in eqn (8). In 
order to measure the influence of the approximation on the result, find its dependence on the 
flow structure, and grid density, we used two norms. We measured the difference between 
boundary vorticity values as:

 RMS
j x y z

i ji Aji

i Aji

ω

ω ω

ω

=

−( )

( )
















=

∑
∑

∑, ,

2

2

1

2

 (13)

where wji is the jth component of vorticity in ith boundary node calculated without an approx-
imation and the wAji its approximated counterpart.

Figure 2: Flow structure and boundary conditions for the lid driven cavity at Re = 400 on the 
right and a 253 grid on the left.
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5 RESULTS AND DISCUSSION
In this section, we illustrate the impact of the cross approximation method on the solution of 
the boundary vorticity. The Reynolds number was changed in an interval from 100 to 1000 to 
see how a different compression rate a effect the norm RMSw. All simulations were per-
formed on an Intel Xenon 64-bit processor with 64 GB of memory space. Table 1 is showing 
the amount of memory that is needed to store one of the matrices [Di]Ω/Γ. We observed that 
the space to store the original matrix formulation increases quadratically with the number of 
boundary unknowns, while the approximated formulation exhibits a quasilinear 
dependence.

In Table 2, we observed the number of iterations (Nitera) that was necessary to obtain a 
solution of the kinematics equation. We noticed that with an increasing grid density and 
Reynolds number the number of iterations has increased. This is because the non-linearity of 
the problem increases with a higher Reynolds number and a better-resolved grid. However, 
the compression rate did not have an impact on the number of iterations, if a was between 1.0 
and 0.5. When the compression rate was lowered below 0.5, the number of iterations started 
to increase. Thus, the compression rate has an influence on the number of iterations to solve 
the boundary vorticity.

In Fig. 3, we illustrate how the norm RMSw is dependent of the compression ratio j and 
different Reynolds numbers. The RMS increases with a higher compression ratio. At a given 
Reynolds number, we observe that the norms are lower for a fine grid compared to course 
grid. This means that the simulation with a fine grid is able to use less memory storage to 
reach the same accuracy of results compared to a simulation on a coarse grid. Thus, the 
difference in the boundary vorticity is dependent of the grid density.

Using the norm, we focused on the impact of the cross approximation algorithm on the 
solution of the boundary vorticity values. The approximation of the boundary values effects 

Table 1: Memory demands for storing one of the matrices [Di]Ω/Γ

ORGa=1.0 RAMa=0.5[MB] RAMa=0.2[MB] RAMa=0.1[MB]

253 320 239 122 82
413 4345 3083 1833 1424
493 8828 5859 3171 2294

Table 2: Number of iteration to solve the kinematics equation with the proposed algorithm at 
different compression ratios a.

Re=100 ORGa=1.0 Nitera=0.8 Nitera=0.5 Nitera=0.2 Nitera=0.1

253 728 728 728 728 821
413 766 766 765 769 841
493 800 800 799 830 939

Re=1000 ORGa=1.0 Nitera=0.8 Nitera=0.5 Nitera=0.2 Nitera=0.1

253 2000 2184 2184 1896 8000
413 2401 2401 2401 2204 2331
493 2561 2561 2561 2679 3748
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the hole velocity field. In Fig. 4, we show the velocity profile through the centre of the cavity. 
We compared the benchmark results of Yang [18] with our method. We observed very good 
agreement between the benchmark result and our results obtained without the approximation 
method. When the approximation method is used, the difference in the profile increases. We 
also observed that the difference rises with a higher Reynolds number, and declines with a 
finer grid density.

6 CONCLUSION
In this study, we developed an accelerated algorithm based on BEM, for solving the kinemat-
ics equation. The developed algorithm used the H-matrix structure and the cross approximation 
method to decrease the computational demand of the BEM-based solver for incompressible 

Figure 3: Influence of the Reynolds number and the grid density on the accuracy of the 
solution of the boundary vorticity values RMSw.

Figure 4: Velocity profiles vx(z) and vz(x) at the y=0.5 plane, for different compression ratio 
and Reynolds number. The grid density was 493.
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fluid flow. We have shown that the cross approximation algorithm can be successfully applied 
to solve the kinematics equation. The implementation was tested using the 3D lid-driven 
cavity test case with the Reynolds number up to 1000 using several computational grids.

Results showed that the chosen solution accuracy of a selected grid density was dependent 
on the compression rate. However, also the number of iterations that were necessary to obtain 
a solution increased with a lower compression rate. A finer grid allows more compression. 
We plan to control the inaccuracy introduced into the boundary vorticity by the approxima-
tion by specifying the rank of the rank of the approximated matrix parts.

However, the elliptic integral kernel, which is in the integral form of the kinematics equa-
tion, is not very well suited for approximation. We can conclude that the usage of the cross 
approximation enables the usage of the flow solver on a finer grid at a reduced computational 
cost and thus allows the simulation of more complex flow structures.
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