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ORIGINAL ARTICLE

Development of the Banach contraction method for the solution of
nonlinear thin film flows of non-Newtonian fluids

Majeed Ahmed Al-Jawarya, Ghassan Hasan Radhia and Jure Ravnikb

aDepartment of Mathematics, College of Education for Pure Sciences (Ibn AL-Haitham)/University of Baghdad, Baghdad, Iraq;
bFaculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia

ABSTRACT
The aim of this study is to present a new implementation of an efficient iterative method
proposed by Daftardar-Gejji and Bhalekar to solve a nonlinear initial value problem. We con-
sider the thin film problem of a non-Newtonian fluid on a moving belt. The proposed
method is based on using the Banach’s contraction principle. In order to determine the
accuracy of the obtained approximate solutions, several comparisons were done against sol-
utions obtained by other authors using the Runge–Kutta method as well as the
Newton–Raphson–Euler-based solution. Comparisons with the variational iteration method
and the homotopy perturbation method were also made. Several measures have been
adopted to provide the error analysis for the derived approximate solution: the error remain-
der with the maximal error remainder, the second norm and the root mean squared norm.
The application of the proposed technique shows the purpose of the obtained approximate
solution where no additional assumptions are needed for the nonlinear terms. Calculations
were performed using the computer algebra system MATHEMATICAVR 10.
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1. Introduction

Viscosity is a property of a fluid, which governs diffu-
sive transport of momentum during fluid flows.
Newton’s constitutive relation for fluids defines viscos-
ity as the ratio between stress and strain rate in the
flow. Fluids for which the Newton’s constitutive rela-
tion holds are known as Newtonian fluids (Hu &
Kieweg, 2012) in the engineering literature, and are
characterized by a linear response to strain rate. In
contrast to these, fluids which exhibit a non-linear
response to strain rate are defined as non-Newtonian.
Some examples of this kind of fluid are quicksand,
asphalt, glue, cosmetics and others.

In recent years, research on the flows of non-
Newtonian fluids has increased because of their wide
applications in engineering. Many specialists in this
field mention a wide range of applications that address
the problems of rheology in various biological sciences,
chemical industries, geophysics and others (Ellahi,
Zeeshan, & Hassan, 2016; Ellahi, Tariq, Hassan, & Vafai,
2017; Ellahi, Zeeshan, Shehzad, & Alamri, 2018; Khan,
Masood, Ellahi & Bhatti, 2018; Zhaosheng & Jianzhong,
1998; Zeeshan, Shehzad, & Ellahi, 2018).

On the other hand, we find that many researchers
have found acceptable analytic solutions when study-
ing the behaviour of non-Newtonian fluids (Ayub,
Rasheed, & Hayat, 2003; Bougoffa, Duan, & Rach,

2015). One of the most prominent of these studies is
the non-Newtonian Sisko fluid study. This fluid is mod-
elled by a set of nonlinear equations, which allows sci-
entists and researchers to examine different sets of
parameters in the governing equations and find
approximate solutions that are as close as possible to
the exact solutions; for example the study of thin film
flows of Sisko fluid on a moving belt (Sisko, 1958),
considering the Sisko fluid flow in a collector, etc.

Some examples of methods that are used to study
and solve this kind of nonlinear problem are the
Adomian decomposition method (ADM) (Siddiqui,
Farooq, Haroon, & Babcock, 2012), the homotopy ana-
lysis method (HAM) (Sajid & Hayat, 2008), the homo-
topy perturbation method (HPM) (Sajid, Hayat, &
Asghar, 2007; Siddiqui, Mahmood, & Ghori, 2006), the
variational iteration method (VIM) (Moosavi, Momeni,
Tavangar, Mohammadyari, & Rahimi-Esbo, 2016;
Siddiqui et al., 2012), and the Temimi and Ansari
method (TAM) (AL-Jawary, 2017) and others.

In 2009, (Daftardar-Gejji & Bhalekar, 2009) Varsha
Daftardar-Gejji and Sachin Bhalekar proposed an itera-
tive technique which can be applied to different kinds
of the nonlinear functional equations of the
form v ¼ f þ NðvÞ. This iterative method is based on
using the Banach contraction principle and it can be
abbreviated as (BCPM). Daftardar and Bhalekar

CONTACT Majeed Ahmed Al-Jawary majeed.a.w@ihcoedu.uobaghdad.edu.iq
� 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of the University of Bahrain.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

University of BahrainARAB JOURNAL OF BASIC AND APPLIED SCIENCES
2018, VOL. 25, NO. 3, 122–131
https://doi.org/10.1080/25765299.2018.1511079

http://crossmark.crossref.org/dialog/?doi=10.1080/25765299.2018.1511079&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org./10.1080/25765299.2018.1511079
http://www.uob.edu.bh/en/
http://www.tandfonline.com


considered some examples to show the validity of the
Banach contraction principle method (BCPM) in solving
different kinds of equations (Daftardar-Gejji & Bhalekar,
2009). In this study, we will apply the BCPM to solve
the nonlinear thin film flow problem, with a discussion
about the error analysis and determining the accuracy
of the obtained solutions and showing the high effi-
ciency of the proposed method.

The following sections in this paper are organized
as follows: section 2 presents the nonlinear thin film
flow problem, section 3 presents several prelimina-
ries for the BCPM, section 4 shows the basic steps of
the BCPM, and in section 5 there is the convergence
proof for the proposed method. Solving the nonlin-
ear problem by the BCPM and the convergence ana-
lysis are given in section 6. The error analysis of the
approximate solution is in section 7. Finally, a com-
parison study is presented in section 8.

2. The nonlinear thin film flow problem

In the following, we consider the nonlinear boundary
problem, which represents the physical problem of
the thin film flow of the third-grade fluid and on a
moving belt (Siddiqui et al., 2006, 2012). First, the
motion for the incompressible fluid can be governed
by these basic equations:

r:U ¼ 0; (1)

q
DU
Dt

¼ �rpþ divs; (2)

where U is the velocity vector, q is the constant
density, p represents the pressure, D=Dt denotes the
material derivative and s is the stress tensor. These
equations are valid for an incompressible fluid,
neglecting all body forces and thermal effects. The
stress tensor defines the following third-grade fluid
presented by:

s ¼
X3
k¼1

Zk; (3)

where

Z1 ¼ lC1;
Z2 ¼ c1C2 þ c2C

2
1 ;

Z3 ¼ a1C3 þ a2 C1C2 þ C2C1ð Þ þ a3 trC2ð ÞC1:
(4)

Above, l represents the viscosity constant and
c1; c2; a1; a2 and a3 are material constants of the
problem. The Rivlin–Ericksen tensors Cn are defined by:

C0 ¼ I;

Cn ¼ DCn�1

Dt
þ Cn�1 rUð Þ þ rUð ÞTCn�1; n � 1:

(5)

where C0 is the identity tensor. Now let suppose
a third-grade fluid (as in Figure 1) in a container
where a wide moving belt passes it. This belt is mov-
ing vertically upward with the velocity constant a.

As the belt is moving up and passing through the
fluid, it is picking up a film of thickness d. As a result
of gravity the film drains down the belt. We consider
the flow to be steady and uniform. We set up the
coordinate system such that the x-axis is parallel to
the fluid and is normal to the belt, the y-axis is
aimed upward along the belt and the z-axis is nor-
mal to the xy-plane. This set up, where only the
component of the velocity in the y-direction is non-
zero, can be considered to take the following form:

U ¼ 0; v xð Þ; 0ð Þ: (6)

Such flow velocity (6) identically satisfies the con-
tinuity equation (1). Making use of equation (3) and
(4), we can derive the components of the momen-
tum equation (2) as:

op
ox

¼ 2c1 þ c2ð Þ d
dx

dv
dx

� �2

; (7)

op
oy

¼ qgþ l
d
dx

dv
dx

� �
þ 2 a2 þ a3ð Þ d

dx
dv
dx

� �3

; (8)

op
oz

¼ 0; (9)

where q is the density and g is the acceleration due
to gravity. Equation (9) reveals that the pressure p
does not depend on the z coordinate, so it is a func-
tion of x and y only. By introducing the generalized
pressure ep by the relation:

ep ¼ p� 2c1 þ c2ð Þ dv
dx

� �2

; (10)

the equations (7) and (8) take these forms:

oep
ox

¼ 0; (11)

oep
oy

¼ qgþ l
d2v
dx2

þ 6 a2 þ a3ð Þ d
2v

dx2
dv
dx

� �2

: (12)

Equation (11) reveals that the pressure is independ-
ent of x, thus equation (12) becomes:

Figure 1. Physical sketch for the flow of a moving belt
through a non-Newtonian fluid (Adomian, 1994; Moosavi et
al., 2016).
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dep
dy

¼ qgþ l
d2v
dx2

þ 6 a2 þ a3ð Þ d
2v

dx2
dv
dx

� �2

: (13)

Each term on the right-hand side of equation (13)
involves velocity, which depends on x, and on the
left-hand side the pressure depends on y. Equality is
possible only if both sides are constant. When there
is no pressure in the y-direction, this constant takes
the value zero and we have:

d2v
dx2

þ 6 a2 þ a3ð Þ
l

dv
dx

� �2
d2v
dx2

� qg
l

¼ 0; (14)

v 0ð Þ ¼ a;
dv
dx

dð Þ ¼ 0: (15)

Some assumptions are made to simplify the prob-
lem: the film flow thickness d is uniform and the
flow is steady-state, laminar and uniform (Moosavi
et al., 2016). In what follows, the dimensionless varia-
bles are introduced in the following way:

ex ¼ x
d
; ev ¼ v

a
; b ¼ a2 þ a3ð Þa2

ld2
and m ¼ qgd2

la
:

(16)

Hence, equations (14) and (15) can be reduced to
the following well-posed boundary value problem,
where the tilde symbol is omitted:

v00 þ 6b v0ð Þ2v00 �m ¼ 0; (17)

with the following boundary conditions:

v 0ð Þ ¼ 1; v0 1ð Þ ¼ 0: (18)

By integrating both sides of (17) with respect
to x; we may write:

v0 þ 2b v0ð Þ3 �mx ¼ c1; (19)

and by implementing the second boundary condi-
tion in equation (18), we can get c1 ¼ �m. Thus, the
next first-order ODE can be derived:

v0 þ 2b v0ð Þ3 �m x � 1ð Þ ¼ 0; (20)

v 0ð Þ ¼ 1: (21)

In the case of considering the flow on a Newtonian
fluid, the parameter b equals b ¼ 0 (Siddiqui et al.,
2006, 2012). In the following sections, we will apply
the BCPM for the nonlinear initial value problem,
which is presented by equations (20) and (21)
instead of the boundary value problem that is pre-
sented in equations (17) and (18), as we expect that
the solution of the initial value problem will be more
accurate and less computationally expensive.

3. Some preliminaries

In this section, we review some basic concepts.

Let X1 and X2 be two metric spaces, and let F be
a mapping from X1 into X2, F is said to be Lipschitz
mapping, if there exists a real number r � 0 such
that for all x1; x2 2 X1 we have
dðFx1; Fx2Þ � rdðx1; x2Þ. F is said to be contraction
mapping if r < 1 (Joshi & Bose, 1985).

(Joshi & Bose, 1985) Let F be a contraction map-
ping with a Lipschitz constant r, of a complete metric
space X into itself, then F has a unique fixed point v
in the space X . In addition, if x0 is some arbitrary point
in X , and xn is defined by xnþ1 ¼ F xnð Þ; n ¼
0; 1; 2; . . . then limn!1 xn ¼ v and dðxn; vÞ
� rn

1�r dðx1; x0Þ.
(Joshi & Bose, 1985) Let F be a mapping of some

complete metric space X into itself, such that Fk is a
contraction mapping of X for a positive integer k,
then F has a unique fixed point in the space X .

4. The analysis of the BCPM

Let us consider the following nonlinear equation:

v xð Þ ¼ f xð Þ þ N v xð Þ½ �; (22)

where vðxÞ is an unknown function, fðxÞ is a
given function and N is a nonlinear operator of the
functional equation (22). Let us define some succes-
sive approximations as the following:

v0 ¼ f ;
v1 ¼ v0 þ N v0½ �;
v2 ¼ v0 þ N v1½ �;

..

.

(23)

vn ¼ v0 þ N vn�1½ �; n ¼ 1; 2; . . . : (24)

If Nk is a contraction mapping for some positive
integer k, so N½v� has a unique fixed point and thus
the nth sequence that is defined by (24) is conver-
gent according to Theorem 3.2, hence the solution
of (22) will be obtained as the following form:

v ¼ lim
n!1 vn: (25)

5. The convergence proof for the BCPM

In order to show the convergence proof for the
BCPM, let us start by defining the algorithm for the
proposed method. The iterative algorithm starts with
these terms:

V0 ¼ v0 xð Þ;
V1 ¼ F v0½ �;

V2 ¼ F v0 þ v1½ �;
. . .

Vnþ1 ¼ F v0 þ v1 þ . . .þ vn½ �;

(26)

where F is an operator which can be defined by:
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F Vkð Þ ¼ Sk �
Xk�1

i¼0

Vi xð Þ; k ¼ 1; 2; . . . : (27)

Here Sk represents the problem solution, which is
obtained by the BCPM in the form:

Vk ¼ V0 þ N
Xk�1

i¼0

Vi xð Þ
 !

; k ¼ 1; 2; . . . : (28)

This iterative process yields v xð Þ ¼ limi!1 vi xð Þ ¼P1
i¼0 Vi xð Þ. Thus, when using equations (26) and (27),

the solution will result in a series of the following
form:

v xð Þ ¼
X1
i¼0

Vi xð Þ: (29)

According to the proposed BCPM iterative algo-
rithm, the sufficient convergence condition will hold
for this technique, where the main results are pre-
sented in the following theorems.

Let F, given in (27), be an operator from a Hilbert
space H to H. The series solution vn xð Þ ¼Pn

i¼0 Vi xð Þ
converges if 9 0 < g < 1 such that
jF½V0 þ V1 þ . . .þ Viþ1�
�� ��j � g jF½V0 þ V1

�� þ . . .þ Vi�jj
(that is jViþ1j jj � g jVij jj) 8i ¼ 0; 1; 2; . . ..

This theorem is a special case of Banach’s fixed
point theorem and it is a sufficient condition for
studying the convergence of the BCPM.

See (Odibat, 2010).
If the series solution v xð Þ ¼P1

i¼0 Vi xð Þ is conver-
gent, then this series will represent the exact solu-
tion for the nonlinear problem defined by equations
(20) and (21).

See (Odibat, 2010).
Suppose that the series solution

P1
i¼0 Vi xð Þ which is

defined in (29) is convergent to the solution v xð Þ. If the
truncated series

Pn
i¼0 Vi xð Þ is used as an approximation

to the solution of problem defined by (20) and (21),
then the maximum error EnðxÞ will be estimated as:

En xð Þ � 1
1� g

gnþ1 jV0j jj: (30)

See (Odibat, 2010).
To summarize, Theorems 5.1 and 5.2 state that the

BCPM solution for the nonlinear equation (20), eval-
uated by (24) or (26), converges to the exact solution
under the condition 9 0 < g < 1 such that
jF½V0 þ V1 þ . . .þ Viþ1�
�� ��j � g jF½V0 þ V1 þ . . .þ Vi�

�� ��j
(that is jViþ1j jj � g jVij jj) 8i ¼ 0; 1; 2; . . .. In other words,
for each i, if we provide the following parameters:

ai ¼
jViþ1j jj
jVij jj ; jVij jj 6¼ 0

0; jVij jj ¼ 0

8<: (31)

then the series solution
P1

i¼0 Vi xð Þ for equation
(20) converges to the exact solution v xð Þ, when 0 �
ai < 1; 8i ¼ 0; 1; 2; . . . : Also, as in Theorem 5.3, the
maximum truncation error is estimated to be jv xð Þ���Pn

i¼0 Vijj � 1
1�a a

nþ1 jV0j jj, where
a ¼ maxfai; i ¼ 0; 1; . . . ; ng.

6. Solving the nonlinear thin film flow
problem by using the BCPM with
convergence

In this section, we develop the BCPM iterative method
to solve the nonlinear thin film flow problem. In the fol-
lowing, we consider the nonlinear initial value problem
that is represented by equations (20) and (21).

According to the BCPM, we start by integrating
both sides of equation (20) from 0 to x. The integra-
tion yields the following expression:

v xð Þ ¼ 1�mx þm
x2

2
� 2b

ðx
0

v0 tð Þ� �3
dt: (32)

By selecting the initial approximation v0, which is:

v0 xð Þ ¼ 1�mx þm
x2

2
; (33)

the first approximation v1 can be written in the
following form:

v1 xð Þ ¼ v0 xð Þ � 2b
ðx
0

v00 tð Þ� �3
dt; (34)

v1 xð Þ ¼1�mx þmx2

2
þ 2m3xb� 3m3x2b

þ 2m3x3b� 1
2
m3x4b:

(35)

Similarly, the second approximation v2 reads as:

v2 xð Þ ¼ v0 xð Þ � 2b
ðx
0

v01 tð Þ� �3
dt; (36)

v2 xð Þ ¼ 1�mx þmx2

2
þ 2m3xb� 3m3x2b

þ 2m3x3b� 1
2
m3x4b� 12m5xb2 þ 30m5x2b2

� 40m5x3b2 þ 30m5x4b2 � 12m5x5b2 þ 2m5x6b2

þ 24m7xb3 � 84m7x2b3 þ 168m7x3b3 � 210m7x4b3

þ 168m7x5b3 � 84m7x6b3 þ 24m7x7b3 � 3m7x8b3

� 16m9xb4 þ 72m9x2b4 � 192m9x3b4 þ 336m9x4b4

� 2016
5

m9x5b4 þ 336m9x6b4 � 192m9x7b4

þ 72m9x8b4 � 16m9x9b4 þ 8
5
m9x10b4:

(37)

We can obtain the rest of the approximations using
the same process. In general, the following formula
is used for this purpose:

vnþ1 xð Þ ¼ v0 xð Þ � 2b
ðx
0

v0n tð Þ� �3
dt; n ¼ 0; 1; 2 . . . :

(38)
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In order to check the convergence of the BCPM for
the current initial value problem presented by (20)
and (21), as given in the relations (26)–(29), the itera-
tive scheme for equation (20) can be formulated by:

V0 xð Þ ¼ v0 xð Þ ¼ 1�mx þm
x2

2
; (39)

with the operator F½Vk� as defined in equation
(27) with the term Sk which represents the solution
for the following problem:

Vk ¼ V0 � 2b
ðx
0

d
dx

Xk�1

i¼0
Vi xð Þ

� �� �3

dt; k ¼ 1; 2; . . . :

(40)

The following terms are obtained:

V1 ¼ �m3

2
b 1� x�1ð Þ4
� �

; (41)

V2 ¼ 1
5
m5 �2þ xð Þxb2ð�64m4x7b2 þ 8m4x8b2

þ 2m2x5bð45� 248m2bÞ þm2x6bð�15þ 232m2bÞ
þ 10ð3� 6m2bþ 4m4b2Þ � 20x 3�9m2bþ 8m4b2

� �
� 40x3 1�9m2bþ 16m4b2

� �
þ 10x2 7�33m2bþ 40m4b2

� �
þ 2x4 5�120m2bþ 344m4b2

� �
Þ:

(42)

As given in the convergence proof for the BCPM, the
terms given by the series

P1
i¼0 Vi xð Þ in (29) satisfy the

convergence condition. By evaluating the ai values,
we get:

a0 ¼ jV1j jj
jV0j jj ¼ 0:00658939 < 1

a1 ¼ jV2j jj
jV1j jj ¼ 0:176445< 1

a2 ¼ jV3j jj
jV2j jj ¼ 0:180917< 1

a3 ¼ jV4j jj
jV3j jj ¼ 0:192138< 1

a4 ¼ jV5j jj
jV4j jj ¼ 0:197802< 1

(43)

where the ai values for i � 0 and 0 < x � 1 are less
than 1, therefore the BCPM satisfies the convergence
condition, and this makes the BCPM a valid mathemat-
ical tool for solving such kind of problems. In order to
estimate the accuracy of the final approximate solution,
we define the following error remainder function:

ERn xð Þ ¼ d
dx

vnð Þ þ 2b
d
dx

vnð Þ
� �3

�m x�1ð Þ ¼ 0;

(44)

and the following maximal error remain-
der parameter:

MERn ¼ max
0�x�1

ERn xð Þ�� ��: (45)

All the computations presented in this paper have
been conducted using the symbolic computation
software MATHEMATICAVR .

All terms in the BCPM approximation series
involve b and its powers, which makes a noticeable
impact on the behaviour of the non-Newtonian fluid
problem. By setting the value of b as zero the
Newtonian viscous fluid problem will be recovered
and the BCPM series will converge to the exact solu-
tion. In the next section a numerical simulation for
different cases of the flow problem will be discussed.

7. The numerical simulation

When studying the numerical solution of the prob-
lem posed by equations (20) and (21), one must
examine the effect of the BCPM on the convergence
of the function vðxÞ. From this standpoint, we must
examine the numerical structure of the obtained
approximate solution vðxÞ. Hence, when choosing
the values of b and m in our approximate solution,
we can obtain several approximate solutions. The
best solution is obtained when setting b ¼ 0:5
and m ¼ 0:3 just like in AL-Jawary (2017) and
Siddiqui et al. (2012). The BCPM approximations for
this case are:

v0 xð Þ ¼ 1þ 0:3 �1þ x
2

� �
x;

v1 xð Þ ¼1:� 0:27299999999999996x

þ 0:10949999999999999x2 þ 0:027x3 � 0:00675x4;

v2 xð Þ ¼1:� 0:279653583x þ 0:1255172235x2

þ 0:007056503999999997x3 þ 0:0061474680000000006x4

� 0:0031933115999999992x5 � 0:0006680070000000001x6

þ 0:0004199039999999999x7 þ 0:000006561000000000002x8

� 0:000019682999999999998x9 þ 0:0000019683x10:

It can be observed that when drawing the values of
the MERn as in Figure 2, the obtained solution by
the BCPM has an exponential rate of convergence,
since the points are located on a straight line.

In order to additionally verify the accuracy of
BCPM solutions of the flow problem, we have solved
the problem by using the classical fourth-order
Runge–Kutta method (RKM), which is implemented

Figure 2. The maximum error remainder plots for the thin
film flow problem by using the BCPM where b ¼ 0:5
and m ¼ 0:3.
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in MATHEMATICA (see appendix in (AL-Jawary,
2017)). The RKM can be used as a benchmark to
assess the performance of the BCPM. A similar
approach was used by AL-Jawary (2017) and
Siddiqui et al. (2012). To show the ability of the
BCPM for reaching the best accuracy for the
obtained approximate solutions, we used the root
mean square ðRMSÞ function to estimate the differ-
ence between the solutions of the BCPM and RKM.
The RMS function is defined in the following way:

RMS vð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

vBCPM�vRKMð Þ2P
vRKMð Þ2

s
: (46)

Figures 3 and 4 show the RMS vð Þ differences
versus n, where the RMS value decreases whenever
the value of n increases. Note that the higher the
non-Newtonian parameter b, the RMS values becomes
greater; where the value of the constant m is fixed as
shown in Figure 3. The same conclusion can also be
drawn when keeping the non-Newtonian parameter b
fixed and increasing the value of m as shown in
Figure 4. We conclude from this that the approximate
solutions of the BCPM become more accurate
whenever n increases. The rate of convergence with
increasing n for the case of b ¼ 0:5 and m ¼ 0:3 was
estimated using logðMER4=MER3Þ=logðMER3=MER2Þ ¼
1:0 proving linear convergence of the method.

In order to highlight the difference between solu-
tions; we have evaluated the 2-norm,
i.e. jvRKM�vBCPMj jj2 for five approximations of the
BCPM. We observe good accuracy when changing the

non-Newtonian parameter b and keeping the value
of m fixed, as shown in Figure 5. The same conclusion
can be drawn when retaining the value of b fixed,
and changing the value of the constant m, as in
Figure 6.

The BCPM is comprehensive and smooth in solv-
ing various types of problems. In comparison with
the RKM, we can find that in using the BCPM there
is no need for any restrictive assumptions, resorting
to discretization or determining the step size of the
subintervals over the whole interval. In addition, the
use of the BCPM does not require a large and com-
plicated computational work or using any type of
quantization processes.

In order to additionally verify and validate the
proposed BCPM approach, we solved the problem
using a combination of Euler and Newton–Raphson
methods (ENRM). We have discretizised the solution
space into steps of size Dx. At each step, we solved
the nonlinear equation (20) for the given x value
and obtained v0 using the Newton–Raphson method.
Then we advanced the solution v in space using the
Euler method. The Newton–Raphson method is
implemented as:

f v0ð Þ ¼ v0 þ 2b v0ð Þ3 �m x�1ð Þ and f 0 v0ð Þ ¼ 1þ 6b v0ð Þ2

(47)

v0 ¼ v0 kð Þ þ f v0 kð Þð Þ
f 0 v0 kð Þð Þ : (48)

We iterate equation (48) until convergence is
achieved ðv0 kþ1ð Þ � v0 kð Þ<10�13Þ. With v0 calculated at a

Figure 3. The root mean square RMSðvÞ curves that are
obtained by the BCPM, for different values of b and m ¼ 0:3.

Figure 4. The root mean square RMSðvÞ curves that are
obtained by the BCPM, for different values of m and b ¼ 0:3.

Figure 5. Comparison of the solutions of the BCPM and the
RKM by using the 2-norm jvRKM�vBCPMj jj2 at m ¼ 0:3.

Figure 6. Comparison of the solutions of the BCPM and the
RKM by using the 2-norm jvRKM�vBCPMj jj2 at b ¼ 0:5.
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chosen x, we advance the solution using v x þ Dxð Þ
¼ v xð Þ þ v0Dx.

Figures 7 and 8 show the RMS norm of ENRM ver-
sus the RKM. We observe the solution accuracy is
increasing when small discretization steps are used.
In order to achieve solution accuracy comparable to
the BCPM a very small step Dx must be used, and
consequently a lot of calculations are needed.
However, in the more demanding cases (for example
for m ¼ 0:5 or b ¼ 0:9), the ENRM method yields
results of the same order of accuracy for a given
step size, while we observe decreased accuracy at a
given n when using BCPM.

8. A comparison study

This section presents a comparison between the
BCPM solution and other several previous solutions.
These solutions have been evaluated by the ADM
and VIM (Siddiqui et al., 2012) for the nonlinear thin

film flow problem, i.e. equations (20) and (21). In the
following we summarize ADM and VIM for the pro-
posed nonlinear problem.

8.1. Solution obtained by the Adomian
decomposition method

The basic details of the ADM can be found in
(Adomian, 1994). Let us re-write equation (20) in the
operator form:

L vð Þ þ 2bN vð Þ þ f xð Þ ¼ 0; (49)

where L vð Þ ¼ v0 which is the highest order deriva-
tive, N vð Þ ¼ ðv0Þ3 is the nonlinear tem of equation
(20) and f xð Þ ¼ �m x�1ð Þ; which is source term. The
basic idea of the ADM is to expand the solution v xð Þ
in the following infinite series:

v xð Þ ¼
X1

i¼0
vi xð Þ; i ¼ 0; 1; 2; . . . : (50)

The components vi are calculated in recursive
way. The nonlinear term N vð Þ is decomposed into
the following infinite polynomial:

N vð Þ ¼
X1

i¼0
Ai; (51)

where Ai are known by the Adomian polynomials
that can be defined by (Adomian, 1994):

Ai ¼ 1
i!
di

dki
N
Xi

j¼0
kjvj

� �h i
k¼0

; i ¼ 0; 1; 2; . . . : (52)

The recurrence relation for the nonlinear initial
value problem presented by (20) and (21) can be
given by:

v0 xð Þ ¼ 1þmL�1 x�1ð Þ; (53)

viþ1 xð Þ ¼ 2bL�1Ai; i ¼ 0; 1; 2; . . . ; (54)

where the operator L�1 :ð Þ ¼
Ð x
0 :ð Þdt. The first terms

for the Adomian polynomials Ai are presented by:

A0 ¼ v030 ;
A1 ¼ 3v020 v

0
1;

A2 ¼ 3v00v
02
1 þ 3v020 v

0
2;

A3 ¼ v031 þ 6v00v
0
1v

0
2 þ 3v020 v

0
3;

A4 ¼ 3v021 v
0
2 þ 3v00v

02
2 þ 6v00v

0
1v

0
3 þ 3v020 v

0
4:

(55)

Thus, the following components are obtained:

v0 xð Þ ¼ 1�m
2

1� x�1ð Þ2
� �

;

v1 xð Þ ¼ �m3

2
b 1� x�1ð Þ4
� �

;

v2 xð Þ ¼ �2m5b2 1� x�1ð Þ6
� �

;

v3 xð Þ ¼ 12m7b3 1� x�1ð Þ8
� �

;

v4 xð Þ ¼ �88m9b4 1� x�1ð Þ10
� �

;

v5 xð Þ ¼ 728m11b5 1� x�1ð Þ12
� �

;

. . .

(56)

The approximate solution w5 ¼
P5

i¼0 vi xð Þ has
been used as a solution obtained by the ADM.

Figure 7. The root mean square norm RMSðvÞ versus the
spatial discretization for different values b and m ¼ 0:3.

Figure 8. The root mean square norm RMSðvÞ versus the
spatial discretization for different values m and b ¼ 0:3.
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This solution has been evaluated when
setting b ¼ 0:5 and m ¼ 0:3 as in AL-Jawary (2017)
and Siddiqui et al. (2012); so, we have:

vADM xð Þ ¼ 1:� 0:27826455369x þ 0:12075128029499997x2

þ 0:016946227350000002x3 � 0:008703601537499994x4

þ 0:01571850845999999x5 � 0:02247460586999999x6

þ 0:021551966459999992x7 � 0:015405474037499995x8

þ 0:007783642349999997x9 � 0:002551605704999999x10

þ 0:00048361130999999985x11

� 0:000040300942499999985x12:

(57)

8.2. Solution obtained by the variational
iteration method

To examine the details of the VIM, please refer to He
(1999). VIM considers equation (49) and uses the cor-
rection functional, which is defined by:

viþ1 xð Þ ¼ vi xð Þ þ
ðx
0
k Lvi tð Þ þ 2bNevi tð Þ þ f tð Þð Þdt;

i ¼ 0; 1; 2; . . . ;
(58)

where k represents the Lagrange multiplier,
which can be selected by the variational theory (He,
1999). For our problem k ¼ �1 is chosen, since it is
an ODE of the first order. The term evi xð Þ is the
restricted variation, i.e. devi ¼ 0. After determining
the Lagrange multiplier k, the correction functional
will be:

viþ1 xð Þ ¼ vi xð Þ �
ðx
0

v'i tð Þ þ 2b v'i tð Þ
� �3

�m t�1ð Þ
� �

dt;

i ¼ 0; 1; 2; . . . :

(59)

Now, selecting the initial function v0 ¼ 1 and by
using the given initial condition in equation (21), the
following approximate iterations are obtained:

v1 xð Þ ¼ 1�mx þmx2

2
; (60)

v2 xð Þ ¼ 1�mx þmx2

2
� 1
2
m3 �1þ �1þ xð Þ4
� �

b;

(61)

v3 xð Þ ¼ 1þ 1
2
m �2þ xð Þx � 1

2
m3x �4þ 6x�4x2 þ x3ð Þb

þ 2m5x �6þ 15x�20x2 þ 15x3�6x4 þ x5ð Þb2
� 3m7x �8þ 28x�56x2 þ 70x3�56x4 þ 28x5�8x6 þ x7ð Þb3

þ 8
5
m9xð�10þ 45x � 120x2 þ 210x3 � 252x4

þ 210x5 � 120x6 þ 45x7 � 10x8 þ x9Þb4:
(62)

The fifth iteration has been evaluated but for
brevity it has not be written. When b ¼ 0:5
and m ¼ 0:3 are chosen, we obtain in the fifth iter-
ation the following expression:

vVIM xð Þ ¼1:� 0:27848503783412076x

þ 0:12202390679789032x2

þ 0:012462212476985899x3

þ 0:0020497509517549773x4

� 0:0027938529654141404x5

þ 0:0010082798100599286x6

� 0:0005743472921795505x7

� 0:00005080525431622063x8

þ 0:00016705930916772292x9

� 0:000028418954191598908x10

þ 0:000008455254093027658x11

� 0:000009550251293606744x12 þ . . . :

(63)

Tables 1 and 2 review the maximum error remainder
MER5 for our solution of the BCPM and the previous sol-
utions obtained by the ADM, VIM and the TAM. Clearly
the best accuracy is reached by using the BCPM.

Table 1. The error norm MER5 for the numerical solutions obtained by the BCPM, ADM, VIM and
TAM for different values of b at m ¼ 0:3.
b BCPM ADM VIM TAM

0:1 2:11964� 10�9 1:39694� 10�8 4:06296� 10�8 4:06296� 10�8

0:2 1:17068� 10�7 8:59592� 10�7 1:15823� 10�6 1:15823� 10�6

0:3 1:16024� 10�6 9:43745� 10�6 7:88187� 10�6 7:88187� 10�6

0:4 5:71314� 10�6 0.0000512 0:0000299 0:0000299
0:5 0:0000192 0:000189 0:0000826 0:0000826
1 0:000707 0:010431 0:001694 0:001694

Table 2. The error norm MER5 for the numerical solutions obtained by the BCPM, ADM, VIM and
TAM for different values of m at b ¼ 0:5.
m BCPM ADM VIM TAM

0:1 2:22449� 10�11 1:39442� 10�10 7:56112� 10�10 7:56112� 10�10

0:2 1:42288� 10�7 1:06931� 10�6 1:27554� 10�6 1:27554� 10�6

0:3 0:0000192 0:000189099 0:0000826431 0:0000826431
0:4 0:000521409 0:00708853 0:00137525 0:00137525
0:5 0:00584935 0:108326 0:0107724 0:0107724
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Conclusion

In this work, we have introduced a semi-analytical
iterative method to solve the nonlinear thin film
flow problem. This iterative method uses the Banach
contraction principle theorem and there is no need
to use any restricted assumptions when dealing with
the nonlinear terms. When comparing this iterative
method with the other known iterative methods
such as the ADM, HAM, VIM and HPM, we find that
this method is more easily implemented than those
methods when solving nonlinear problems, as there
is no need to use any additional or supportive calcu-
lations. The BCPM method is characterized by com-
putational efficiency and there is no need to
produce new more intricate approximations. In a
numerical simulation we have shown that the values
of the maximum error remainder decrease when the
number of the BCPM iterations increases.
Furthermore, the numerical results of the BCPM were
compared with those obtained by the RKM by evalu-
ating the root mean square norm. In addition, to
confirm the accuracy of our numerical calculations of
the BCPM, we have evaluated the 2-norm for the
velocity function based on the values of the BCPM
and RKM. The figures show linear convergence of
the method. Thus, the BCPM is a very accurate
method for finding reliable results with high accur-
acy. Comparison with the Euler–Newton–Raphson
approach showed that in most cases BCMP is com-
putationally faster and more efficient. Calculations
were performed using the computer algebra system
MATHEMATICAVR .
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