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ABSTRACT
In this paper we present an algorithm based on the Boundary Element Method for solving the Stokes
flow around an arbitrarily shaped particle in multiphase flows. The objective of the algorithm is to
determine the exact drag force and torque experienced by the particle during its motion in a turbulent
flow field. The developed method is used to compare the predicted force and torque values on a realistic
3D model of a mineral fibre and its simplifying ellipsoidal approximation. We found that the force and
torque values calculated for the real particle geometry differ greatly from the values obtained with the
simplifying ellipsoidal approximation. On average, a relative error of less than 10% is achieved for only
10%–30% of the particle orientations.
Keywords: boundary element method, multiphase flows, Lagrangian simulation, mineral, asbestos,
muscovite.

1 INTRODUCTION
Asbestos is a term used to describe a group of six fibrous silicate minerals (Strohmeier et
al. [1]) that have an asbestiform habit and are and were used commercially. It is still widely
used and associated with disease. In particulate form, it takes the form of fibre-like structures
which, when suspended in the air, can be inhaled and enter the lungs. The asbestos fibres in
question are small, with a length in the micrometre range and a length-to-width ratio of more
than three. The translational and rotational dynamics of such small particles are primarily
determined by the airflow surrounding them. Their Stokes number is small, so they react
quickly to changes in the air flow and can therefore remain in the air for a long time. For
this reason, it is almost impossible to completely avoid exposure to asbestos. Our inability to
smell, touch, see or otherwise identify asbestos fibres is the main reason why so many people
have been unable to detect avoid exposure to the carcinogenic substance.

Many researchers [2]–[4] model asbestos fibres as elongated ellipsoids. In reality [5]–[8],
however, the shape of the particle can be curved, rod-shaped and contain protrusions, so the
simplifying ellipsoid approximation can be questionable. In this paper, we compare the drag
and torque exerted on a fibre using a 3D model of a realistic asbestos-like mineral and its
simplifying ellipsoidal approximation by means of BEM-based numerical simulation.

Because the asbestos particles are so small, they follow the airflow almost completely.
The relative velocity of the air experienced by the particles is small. If we consider this
problem as a flow over a blunt body, we find that we are dealing with a micrometre-
sized body (d ≈ 10−6m), a small air velocity = |~v0| � 1m/s and air of known viscosity
(ν ≈ 10−5m2/s) as the fluid. It is obvious that the particle Reynolds number for asbestos
fibres in air is much smaller than one. This means that we can approximate the air flow field
around the particle by considering only the diffusive transport of momentum and neglecting
the convective transport of momentum. Such an approximation leads to the Stokes equations
for fluid flow. These can be written in terms of a boundary integral and a BEM algorithm
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can be developed to find solutions to such problems. In the following we present such an
algorithm.

2 GOVERNING EQUATIONS
2.1 The particle

We consider a particle of volume V in a fluid. The spherical volume equivalent radius of the
particle is R = (3V/4π)1/3. The force and torque on such a particle due to the presence of a
fluid can be calculated by

~F =
∫

Γ

~qdΓ, ~T =
∫

Γ

~r × ~qdΓ, (1)

where ~q = σ · ~n is the boundary traction, Γ the surface of the particle and ~r the position vector
in particle frame of reference (FoR). The boundary traction represents the sink of momentum
at the particle surface and thus its integral over the surface yields the force. In case of a sphere
moving in a still fluid, this force evaluates to ~F = 6πRµ~u. When a sphere spins in still fluid,
it generates torque of ~T = 8πR3µ~ω. This expression can be used to non-dimensionalize the
force and torque action on a particle in a moving fluid by F0 = πµRv0 and T0 = πR3µv0/L
with v0 and L characteristic velocity and length scale of the flow.

We assume the particle is located in an unsteady turbulent or laminar flow. Let the flow
velocity in inertial FoR be denoted by ~v. We assume that:

• the particle is small enough, that the particle Reynolds number: Rep = |~v0|R/ν � 1.
Here ~v0 is the relative flow velocity at the location of the particle.
• the particle is small enough, that flow shear (velocity gradient tensor) is linear in the

vicinity of the particle. The following is valid ||~∇~v||F � |~v0|/R. Here ||~∇~v||F is the
Frobenius norm of the velocity gradient tensor calculated at the particle location. At
the same time the particle shear Reynolds number ReG = R2||~∇~v||F /ν � 1.

• the particle is much smaller that the Kolomogorov length scale, i.e. it is much smaller
that the size of the smallest eddy in the flow field.

With these assumptions the flow field as seen from the perspective of the particle is governed
by the Stokes equation. Furthermore, to facilitate finding the boundary conditions for our
numerical solver, we model the undisturbed flow field around the particle with linear shear.
Thus, the linearised flow velocity ~w in the inertial FoR with the origin at the particle centre
can be written as:

~w = ~v0 + (~∇~v)0 · ~r, (2)

where ~v0 is the flow velocity at the position of the particle and (~∇~v)0 is the flow velocity
gradient tensor at the position of the particle and ~r = (x, y, z) is the location vector the
inertial FoR with the origin at the particle centre. See Fig. 1 for details. Eqn. (2) is written
in the inertial FoR with the origin set to the particle location, so ~w(0, 0, 0) and (~∇~w)(0, 0, 0)
produce values consistent with ~v and (~∇~v) at the location of the particle.

The particles can have any orientation. It is convenient to create the numerical grid for
only one particle orientation and express the flow velocity field in the particle FoR. In this
way we can avoid having to rotate the computational grid for each particle orientation and
re-evaluate the integrals to form the system of linear equations. It is better to rotate the input
velocity, which is given as a boundary condition.
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Figure 1: A particle in a flow field. In the inertial reference frame (blue) the flow velocity
is ~v and the particle is at ~rp. The linearised flow field ~w is written in the inertial
reference frame with origin in the particle centre (red). The particle reference frame
(black) is defined by the orientation of the particle. The linearised flow velocity in
the particle reference frame is ~u. ~r and ~l indicate the location of interest in the
inertial reference frame with origin in the particle centre and the particle reference
frame, respectively.

Let us assume the inertial FoR is defined by basis vectors ê1, ê2, and ê3 while the particle
orientation in the same frame of reference is defined by basis vectors n̂1, n̂2, and n̂3. We
compute ê4 = ê1 × ê3 and n̂4 = n̂1 × n̂3 and obtain the rotation matrix as:

R =

 ê1,x ê3,x ê4,x

ê1,y ê3,y ê4,y

ê1,z ê3,z ê4,z

 ·
 n̂1,x n̂1,y n̂1,z

n̂3,x n̂3,y n̂3,z

n̂4,x n̂4,y n̂4,z

 . (3)

Alternatively, if the particle orientation is expressed in terms of Euler parameters
(e0, e1, e2, e3), as it is common in Lagrangian particle tracking algorithms, the same rotation
matrix written in terms of the Euler parameters is

R =

 e2
0 + e2

1 − e2
2 − e2

3 2(e1e2 + e0e3) 2(e1e3 − e0e2)
2(e1e2 − e0e3) e2

0 − e2
1 + e2

2 − e2
3 2(e2e3 + e0e1)

2(e1e3 + e0e2) 2(e2e3 − e0e1) e2
0 − e2

1 − e2
2 + e2

3

 . (4)

The transpose of the rotation matrix may be used to find the particle basis, i.e. n̂1 = RT ê1.
With the rotation matrix we can express the velocity field in the particle FoR as

~u = R · ~w. (5)

Considering a point in the particle FoR ~l, the velocity in particle FoR is then calculated as

~u = R ·
[
~v0 + (~∇~v)0 ·RT ·~l

]
(6)

since ~r = RT ·~l is the location of the chosen point in the inertial FoR with the origin at
the particle. This means, that the force and torque experienced by a particle can be uniquely
defined using the particle orientation R, the fluid velocity at the position of the particle ~v0

and the fluid velocity gradient tensor at the position of the particle (~∇~v)0.
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2.2 The fluid governing equations in the particle FoR

We consider the steady incompressible flow of a Newtonian fluid at very small Reynolds
numbers, i.e. Re� 1, where we can neglect the advection term in the Navier–Stokes
equations, leading to the equations of creeping flow (Stokes):

~∇ · ~u = 0, ~∇ · σ + ρ~g = 0. (7)

Here ~u is the flow velocity, ρ is the fluid density and ~g is the gravitational acceleration.
The Cauchy stress tensor σ is defined as σ = −PI + τ , where P is the pressure, I the
identity tensor, and τ the viscous stress tensor. A Newtonian model for the viscous stress
tensor τij = µ

[
∂ui

∂xj
+ ∂uj

∂xi

]
leads to the following form of the Stokes equation:

− ~∇P + µ∇2~u+ ρ~g = 0, (8)

where µ is the fluid viscosity. Finally, we recognise, that gravity is a conservative force, which
may be written as a gradient of the gravitational potential and introduce a modified pressure
as p = P − ρΦ, where ~g = ~∇Φ. With this, the final form of the Stokes equation is

− ~∇p+ µ∇2~u = 0. (9)

3 BOUNDARY INTEGRAL EQUATIONS
3.1 Green’s functions

The Stokes flow Green’s functions satisfy the continuity equation ~∇ · ~u = 0 and are the
solutions of the singularly forced Stokes equation. Defining r̂ = ~r − ~r0 and r = |r̂| the 3D
free-space Green’s functions are

Gij =
δij
r

+
r̂ir̂j
r3

, Pj = 2
r̂j
r3
, Tijk = −6

r̂ir̂j r̂k
r5

, Kij = −4
δij
r3

+ 12
r̂ir̂j
r5

. (10)

3.2 Velocity field

The boundary integral representation for the Stokes problem is [9]

c(~r0)uj(~r0) =
∫ PV

Γ

ui(~r)Tijk (~r, ~r0)nk(~r)dΓ(~r)− 1
µ

∫
Γ

Gji (~r, ~r0) qi(~r)dΓ(~r), (11)

where c(~r0) = 2α is twice the solid angle as seen from the point ~r0, i.e. in the interior
of the domain c = 8π, at a smooth boundary c = 4π. The normal vector ~n points into the
domain. The terms on the right represent the double and single layer potentials of the three-
dimensional Stokes flow. To derive a discrete version of eqn (11) we consider the boundary
Γ =

∑
l Γl to be decomposed into boundary elements Γl:

c(~r0)uj(~r0) =
∑
l

∫ PV

Γl

ui(~r)Tijk (~r, ~r0)n(l)
k dΓ(~r)− 1

µ

∑
l

∫
Γl

Gji (~r, ~r0) qi(~r)dΓ(~r),

(12)
where n(l)

k is the k component of the normal vector pointing from boundary element l into
the domain.
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Let Φ and Ψ be the interpolation functions used to interpolate the function and flux values
within boundary elements, i.e. ui =

∑
m Φmu

(l,m)
i and qi =

∑
m Ψmq

(l,m)
i , where u(l,m)

i is
the mth nodal value of function within lth boundary element. This yields

c(~r0)uj(~r0) =
∑
l

∑
m

u
(l,m)
i

∫ PV

Γl

ΦmTijk (~r, ~r0)n(l)
k dΓ(~r)

− 1
µ

∑
l

∑
m

q
(l,m)
i

∫
Γl

ΨmGji (~r, ~r0) dΓ(~r). (13)

The following integrals must be calculated for each boundary element:

T
(l,m)
ij (~r0) =

∫ PV

Γl

ΦmTijk (~r, ~r0)n(l)
k dΓ

G
(l,m)
ij (~r0) =

∫
Γl

ΨmGij (~r, ~r0) dΓ. (14)

So, for a source point (~r0) we may write

c(~r0)uj(~r0) =
∑
l

∑
m

u
(l,m)
i T

(l,m)
ij (~r0)− 1

µ

∑
l

∑
m

q
(l,m)
i G

(l,m)
ji (~r0). (15)

Since the boundary elements share nodes, the number of integrals that need to be stored is
actually less than l ·m. The integrals, which are required by the same node, can be summed
up. The number of integrals values we store in memory is equal to the number of nodes in a
mesh. When we place the source point in all boundary nodes, and store the integral values in
matrices (the rows correspond to different source points, the columns to the different nodes
in the mesh), we obtain the following systems of equations:

{ux}[[Txx]− c[I]] + {uy}[Tyx] + {uz}[Tzx] =
1
µ

[{qx}[Gxx] + {qy}[Gxy] + {qz}[Gxz]].
(16)

{ux}[Txy] + {uy}[[Tyy]− c[I]] + {uz}[Tzy] =
1
µ

[{qx}[Gyx] + {qy}[Gyy] + {qz}[Gyz]].
(17)

{ux}[Txz] + {uy}[Tyz] + {uz}[[Tzz]− c[I]] =
1
µ

[{qx}[Gzx] + {qy}[Gzy] + {qz}[Gzz]].
(18)

Here the curly and square brackets denote nodal vectors of field functions and matrices
of integrals, respectively. Known values of velocity or boundary traction can be used as
boundary conditions. Collocation points are placed only into nodes, where the value is
unknown. A system of linear equations is set up for all unknowns, where in case of unknown
{ux} or {qx} eqn (16) is used, in case of unknown {uy} or {qy} eqn (17) is used and in case
of unknown {uz} or {qz} eqn (18) is used.

3.3 Pressure field

The boundary integral equation to evaluate pressure in the domain given known velocity and
traction at the boundary is

c(~r0)p(~r0) = µ

∫
Γ

ui(~r)Kij (~r, ~r0)nj(~r)dΓ(~r)−
∫

Γ

Pi (~r, ~r0) qi(~r)dΓ(~r). (19)
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When the pressure evaluation point ~r0 is in the domain c(~r0) = 8π. In the case ~r0 is at
a smooth boundary, c(~r0) = 4π, and the equation becomes hypersingular. In this case the
second integral in eqn (19) exists only in the Cauchy principal value sense. However, because
of the 1/r3 singularity in the kernel function Kij , the first integral exists only in the sense of
the finite-part integral. Ingber and Li [10] proposed a regularization of the finite-part integral:

µ(~r0)p(~r0) = µ

∫
Γ

[
ui(~r)− ui(~r0)

]
Kij (~r, ~r0)nj(~r)dΓ(~r)−

∫
Γ

Pi (~r, ~r0) qi(~r)dΓ(~r).

(20)
Both integrals in eqn (20) can be interpreted in the Cauchy principal value sense.

3.4 Numerical implementation

The numerical implementation of the Stokes BEM solver described in the
previous section is based on our Laplace BEM solver [11], [12]. The Stokes
solver source code is freely available online. Scan the adjacent QR code to
access the repository. In the following we describe the main features of the
developed algorithm. The boundary element method requires discretization of only the
boundary surfaces in a three-dimensional domain. There are several methods and algorithms
to create such surface discretisations and output the computational mesh in a readable format.
An open source solution called gmsh [13] was chosen as the primary mesher for our method.
It produces high quality triangular or quadratic meshes that are perfect for use with the
boundary element method.

The integrals in eqn (14) depend solely on the mesh geometry and can be calculated for
each computational mesh and stored. As we performed more than 1500 simulations using the
same geometry of the particle, storing of integrals in binary form on a hard drive are reusing
them for simulations with different boundary conditions saves a lot of compute time.

We used meshes with triangular elements featuring linear interpolation of functions across
the surface and constant interpolation of boundary traction. Integration over triangles in 3D
space was performed numerically. We used the barycentric coordinate system. The weights
and positions of the numerical quadrature were chosen according to Wandzurat and Xiao [14].
For the evaluation of regular integrals a machine exact quadrature for polynomials of degree
25 was chosen. To increase the integration accuracy of singular integrals, we used the element
decomposition technique. Each triangular element is decomposed into four triangles so that
each triangle contains a possible singularity point (the three corners for linear interpolation or
the barometric centre for constant interpolation). This decomposition is recursively applied
to the singular point. Ten recursive steps were used for the simulations in this paper. They
were chosen so that the accuracy of the singular integrals is of the same order of magnitude
as the accuracy of the regular integrals.

Once the system of linear equations is established, we solve it using the iterative least
squares method (Paige and Saunders [15]). The solution of the linear system of equations
provides the boundary tractions on the particle surface. On this basis, the resulting force and
torque (eqn (1)) are estimated by numerical quadrature as described above.

4 RESULTS
We set up the computational domain and boundary conditions as shown in Fig. 2. The particle
is located in the centre of the domain and is surrounded by a spherical outer surface whose
diameter is much larger than the size of the particle. Velocity boundary conditions are applied
to the outer sphere according to the known flow field and the position of the particle in the
flow field. No slip velocity boundary condition is used at the particle surface. The boundary
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tractions at the particle surface and at the outer sphere are unknown and are obtained when
the system of linear equations is solved.

R

x

y

z

Ro = 512R

Figure 2: A particle and the flow field boundary condition on the on the outer surface of the
domain. Volume equivalent radius of the particle is denoted byR. No slip boundary
condition is applied at the particle surface. The arrows at the outer surface denote
an example of a prescribed velocity field (vortex around the y axis). The radius of
the outer sphere is Ro.

4.1 Validation with ellipsoidal particle

To validate our approach we first consider three standard flows: the plug flow along the
three axes of the particle FoR, pure vortices around the three axes of the particle FoR, and
three pure strains around the three axes of the particle FoR. Plug flow can be expressed as
~w = v0(1, 0, 0), ~w = v0(0, 1, 0), and ~w = v0(0, 0, 1) for the three axes respectively. Vortical
flows are ~w = v0/L(0,−z, y), ~w = v0/L(z, 0,−x), ~w = v0/L(−y, x, 0) for a vortex around
the x, y and z axis. Finally, pure strain can be applied on the particles by putting them into
the following flow field ~w = v0/L(0, z, y), ~w = v0/L(z, 0, x), ~w = v0/L(−y, x, 0) for x, y
and z axis, respectively. In all these cases we consider the particle to be located at the origin.

We consider a particle in the form of a 2 : 1 : 1 ellipsoid whose long axis is twice as long
as the short axis. For such prolate ellipsoid, the expressions for force and torque in the Stokes
flow are available in closed form from Jeffery [16] and Ravnik et al. [17]. We measure the
relative error of drag force and torque as abs(| ~Fn| − | ~Fa|)/| ~Fa|, and abs(| ~Tn| − | ~Ta|)/| ~Ta|,
where subscripts n and a stand for numerical and analytical solution, respectively.

In Fig. 3 we show the relative errors. Considering the drag force error in plug flow, we
find that it depends strongly on the domain size. Only atRo/R = 2000 the error converges to
10−3, which we consider acceptable. A large domain size is easily achieved by BEM, while
domain based methods struggle with it [18]. We also note that the torque error in vortex and
strain flows does not depend on the domain size. But it does depend on the discretization of
the particle. For all torques, the error is smaller than 10−3 when at least 3000 nodes are used
in the discretisation of the particle.

4.2 Muscovite mineral particle in pipe, Poiseuille and Arnold–Beltrami–Childress flows

Strohmeier et al. [1] studied an air sample from Libby, a town in northwestern Montana,
United States, where nearby vermiculite mines contaminated the air with asbestos and
asbestos-like fibres. They discovered and analysed an irregular muscovite mineral particle
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Figure 3: Left: relative error of the drag force estimate under plug flows from two directions
versus the size of the domain. Right: relative error of the torque estimate for two
vortex flows and two strain flows.

(hydrated aluminium potassium silicate KAl2(AlSi3O10)(F,OH)2), which counts as an
asbestos fibre. Based on their TEM images, we created a 3D model. At first glance, an
elongated ellipsoid with an aspect ratio of 6.5 seems to correspond well to the particle.
However, a closer look reveals that the real muscovite particle is irregular and asymmetrical.
In Fig. 4 we present a 3D view of the two shapes. The volume of both particles is the same.

Figure 4: The x component of boundary traction shown at the surface of muscovite and
ellipsoid particles. Top view is shown on the left, bottom view in the centre and
side view on the right.

To quantify the difference in evaluated force and torque between a model of a muscovite
particle and its simplifying ellipsoidal approximation, we place the particle in a flow in a
pipe, a Poiseuille flow and an Arnold–Beltrami–Childress flow. Table 1 shows the details
of the velocity fields and the proposed particle positions. For a given particle orientation,
we then simulate the flow field and calculate the force and torque exerted by the fluid on
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the particle. An example of such results can be found in Fig. 4, where a component of the
boundary traction on the surface of the muscovite and ellipsoidal particles is shown for a
single orientation of a particle in pipe flow.

Table 1: Linearization of the velocity field for flow in a pipe, Poiseuille flow and Arnold–
Beltrami–Childress flow. Fluid viscosity is µ, pipe diameter D, distance between
platesH , size of ABC cellL, k is the pressure drop, v0 is the characteristic (average)
flow velocity and ν the ABS flow frequency. ~r denotes the position of the particle
in the flow field.

~v ~∇~v ~w

Steady laminar flow in a pipe, ~rp = (0, D/4, D/4), v0 = kD2

32µ 2v0

(
1− 4y

2+z2

D2

)
0
0

 16v0D

 0 − y
D − z

D
0 0 0
0 0 0

 v0

 1− 4y+z
D

0
0


Poiseuille flow in 2D, ~rp = (0, 0, H/4), v0 = H2k

12µ 6v0
z
H

(
1− z

H

)
0
0

  0 0 6v0H
(
1− 2 z

H

)
0 0 0
0 0 0

 v0

 9
8 + 3 z

H
0
0


Arnold–Beltrami–Childress flow, ~rp = (1/4, 1/4, 1/4), A→ 1, B → 2, C → 3, ν → 2π

v0

 A sin(νz/L) + C cos(νy/L)
B sin(νx/L) +A cos(νz/L)
C sin(νy/L) +B cos(νx/L)

 − v0L

 0 6π 0
0 0 2π

4π 0 0

 v0

 1− 6πy/L
2− 2πz/L
3− 4πx/L



We performed 515 simulations for each flow type. Defining the flow as described in
Table 1 we rotated the particle by setting the Euler parameters using the following algorithm:

for e0 in range −1 to +1 with step 0.2
for e1 in range −1 to +1 with step 0.2

for e2 in range −1 to +1 with step 0.2
e3 =

√
1− e2

0 − e2
1 − e2

2

if e3 ≤ 1 then perform simulation and estimate force and torque

The relative error between the force and torque obtained from the ellipsoidal
approximation of the muscovite particle and the numerical simulation of the actual particle
was estimated for all orientations j by:

E
(j)
Fi =

∣∣∣∣∣F
(j)
i,num − F

(j)
i,ell

F
(j)
i,num

∣∣∣∣∣ , E
(j)
Ti =

∣∣∣∣∣T
(j)
i,num − T

(j)
i,ell

T
(j)
i,num

∣∣∣∣∣ . (21)

A probability density function (PDF) for the relative error was created. In Fig. 5 we show the
integrals of the PDFs over the relative error. From this plot, we can see that the probability of
estimating the force on a muscovite particle in a pipe flow with a relative error of less than
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10% is between 10%–30% for the three force components. At the same time, we see that in
about 20% of the orientations, the force is estimated with relative error greater than 100%.
The results are more promising in the case of torque, where, for example, the x component
is estimated with less than 10% error in 80% of orientations. If we look at the plots for
Poiseuille and ABC flow, we come to similar conclusions. In the ABC flow case, the force
is estimated with less than 10% error in only 10% of the orientations, which is worse than in
the Poiseuille case, where the same accuracy is obtained for 20%–40% percent orientations.
The largest errors are observed when considering the torque about the long (x) axis. This is
due to the fact that the muscovite particle is extremely asymmetric about the long axis and
deviates greatly from the ellipsoidal shape.
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Figure 5: Integral of the PDF for the relative error in prediction of force and torque.
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5 CONCLUSIONS

We have developed a boundary element method for solving force and torque exerted on
arbitrarily shaped particles in Stokes flows. It is applicable to situations where the Reynolds
number of the particles is small, so that creeping flow conditions exist around the particles.
The developed method was used to compare the predicted force and torque values on a
realistic 3D model of an asbestos particle and its simplifying ellipsoidal approximation. We
found that the force and torque calculated for the real particle geometry differed greatly from
the values obtained with the ellipsoidal approximation.

It seems that the use of analytical expressions available for ellipsoidal particles performs
poorly in predicting the force and torque of a real particle. Analytical expressions are often
used in Lagrangian particle tracking applications because the force and torque for many
particles need to be evaluated in many time steps. In the future, we will use fast BEM
approaches to reduce computational time so that the BEM solution of force and torque can
be coupled with computational fluid dynamics solvers that perform particle tracking in flows.
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